1
|
Gao C, Chen Y, Zhang Z, Xu D, Liu X, Wang D, Shi L, Wang X, Chen H, Hao E. LAYING RATE WAS CORRELATED WITH MICROBIAL Fecal microbiota transplantation improves the laying performance by changing the gut microbiota composition in late laying period. Poult Sci 2025; 104:105064. [PMID: 40120240 PMCID: PMC11981753 DOI: 10.1016/j.psj.2025.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
This research investigated the differences and succession patterns of microbes in different ages, the performance of laying hens, and the effect of Fecal Microbiota Transplantation (FMT) on aged laying hens. First, based on the different laying rates and age, we divided the laying hens into four groups: 75-week-old high-yield (OH, laying rate (LR) > 90%), 75-week-old low-yield (OL, LR < 60%), 75-week-old non-laying hens (OZ, LR = 0%) and 35-week-old high-yield (YH, LR > 90%) with 5 replicates in each group and 6 chickens in each replicate. The microbial metabolic patterns between different ages and laying rates were determined using 16S rDNA technology. Then, to verify the results of microbiome research, we utilized FMT technology to transplant the gut microbiota from OH to OZ (OZFMT-OH), thereby revealing the connection between gut microbes and production performance. The results showed that high-yielding hens (YH and OH groups) had higher levels of Superoxide dismutase (SOD) and Immunoglobulin A (IgA) compared to OL and OZ groups. The Villus height to Crypt depth ratio(V/C) was significantly higher in the YH group than in 75-week-old hens (P < 0.05). Alpha diversity indicated higher microbial diversity in the YH group compared to older hens (P < 0.05), with YH hens harboring more Megamonas, OH hens more Bacteroides, and OL and OZ groups showing higher levels of harmful bacteria. The villus height, V/C, mucosal layer thickness, cup cell number acetic acid level, and LR in the OZFMT-OH group were significantly higher than those in the OZ group (P < 0.05), while the IL-2 level, crypt depth and cecal intestinal wall thickness were significantly lower than those in OZ group (P < 0.05). FMT also changed the morphological structure of grade follicles and small yellow follicles, improved the microbe composition of cecum and increased Bacteroides abundance. In the late laying period, if the intestinal flora cannot maintain the dynamic balance and carry out timely replacement, the production performance may be decreased, and the increase of Bacteroides abundance in the intestinal tract can improve the intestinal health and production performance of laying hens in the late laying period.
Collapse
Affiliation(s)
- Chong Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhenhong Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Dahai Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuelu Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xuechang Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Erying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
2
|
Niu J, Yan X, Bai Y, Li W, Lu G, Wang Y, Liu H, Shi Z, Liang J. Integration of Transcriptomics and WGCNA to Characterize Trichoderma harzianum-Induced Systemic Resistance in Astragalus mongholicus for Defense against Fusarium solani. Genes (Basel) 2024; 15:1180. [PMID: 39336771 PMCID: PMC11431081 DOI: 10.3390/genes15091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Beneficial fungi of the genus Trichoderma are among the most widespread biocontrol agents that induce a plant's defense response against pathogens. Fusarium solani is one of the main pathogens that can negatively affect Astragalus mongholicus production and quality. To investigate the impact of Trichoderma harzianum on Astragalus mongholicus defense responses to Fusarium solani, A. mongholicus roots under T. harzianum + F. solani (T + F) treatment and F. solani (F) treatment were sampled and subjected to transcriptomic analysis. A differential expression analysis revealed that 6361 differentially expressed genes (DEGs) responded to T. harzianum induction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the 6361 DEGs revealed that the genes significantly clustered into resistance-related pathways, such as the plant-pathogen interaction pathway, phenylpropanoid biosynthesis pathway, flavonoid biosynthesis pathway, isoflavonoid biosynthesis pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and plant hormone signal transduction pathway. Pathway analysis revealed that the PR1, formononetin biosynthesis, biochanin A biosynthesis, and CHIB, ROS production, and HSP90 may be upregulated by T. harzianum and play important roles in disease resistance. Our study further revealed that the H2O2 content was significantly increased by T. harzianum induction. Formononetin and biochanin A had the potential to suppress F. solani. Weighted gene coexpression network analysis (WGCNA) revealed one module, including 58 DEGs associated with T. harzianum induction. One core hub gene, RPS25, was found to be upregulated by T. harzianum, SA (salicylic acid) and ETH (ethephon). Overall, our data indicate that T. harzianum can induce induced systemic resistance (ISR) and systemic acquired resistance (SAR) in A. mongholicus. The results of this study lay a foundation for a further understanding of the molecular mechanism by which T. harzianum induces resistance in A. mongholicus.
Collapse
Affiliation(s)
- Jingping Niu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Xiang Yan
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Yuguo Bai
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Wandi Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Genglong Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Yuanyuan Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Hongjun Liu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Zhiyong Shi
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Jianping Liang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Kumar A, Angelopoulou E, Pyrgelis ES, Piperi C, Mishra A. Harnessing Therapeutic Potentials of Biochanin A in Neurological Disorders: Pharmacokinetic and Pharmacodynamic Overview. Chem Biodivers 2024; 21:e202400709. [PMID: 38828832 DOI: 10.1002/cbdv.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Biochanin A, an isoflavone flavonoid with estrogenic activity, is naturally found in red clover and other legumes. It possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, anti-apoptotic, neuroprotective, and anticancer effects. In recent years, a growing body of pre-clinical research has focused on exploring the therapeutic potential of biochanin A in various neurological disorders, such as Alzheimer's and Parkinson's disease, multiple sclerosis, epilepsy, ischemic brain injury, gliomas, and neurotoxicity. This comprehensive review aims to shed light on the underlying molecular mechanisms that contribute to the neuroprotective role of biochanin A based on previous pre-clinical studies. Furthermore, it provides a detailed overview of the protective effects of biochanin A in diverse neurological disorders. The review also addresses the limitations associated with biochanin A administration and discusses different approaches employed to overcome these challenges. Finally, it highlights the future opportunities for translating biochanin A from pre-clinical research to clinical studies while also considering its commercial viability as a dietary supplement or a potential treatment for various diseases.
Collapse
Affiliation(s)
- Ankit Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam, 781101, India
| | - Efthalia Angelopoulou
- Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528, Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam, 781101, India
| |
Collapse
|
4
|
Wang SY, Zhang YJ, Chen X, Shi XC, Herrera-Balandrano DD, Liu FQ, Laborda P. Biocontrol Methods for the Management of Sclerotinia sclerotiorum in Legumes: A Review. PHYTOPATHOLOGY 2024; 114:1447-1457. [PMID: 38669603 DOI: 10.1094/phyto-01-24-0006-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Sclerotinia sclerotiorum is an economically damaging fungal pathogen that causes Sclerotinia stem rot in legumes, producing enormous yield losses. This pathogen is difficult to control due to its wide host spectrum and ability to produce sclerotia, which are resistant bodies that can remain active for long periods under harsh environmental conditions. Here, the biocontrol methods for the management of S. sclerotiorum in legumes are reviewed. Bacillus strains, which synthesized lipopeptides and volatile organic compounds, showed high efficacies in soybean plants, whereas the highest efficacies for the control of the pathogen in alfalfa and common bean were observed when using Coniothyrium minitans and Streptomyces spp., respectively. The biocontrol efficacies in fields were under 65%, highlighting the lack of strategies to achieve a complete control. Overall, although most studies involved extensive screenings using different biocontrol agent concentrations and application conditions, there is a lack of knowledge regarding the specific antifungal mechanisms, which limits the optimization of the reported methods.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | | | - Feng-Quan Liu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, People's Republic of China
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
5
|
Jiang YH, Liu T, Shi XC, Herrera-Balandrano DD, Xu MT, Wang SY, Laborda P. p-Aminobenzoic acid inhibits the growth of soybean pathogen Xanthomonas axonopodis pv. glycines by altering outer membrane integrity. PEST MANAGEMENT SCIENCE 2023; 79:4083-4093. [PMID: 37291956 DOI: 10.1002/ps.7608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND p-Aminobenzoic acid (pABA) is an environmentally friendly bioactive metabolite synthesized by Lysobacter antibioticus. This compound showed an unusual antifungal mode of action based on cytokinesis inhibition. However, the potential antibacterial properties of pABA remain unexplored. RESULTS In this study, pABA showed antibacterial activity against Gram-negative bacteria. This metabolite inhibited growth (EC50 = 4.02 mM), and reduced swimming motility, extracellular protease activity, and biofilm formation in the soybean pathogen Xanthomonas axonopodis pv. glycines (Xag). Although pABA was previously reported to inhibit fungal cell division, no apparent effect was observed on Xag cell division genes. Instead, pABA reduced the expression of various membrane integrity-related genes, such as cirA, czcA, czcB, emrE, and tolC. Consistently, scanning electron microscopy observations revealed that pABA caused major alternations in Xag morphology and blocked the formation of bacterial consortiums. In addition, pABA reduced the content and profile of outer membrane proteins and lipopolysaccharides in Xag, which may explain the observed effects. Preventive and curative applications of 10 mM pABA reduced Xag symptoms in soybean plants by 52.1% and 75.2%, respectively. CONCLUSIONS The antibacterial properties of pABA were studied for the first time, revealing new insights into its potential application for the management of bacterial pathogens. Although pABA was previously reported to show an antifungal mode of action based on cytokinesis inhibition, this compound inhibited Xag growth by altering the outer membrane's integrity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, China
| | - Ting Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Mei-Ting Xu
- School of Life Sciences, Nantong University, Nantong, China
| | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
6
|
Zhu FD, Fu X, Ye HC, Ding HX, Gu LS, Zhang J, Guo YX, Feng G. Antibacterial activities of coumarin-3-carboxylic acid against Acidovorax citrulli. Front Microbiol 2023; 14:1207125. [PMID: 37799610 PMCID: PMC10547900 DOI: 10.3389/fmicb.2023.1207125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Coumarin-3-carboxylic acid (3-CCA), previously screened from natural coumarins, was found to possess strong antibacterial activity against Acidovorax citrulli (Ac). In order to further evaluate the activity of this compound against plant bacterial pathogens and explore its potential value as a bactericidal lead compound, the activity of 3-CCA against 14 plant pathogenic bacteria in vitro and in vivo was tested. Results showed that 3-CCA exhibited strong in vitro activities against Ac, Ralstonia solanacearum, Xanthomonas axonopodis pv. manihotis, X. oryzae pv. oryzae, and Dickeya zeae with EC50 values ranging from 26.64 μg/mL to 40.73 μg/mL. Pot experiment results showed that 3-CCA had powerful protective and curative effects against Ac. In addition, the protective efficiency of 3-CCA was almost equivalent to that of thiodiazole copper at the same concentration. The results of SEM and TEM observation and conductivity tests showed that 3-CCA disrupted the integrity of the cell membrane and inhibited polar flagella growth. Furthermore, 3-CCA resulted in reductions in motility and extracellular exopolysaccharide (EPS) production of Ac while inhibiting the biofilm formation of Ac. These findings indicate that 3-CCA could be a promising natural lead compound against plant bacterial pathogens to explore novel antibacterial agents.
Collapse
Affiliation(s)
- Fa-Di Zhu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
| | - Xin Fu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huo-Chun Ye
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou, China
| | - Hai-Xin Ding
- Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Liu-Shuang Gu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
| | - Jing Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou, China
| | - Yong-Xia Guo
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China of Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Gang Feng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou, China
| |
Collapse
|
7
|
Adedayo AA, Fadiji AE, Babalola OO. Unraveling the functional genes present in rhizosphere microbiomes of Solanum lycopersicum. PeerJ 2023; 11:e15432. [PMID: 37283894 PMCID: PMC10241170 DOI: 10.7717/peerj.15432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
The microbiomes living in the rhizosphere soil of the tomato plant contribute immensely to the state of health of the tomato plant alongside improving sustainable agriculture. With the aid of shotgun metagenomics sequencing, we characterized the putative functional genes (plant-growth-promoting and disease-resistant genes) produced by the microbial communities dwelling in the rhizosphere soil of healthy and powdery mildew-diseased tomato plants. The results identified twenty-one (21) plant growth promotion (PGP) genes in the microbiomes inhabiting the healthy rhizosphere (HR) which are more predomiant as compared to diseased rhizosphere (DR) that has nine (9) genes and four (4) genes in bulk soil (BR). Likewise, we identified some disease-resistant genes which include nucleotide binding genes and antimicrobial genes. Our study revealed fifteen (15) genes in HR which made it greater in comparison to DR that has three (3) genes and three (3) genes in bulk soil. Further studies should be conducted by isolating these microorganisms and introduce them to field experiments for cultivation of tomatoes.
Collapse
|
8
|
Xu Q, Li Y, Du W, Zheng N, Wang J, Zhao S. Effect of dietary biochanin A on lactation performance, antioxidant capacity, rumen fermentation and rumen microbiome of dairy goat. Front Microbiol 2023; 14:1101849. [PMID: 36814572 PMCID: PMC9939525 DOI: 10.3389/fmicb.2023.1101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Biochanin A (BCA), an isoflavone phytoestrogen, is a secondary metabolite produced mainly in leguminous plants. The objective of this study was to evaluate the effect of BCA on lactation performance, nitrogen metabolism, and the health of dairy goat. Thirty mid-lactation Saanen dairy goats were divided into three groups randomly: control, 2 g/d BCA group, and 6 g/d BCA group. After 36 days of feeding, 30 dairy goats were transferred to individual metabolic cages. Subsequently, milk yield, feed intake, total feces, and urine excretion were recorded and samples were collected continuously for 3 days. Blood and ruminal fluid samples were collected over the subsequent 4 days. Milk yield, milk protein, fat content, and the feed conversion ratio of dairy goat were significantly increased by the BCA treatment. The levels of serum 17β-estradiol, growth hormone, insulin-like growth factor 1, glutathione peroxidase activity, and total antioxidant capacity were also increased significantly by BCA, indicating that BCA enhanced the antioxidant capacity of dairy goat. Amino acid degradation was significantly inhibited, while the ammonia nitrogen content was reduced significantly by BCA. Total volatile fatty acids was significantly increased by BCA supplementation. In addition, the relative abundance of Verrucomicrobiota was decreased significantly. However, the growth of nitrogen metabolism and cellulolytic bacteria was significantly increased under BCA treatment, including Prevotella sp., Treponema sp., Ruminococcus flavefaciens, and Ruminobacter amylophilus. In conclusion, supplementation with BCA improved the milk production performance, nitrogen metabolism, rumen fermentation and antioxidant capacity, and regulated the rumen microbiome of dairy goat.
Collapse
Affiliation(s)
- Qingbiao Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China,MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanjun Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenjuan Du
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Jiaqi Wang,
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,Shengguo Zhao,
| |
Collapse
|
9
|
Zhang YJ, Pang YB, Wang XY, Jiang YH, Herrera-Balandrano DD, Jin Y, Wang SY, Laborda P. Exogenous genistein enhances soybean resistance to Xanthomonas axonopodis pv. glycines. PEST MANAGEMENT SCIENCE 2022; 78:3664-3675. [PMID: 35611815 DOI: 10.1002/ps.7009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Xanthomonas axonopodis pv. glycines (Xag) is the causal agent of bacterial pustule disease and results in enormous losses in soybean production. Although isoflavones are known to be involved in soybean resistance against pathogen infection, the effects of exogenous isoflavones on soybean plants remain unexplored. RESULTS Irrigation of soybean plants with isoflavone genistein inhibited plant growth for short periods, probably by inhibiting the tyrosine (brassinosteroids) kinase pathway, and increased disease resistance against Xag. The number of lesions was reduced by 59%-63% when applying 50 μg ml-1 genistein. The effects on disease resistance were observed for 15 days after treatment. Genistein also enhanced the disease resistance of soybean against the fungal pathogen Sclerotinia sclerotiorum. Exogenous genistein increased antioxidant capacity, decreased H2 O2 level and promoted the accumulation of phenolics in Xag-infected soybean leaves. Exogenous genistein reduced the amounts of endogenous daidzein, genistein and glycitein and increased the concentration of genistin, which was found to show strong antibacterial activity against the pathogen and to reduce the expression of virulence factor yapH, and flagella formation gene flgK. The expression of several soybean defense genes, such as chalcone isomerase, glutathione S-transferase and 1-aminocyclopropane-1-carboxylate oxidase 1, was upregulated after genistein treatment. CONCLUSIONS The effects of exogenous genistein on soybean plants were examined for the first time, revealing new insights into the roles of isoflavones in soybean defense and demonstrating that irrigation with genistein can be a suitable method to induce disease resistance in soybean plants. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Yi-Bo Pang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Xin-Yi Wang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | | | - Yan Jin
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| |
Collapse
|
10
|
Wang SY, Zhang YJ, Zhu GY, Shi XC, Chen X, Herrera-Balandrano DD, Liu FQ, Laborda P. Occurrence of isoflavones in soybean sprouts and strategies to enhance their content: A review. J Food Sci 2022; 87:1961-1982. [PMID: 35411587 DOI: 10.1111/1750-3841.16131] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/08/2022] [Accepted: 03/06/2022] [Indexed: 12/22/2022]
Abstract
Sprouting is a common strategy to enhance the nutritional value of seeds. Here, all the reports regarding the occurrence of isoflavones in soybean sprouts have been covered for the first time. Isoflavones were detected with concentrations ranging from 1 × 10-2 to 1 × 101 g/kg in soybean sprouts. Isoflavone concentration depends on the cultivar, germination time, part of the sprout, light, and temperature. Aglycon isoflavones increased during germination, especially in the hypocotyl, while 6″-O-malonyl-7-O-β-glucoside isoflavones decreased in the hypocotyl and increased in the cotyledon and root. Cooking reduced total isoflavone content. Regarding the strategies to enhance isoflavone contents, fermentation with Aspergillus sojae and external irradiation with UV-A or far-infrared were the methods that caused the greatest increases in aglycon, 7-O-β-glucoside, and total isoflavones. However, the largest increases in 6″-O-malonyl-7-O-β-glucoside and 6″-O-acetyl-7-O-β-glucosides isoflavones were detected after treatment with chitohexaose and calcium chloride, respectively. PRACTICAL APPLICATION: Soybean sprouts are widely consumed and provide essential proteins, antioxidants, and minerals. They are rich in isoflavones, which exhibit numerous health benefits, and have been studied as alternative therapies for a range of hormone-dependent conditions, such as cancer, menopausal symptoms, cardiovascular disease, and osteoporosis. Despite numerous reports being published to date regarding the occurrence of isoflavones in soybean sprouts, the publications in this field are highly dispersed, and a review has not yet been published. This review aims to (1) highlight the particular isoflavones that have been detected in soybean sprouts and their concentrations, (2) compared the effects of temperature, light, cooking and soybean cultivar affect the isoflavone levels on the different parts of the sprout, and (3) discuss the efficacy of the methods to enhance isoflavone contents. This review will provide a better understanding of the current state of this field of research by comparing the general trends and the different treatments for soybean sprouts.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Gui-Yang Zhu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Feng-Quan Liu
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
11
|
Antibiotic Isoflavonoids, Anthraquinones, and Pterocarpanoids from Pigeon Pea (Cajanus cajan L.) Seeds against Multidrug-Resistant Staphylococcus aureus. Metabolites 2022; 12:metabo12040279. [PMID: 35448466 PMCID: PMC9030341 DOI: 10.3390/metabo12040279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
Cajanus cajan L. (pigeon pea, locally known in the Philippines as kadios) seed is a functional food with health benefits that extend beyond their nutritional value. C. cajan seeds contain highly diverse secondary metabolites with enriched beneficial properties, such as antibacterial, anticancer, and antioxidant activities. However, the antibacterial activities of secondary metabolites from Philippine-grown C. cajan, against multidrug-resistant Staphylococcus aureus have not been thoroughly described. Here, we investigated the in vitro antibacterial properties of C. cajan seed against multidrug-resistant S. aureus ATCC BAA-44 (MDRSA) and three other S. aureus strains (S. aureus ATCC 25923, S. aureus ATCC 6538, and coagulase-negative S. aureus) and, subsequently, identified the antibiotic markers against S. aureus strains using mass spectrometry. Secondary metabolites from C. cajan seeds were extracted using acetone, methanol, or 95% ethanol. Antibacterial screening revealed antibiotic activity for the C. cajan acetone extract. Bioassay-guided purification of the C. cajan acetone extract afforded three semi-pure high-performance liquid chromatography (HPLC) fractions exhibiting 32–64 µg/mL minimum inhibitory concentration (MIC) against MDRSA. Chemical profiling of these fractions using liquid chromatography mass spectrometry (LCMS) identified six compounds that are antibacterial against MDRSA. High-resolution mass spectrometry (HRMS), MS/MS, and dereplication using Global Natural Products Social Molecular Networking (GNPS)™, and National Institute of Standards and Technology (NIST) Library identified the metabolites as rhein, formononetin, laccaic acid D, crotafuran E, ayamenin A, and biochanin A. These isoflavonoids, anthraquinones, and pterocarpanoids from C. cajan seeds are potential bioactive compounds against S. aureus, including the multidrug-resistant strains.
Collapse
|
12
|
Zhu GY, Shi XC, Wang SY, Wang B, Laborda P. Antifungal Mechanism and Efficacy of Kojic Acid for the Control of Sclerotinia sclerotiorum in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:845698. [PMID: 35360341 PMCID: PMC8963468 DOI: 10.3389/fpls.2022.845698] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Sclerotinia stem rot, which is caused by the fungal pathogen Sclerotinia sclerotiorum, is a soybean disease that results in enormous economic losses worldwide. The control of S. sclerotiorum is a difficult task due to the pathogen's wide host range and its persistent structures, called sclerotia. In addition, there is lack of soybean cultivars with medium to high levels of resistance to S. sclerotiorum. In this work, kojic acid (KA), a natural bioactive compound commonly used in cosmetic industry, was evaluated for the management of Sclerotinia stem rot. Interestingly, KA showed strong antifungal activity against S. sclerotiorum by inhibiting chitin and melanin syntheses and, subsequently, sclerotia formation. The antifungal activity of KA was not obviously affected by pH, but was reduced in the presence of metal ions. Treatment with KA reduced the content of virulence factor oxalic acid in S. sclerotiorum secretions. Preventive applications of 50 mM KA (7.1 mg/ml) completely inhibited S. sclerotiorum symptoms in soybean; whereas, in curative applications, the combination of KA with prochloraz and carbendazim improved the efficacy of these commercial fungicides. Taken together, the antifungal activity of KA against S. sclerotiorum was studied for the first time, revealing new insights on the potential application of KA for the control of Sclerotinia stem rot in soybean.
Collapse
Affiliation(s)
- Gui-Yang Zhu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Bo Wang
- Xuzhou Institute of Agricultural Sciences in Xuhuai District, Sweet Potato Research Institute, Xuzhou, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
13
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
14
|
Chen Y, Zhou YD, Laborda P, Wang HL, Wang R, Chen X, Liu FQ, Yang DJ, Wang SY, Shi XC, Laborda P. Mode of action and efficacy of quinolinic acid for the control of Ceratocystis fimbriata on sweet potato. PEST MANAGEMENT SCIENCE 2021; 77:4564-4571. [PMID: 34086397 DOI: 10.1002/ps.6495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/27/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Ceratocystis fimbriata is a hazardous fungal pathogen able to cause black rot disease on sweet potato. The management of C. fimbriata strongly relies on the use of toxic fungicides, and there is a lack of efficient alternative strategies. RESULTS The antifungal properties of quinolinic acid (QA) were studied for the first time, indicating that QA shows selective antifungal activity against C. fimbriata. QA inhibited completely the mycelial growth of C. fimbriata at less than 0.8 mg mL-1 concentration (pH 4), and was able to produce alterations in the fungal cell wall, and to impede spore agglutination and mycelium formation. QA significantly reduced the concentration of ergosterol, and was able to associate to iron (II), suggesting that QA may be a lanosterol 14-α demethylase inhibitor. In preventive applications, QA reduced the disease incidence of C. fimbriata on sweet potato by 75%, achieving higher control efficacy in comparison with commercial fungicides prochloraz and carbendazim. CONCLUSIONS The first selective antifungal agent against C. fimbriata was discovered in this work, and showed suitable antifungal properties for the management of black rot disease. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Yi-Dong Zhou
- School of Life Sciences, Nantong University, Nantong, China
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Hai-Lin Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Rui Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xian Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Feng-Quan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dong-Jing Yang
- Xuzhou Institute of Agricultural Sciences in Xuhuai District, Sweet Potato Research Institute, Xuzhou, China
| | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|