1
|
Nazeer N, Kooner N, Ghimire A, Rainey JK, Lubell WD, Meneksedag-Erol D, Ahmed M. Secondary Structure Stabilization of Macrocyclic Antimicrobial Peptides via Cross-Link Swapping. J Med Chem 2024; 67:8693-8707. [PMID: 38771638 DOI: 10.1021/acs.jmedchem.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Lactam cross-links have been employed to stabilize the helical secondary structure and enhance the activity and physiological stability of antimicrobial peptides; however, stabilization of β-sheets via lactamization has not been observed. In the present study, lactams between the side chains of C- and N-terminal residues have been used to stabilize the β-sheet conformation in a short ten-residue analogue of chicken angiogenin-4. Designed using a combination of molecular dynamics simulations and Markov state models, the lactam cross-linked peptides are shown to adopt stabilized β-sheet conformations consistent with simulated structures. Replacement of the peptide side-chain Cys-Cys disulfide by a lactam cross-link enhanced the broad-spectrum antibacterial activity compared to the parent peptide and exhibited greater propensity to induce proinflammatory activity in macrophages. The combination of molecular simulations and conformational and biological analyses of the synthetic peptides provides a useful paradigm for the rational design of therapeutically active peptides with constrained β-sheet structures.
Collapse
Affiliation(s)
- Nauman Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Prince Edward Island, Canada
| | - Navjote Kooner
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Quebec, Canada
| | - Anupama Ghimire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal H2 V 0B3, Québec, Canada
| | - Deniz Meneksedag-Erol
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Quebec, Canada
- Department of Chemical and Materials Engineering, Concordia University, Montreal H4B 1R6, Quebec, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Prince Edward Island, Canada
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown C1A 4P3, Prince Edward Island, Canada
| |
Collapse
|
2
|
Fetse J, Zhao Z, Liu H, Mamani UF, Mustafa B, Adhikary P, Ibrahim M, Liu Y, Patel P, Nakhjiri M, Alahmari M, Li G, Cheng K. Discovery of Cyclic Peptide Inhibitors Targeting PD-L1 for Cancer Immunotherapy. J Med Chem 2022; 65:12002-12013. [PMID: 36067356 PMCID: PMC10671706 DOI: 10.1021/acs.jmedchem.2c00539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Blockade of the interaction between programmed cell death ligand-1 (PD-L1) and its receptor PD-1 has shown great success in cancer immunotherapy. Peptides possess unique characteristics that give them significant advantages as immune checkpoint inhibitors. However, unfavorable physicochemical properties and proteolytic stability profiles limit the translation of bioactive peptides as therapeutic agents. Studies have revealed that cyclization improves the biological activity and stability of linear peptides. In this study, we report the use of macrocyclization scanning for the discovery of cyclic anti-PD-L1 peptides with improved bioactivity. The cyclic peptides demonstrated up to a 34-fold improvement in the PD-1/PD-L1 blocking activity and significant in vivo anti-tumor activity. Our results demonstrate that macrocyclization scanning is an effective way to improve the serum stability and bioactivity of the anti-PD-L1 linear peptide. This strategy can be employed in the optimization of other bioactive peptides, particularly those for protein-protein interaction modulation.
Collapse
Affiliation(s)
- John Fetse
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Hao Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Umar-Farouk Mamani
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Bahaa Mustafa
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Pratik Adhikary
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Mohammed Ibrahim
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Pratikkumar Patel
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Maryam Nakhjiri
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Mohammed Alahmari
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Guangfu Li
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| |
Collapse
|
3
|
Srinivasan S, Kryza T, Batra J, Clements J. Remodelling of the tumour microenvironment by the kallikrein-related peptidases. Nat Rev Cancer 2022; 22:223-238. [PMID: 35102281 DOI: 10.1038/s41568-021-00436-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Kallikrein-related peptidases (KLKs) are critical regulators of the tumour microenvironment. KLKs are proteolytic enzymes regulating multiple functions of bioactive molecules including hormones and growth factors, membrane receptors and the extracellular matrix architecture involved in cancer progression and metastasis. Perturbations of the proteolytic cascade generated by these peptidases, and their downstream signalling actions, underlie tumour emergence or blockade of tumour growth. Recent studies have also revealed their role in tumour immune suppression and resistance to cancer therapy. Here, we present an overview of the complex biology of the KLK family and its context-dependent nature in cancer, and discuss the different therapeutic strategies available to potentially target these proteases.
Collapse
Affiliation(s)
- Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Thomas Kryza
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Research Institute, The University of Queensland, Woolloongabba, Brisbane, Queensland, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Centre for Genomics and Personalised Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.
| |
Collapse
|
4
|
Zhang Y, Ouyang M, Wang H, Zhang B, Guang W, Liu R, Li X, Shih TC, Li Z, Cao J, Meng Q, Su Z, Ye J, Liu F, Hong A, Chen X. A cyclic peptide retards the proliferation of DU145 prostate cancer cells in vitro and in vivo through inhibition of FGFR2. MedComm (Beijing) 2021; 1:362-375. [PMID: 34766128 PMCID: PMC8491194 DOI: 10.1002/mco2.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
In malignancies, fibroblast growth factor receptors (FGFRs) signaling is reinforced through overexpression of fibroblast growth factors (FGFs) or their receptors. FGFR2 has been proposed as a target for cancer therapy, because both the expression and activation of FGFR2 are boosted in various malignant carcinomas. Although several chemicals have been designed against FGFR2, they did not exhibit enough specificity and might bring potential accumulated toxicity. In this study, we developed an epitope peptide (P5) and its cyclic derivative (DcP5) based on the structure of FGF2 to limit the activation of FGFR2. The anticancer activities of P5 and DcP5 were examined in vitro and in vivo. Our results demonstrated that P5 significantly inhibited the cell proliferation in FGFR2‐dependent manner in DU145 cells and retarded tumor growth in DU145 xenograft model with negligible toxicity toward normal organs. Further investigations found that the Gln4 and Glu6 residues of P5 bind to FGFR2 to abolish its activation. Moreover, we developed the P5 cyclic derivative, DcP5, which achieved reinforced stability and anticancer activity in vivo. Our findings suggest P5 and its cyclic derivative DcP5 as potential candidates for anticancer therapy.
Collapse
Affiliation(s)
- Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Man Ouyang
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Hailong Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Bihui Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Wenhua Guang
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine University of California Davis Sacramento California
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine University of California Davis Sacramento California
| | - Tsung-Chieh Shih
- Department of Biochemistry and Molecular Medicine University of California Davis Sacramento California
| | - Zhixin Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Qiling Meng
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Zijian Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health School of Environment Jinan University Guangzhou China
| | - Feng Liu
- China Nuclear Power Technology Research Institute Co Ltd Shenzhen China
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University National Engineering Research Center of Genetic Medicine Guangdong Provincial Key Laboratory of Bioengineering Medicine Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center Jinan University Guangzhou China
| |
Collapse
|
5
|
McBrayer DN, Gantman BK, Tal-Gan Y. N-Methylation of Amino Acids in Gelatinase Biosynthesis-Activating Pheromone Identifies Key Site for Stability Enhancement with Retention of the Enterococcus faecalis fsr Quorum Sensing Circuit Response. ACS Infect Dis 2019; 5:1035-1041. [PMID: 30973007 DOI: 10.1021/acsinfecdis.9b00097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The growing prevalence of multiantibiotic-resistant bacteria necessitates looking at potential alternative approaches for attenuating infections by bacteria while reducing the rate of antibiotic resistance development. Enterococcus faecalis is responsible for a large percentage of clinical enterococci infections, and its pathogenicity has been demonstrated to be influenced by quorum sensing (QS). In this study, we report the systematic study of the relationship between backbone hydrogens and the ability to activate the FsrC receptor. We demonstrate that N-methylation was particularly well-tolerated at one site (Phe7) and granted stability against protease digestion, increasing the peptide half-life relative to the native signal by more than 6-fold. The inclusion of the N-Me-Phe7 modification may be useful for improving the pharmacological properties of E. faecalis QS inhibitors as part of the development of future therapeutic candidates.
Collapse
Affiliation(s)
- Dominic N. McBrayer
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Brooke K. Gantman
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
6
|
Liu H, Gao L, Yu X, Zhong L, Shi J, Jia B, Li N, Liu Z, Wang F. Small-animal SPECT/CT imaging of cancer xenografts and pulmonary fibrosis using a 99mTc-labeled integrin αvβ6-targeting cyclic peptide with improved in vivo stability. BIOPHYSICS REPORTS 2018; 4:254-264. [PMID: 30533490 PMCID: PMC6245143 DOI: 10.1007/s41048-018-0071-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
Abstract Integrin αvβ6 is expressed at an undetectable level in normal tissues, but is remarkably upregulated during many pathological processes, especially in cancer and fibrosis. Noninvasive imaging of integrin αvβ6 expression using a radiotracer with favorable in vivo pharmacokinetics would facilitate disease diagnosis and therapy monitoring. Through disulfide-cyclized method, we synthesized in this study, a new integrin αvβ6-targeted cyclic peptide (denoted as cHK), and radiolabeled it with 99mTc. The ability of the resulting radiotracer 99mTc–HYNIC–cHK to detect integrin αvβ6 expression in pancreatic cancer xenografts and idiopathic pulmonary fibrosis was evaluated using small-animal single-photon emission computed tomography (SPECT)/computed tomography (CT). 99mTc–HYNIC–cHK showed significantly improved in vivo metabolic stability compared to the linear peptide-based radiotracer 99mTc–HYNIC–HK. 99mTc–HYNIC–cHK exhibited similar biodistribution properties to 99mTc–HYNIC–HK, but the tumor-to-muscle ratio was significantly increased (2.99 ± 0.87 vs. 1.82 ± 0.27, P < 0.05). High-contrast images of integrin αvβ6-positive tumors and bleomycin-induced fibrotic lungs were obtained by SPECT/CT imaging using 99mTc–HYNIC–cHK. Overall, our studies demonstrate that 99mTc–HYNIC–cHK is a promising SPECT radiotracer for the noninvasive imaging of integrin αvβ6 in living subjects. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Hao Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Liquan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Xinhe Yu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Lijun Zhong
- Medical and Healthy Analytical Center, Peking University, Beijing, 100191 China
| | - Jiyun Shi
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Medical and Healthy Analytical Center, Peking University, Beijing, 100191 China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142 China
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
7
|
Loessner D, Goettig P, Preis S, Felber J, Bronger H, Clements JA, Dorn J, Magdolen V. Kallikrein-related peptidases represent attractive therapeutic targets for ovarian cancer. Expert Opin Ther Targets 2018; 22:745-763. [PMID: 30114962 DOI: 10.1080/14728222.2018.1512587] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Aberrant levels of kallikrein-related peptidases (KLK1-15) have been linked to cancer cell proliferation, invasion and metastasis. In ovarian cancer, the KLK proteolytic network has a crucial role in the tissue and tumor microenvironment. Publically available ovarian cancer genome and expression data from multiple patient cohorts show an upregulation of most KLKs. Areas covered: Here, we review the expression levels of all 15 members of this family in normal and ovarian cancer tissues, categorizing them into highly and moderately or weakly expressed KLKs, and their association with patient prognosis and survival. We summarize their tumor-biological functions determined in cell-based assays and xenograft models, further highlighting their suitability as cancer biomarkers and attractive candidates for drug development. Finally, we discuss some different pharmaceutical approaches, including peptide-based and small molecule inhibitors, cyclic peptides, depsipeptides, engineered natural inhibitors, antibodies, RNA/DNA-based aptamers, prodrugs, miRNA and siRNA. Expert opinion: In light of the results from clinical and tumor-biological studies, together with the available pharmaceutical tools, we suggest KLK4, KLK5, KLK6 and possibly KLK7 as preferred targets for inhibition in ovarian cancer.
Collapse
Affiliation(s)
- Daniela Loessner
- a Barts Cancer Institute , Queen Mary University of London , London , UK.,b Institute of Health and Biomedical Innovation , Queensland University of Technology (QUT) , Brisbane , Australia
| | - Peter Goettig
- c Department of Biosciences , University of Salzburg , Salzburg , Austria
| | - Sarah Preis
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Johanna Felber
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Holger Bronger
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Judith A Clements
- b Institute of Health and Biomedical Innovation , Queensland University of Technology (QUT) , Brisbane , Australia.,e Australian Prostate Cancer Research Centre - Queensland , Queensland University of Technology (QUT), Translational Research Institute , Brisbane , Australia
| | - Julia Dorn
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Viktor Magdolen
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| |
Collapse
|
8
|
Koistinen H, Wallén E, Ylikangas H, Meinander K, Lahtela-Kakkonen M, Närvänen A, Stenman UH. Development of molecules stimulating the activity of KLK3 - an update. Biol Chem 2017; 397:1229-1235. [PMID: 27383882 DOI: 10.1515/hsz-2016-0189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
Abstract
Kallikrein-related peptidase-3 (KLK3, known also as prostate-specific antigen, PSA) is highly expressed in the prostate. KLK3 possess antiangiogenic activity, which we have found to be related to its proteolytic activity. Thus, it may be possible to slow down the growth of prostatic tumors by enhancing this activity. We have developed peptides that enhance the proteolytic activity of KLK3. As these peptides are degraded in circulation and rapidly excreted, we have started to modify them and have succeeded in creating bioactive and more stable pseudopeptides. We have also identified small molecules stimulating the activity of KLK3, especially in synergy with peptides.
Collapse
|
9
|
Kodadek T, McEnaney PJ. Towards vast libraries of scaffold-diverse, conformationally constrained oligomers. Chem Commun (Camb) 2016; 52:6038-59. [PMID: 26996593 PMCID: PMC4846527 DOI: 10.1039/c6cc00617e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is great interest in the development of probe molecules and drug leads that would bind tightly and selectively to protein surfaces that are difficult to target with traditional molecules, such as those involved in protein-protein interactions. The currently available evidence suggests that this will require molecules that are larger and have quite different chemical properties than typical Lipinski-compliant molecules that target enzyme active sites. We describe here efforts to develop vast libraries of conformationally constrained oligomers as a potentially rich source of these molecules.
Collapse
Affiliation(s)
- Thomas Kodadek
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | |
Collapse
|
10
|
Qvit N, Schechtman D, Pena DA, Berti DA, Soares CO, Miao Q, Liang LA, Baron LA, Teh-Poot C, Martínez-Vega P, Ramirez-Sierra MJ, Churchill E, Cunningham AD, Malkovskiy AV, Federspiel NA, Gozzo FC, Torrecilhas AC, Manso Alves MJ, Jardim A, Momar N, Dumonteil E, Mochly-Rosen D. Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors. Int J Parasitol Drugs Drug Resist 2016; 6:74-84. [PMID: 27054066 PMCID: PMC4805777 DOI: 10.1016/j.ijpddr.2016.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/15/2023]
Abstract
Parasitic diseases cause ∼ 500,000 deaths annually and remain a major challenge for therapeutic development. Using a rational design based approach, we developed peptide inhibitors with anti-parasitic activity that were derived from the sequences of parasite scaffold proteins LACK (Leishmania's receptor for activated C-kinase) and TRACK (Trypanosoma receptor for activated C-kinase). We hypothesized that sequences in LACK and TRACK that are conserved in the parasites, but not in the mammalian ortholog, RACK (Receptor for activated C-kinase), may be interaction sites for signaling proteins that are critical for the parasites' viability. One of these peptides exhibited leishmanicidal and trypanocidal activity in culture. Moreover, in infected mice, this peptide was also effective in reducing parasitemia and increasing survival without toxic effects. The identified peptide is a promising new anti-parasitic drug lead, as its unique features may limit toxicity and drug-resistance, thus overcoming central limitations of most anti-parasitic drugs.
Collapse
Affiliation(s)
- Nir Qvit
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305, USA.
| | - Deborah Schechtman
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305, USA; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | | | | | | | - Qianqian Miao
- National Reference Centre for Parasitology, Research Institute of the McGill University, Montreal, Canada
| | - Liying Annie Liang
- National Reference Centre for Parasitology, Research Institute of the McGill University, Montreal, Canada
| | - Lauren A Baron
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Christian Teh-Poot
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Pedro Martínez-Vega
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Maria Jesus Ramirez-Sierra
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Eric Churchill
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Anna D Cunningham
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Andrey V Malkovskiy
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Nancy A Federspiel
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Fabio Cesar Gozzo
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | | | | | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Québec, Canada
| | - Ndao Momar
- National Reference Centre for Parasitology, Research Institute of the McGill University, Montreal, Canada
| | - Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Gao Y, Kodadek T. Direct comparison of linear and macrocyclic compound libraries as a source of protein ligands. ACS COMBINATORIAL SCIENCE 2015; 17:190-5. [PMID: 25623285 PMCID: PMC4356041 DOI: 10.1021/co500161c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
There has been much discussion of
the potential desirability of
macrocyclic molecules for the development of tool compounds and drug
leads. But there is little experimental data comparing otherwise equivalent
macrocyclic and linear compound libraries as a source of protein ligands.
In this Letter, we probe this point in the context of peptoid libraries.
Bead-displayed libraries of macrocyclic and linear peptoids containing
four variable positions and 0–2 fixed residues, to vary the
ring size, were screened against streptavidin and the affinity of
every hit for the target was measured. The data show that macrocyclization
is advantageous, but only when the ring contains 17 atoms, not 20
or 23 atoms. This technology will be useful for conducting direct
comparisons between many different types of chemical libraries to
determine their relative utility as a source of protein ligands.
Collapse
Affiliation(s)
- Yu Gao
- Departments of Chemistry
and Cancer Biology, The Scripps Research Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| | - Thomas Kodadek
- Departments of Chemistry
and Cancer Biology, The Scripps Research Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| |
Collapse
|
12
|
Prassas I, Eissa A, Poda G, Diamandis EP. Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat Rev Drug Discov 2015; 14:183-202. [DOI: 10.1038/nrd4534] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Laksitorini MD, Kiptoo PK, On NH, Thliveris JA, Miller DW, Siahaan TJ. Modulation of intercellular junctions by cyclic-ADT peptides as a method to reversibly increase blood-brain barrier permeability. J Pharm Sci 2015; 104:1065-75. [PMID: 25640479 DOI: 10.1002/jps.24309] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 12/17/2022]
Abstract
It is challenging to deliver molecules to the brain for diagnosis and treatment of brain diseases. This is primarily because of the presence of the blood-brain barrier (BBB), which restricts the entry of many molecules into the brain. In this study, cyclic-ADT peptides (ADTC1, ADTC5, and ADTC6) have been shown to modify the BBB to enhance the delivery of marker molecules [e.g., (14) C-mannitol, gadolinium-diethylenetriaminepentacetate (Gd-DTPA)] to the brain via the paracellular pathways of the BBB. The hypothesis is that these peptides modulate cadherin interactions in the adherens junctions of the vascular endothelial cells forming the BBB to increase paracellular drug permeation. In vitro studies indicated that ADTC5 had the best profile to inhibit adherens junction resealing in Madin-Darby canine kidney cell monolayers in a concentration-dependent manner (IC50 = 0.3 mM) with a maximal response at 0.4 mM. Under the current experimental conditions, ADTC5 improved the delivery of (14) C-mannitol to the brain about twofold compared with the negative control in the in situ rat brain perfusion model. Furthermore, ADTC5 peptide increased in vivo delivery of Gd-DTPA to the brain of Balb/c mice when administered intravenously. In conclusion, ADTC5 has the potential to improve delivery of diagnostic and therapeutic agents to the brain.
Collapse
Affiliation(s)
- Marlyn D Laksitorini
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, 66047
| | | | | | | | | | | |
Collapse
|
14
|
Kang SJ, Park SJ, Mishig-Ochir T, Lee BJ. Antimicrobial peptides: therapeutic potentials. Expert Rev Anti Infect Ther 2014; 12:1477-86. [DOI: 10.1586/14787210.2014.976613] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Qvit N. Microwave-assisted synthesis of cyclic phosphopeptide on solid support. Chem Biol Drug Des 2014; 85:300-5. [PMID: 25042903 DOI: 10.1111/cbdd.12388] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/03/2014] [Accepted: 06/26/2014] [Indexed: 12/30/2022]
Abstract
Phosphopeptides are important tools for studying intracellular signal transduction events in vitro and in vivo and are also potential drugs due to their direct competition with phosphoprotein recognition elements. Cyclization has been demonstrated to improve peptide selectivity, metabolic stability, and bioavailability. However, cyclic phosphopeptide synthesis may not be straightforward due to the sterically hindered phosphorylated side-chain amino acid derivatives. One option to overcome this hurdle is to use microwave-assisted synthesis, which has been shown to increase efficiency and reduce synthesis time. Herein, a detailed protocol is provided for synthesizing cyclic phosphopeptides using automated microwave. The overall synthesis duration was reduced and yields increased compared with a manual conventional method. This method provides a general, fast and facile way to synthesize cyclic peptides, demonstrating the synthesis of cyclic phosphorylated peptides which are known to be among the most challenging to produce.
Collapse
Affiliation(s)
- Nir Qvit
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA, 94305-5174, USA
| |
Collapse
|
16
|
Medina-Franco JL, Martinez-Mayorga K, Meurice N. Balancing novelty with confined chemical space in modern drug discovery. Expert Opin Drug Discov 2013; 9:151-65. [DOI: 10.1517/17460441.2014.872624] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Flexible or fixed: a comparative review of linear and cyclic cancer-targeting peptides. Future Med Chem 2012; 4:1601-18. [PMID: 22917248 DOI: 10.4155/fmc.12.75] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Peptides can serve as versatile cancer-targeting ligands and have been used for clinically relevant applications such as cancer imaging and therapy. A current and long-standing focus within peptide research is the creation of structurally constrained peptides generated through cyclization. Cyclization is envisioned to enhance the selective binding, uptake, potency and stability of linear precursors. This review compares closely related linear and cyclic peptides in these respects. Peptide cyclization generally improves the selective binding and stability of linear precursors; however, not all cyclization strategies and constrained geometries enhance these properties to the same extent. In some instances, linear analogues actually have better cancer-targeting properties compared with their cyclic counterparts. Although cyclization does not necessarily improve the cancer-targeting properties of linear analogues, cyclic peptides may obtain properties that allow them to be used for additional applications. This review aims to convey the advantages and limitations of cyclic cancer-targeting peptides.
Collapse
|
18
|
Firer MA, Gellerman G. Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol 2012; 5:70. [PMID: 23140144 PMCID: PMC3508879 DOI: 10.1186/1756-8722-5-70] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/18/2012] [Indexed: 12/21/2022] Open
Abstract
Therapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two decades both in their molecular sophistication and clinical efficacy. Initial development efforts focused mainly on humanizing the antibody protein to overcome problems of immunogenicity and on expanding of the target antigen repertoire. In parallel to naked TMAs, antibody-drug conjugates (ADCs) have been developed for targeted delivery of potent anti-cancer drugs with the aim of bypassing the morbidity common to conventional chemotherapy. This paper first presents a review of TMAs and ADCs approved for clinical use by the FDA and those in development, focusing on hematological malignancies. Despite advances in these areas, both TMAs and ADCs still carry limitations and we highlight the more important ones including cancer cell specificity, conjugation chemistry, tumor penetration, product heterogeneity and manufacturing issues. In view of the recognized importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs), particularly those discovered through combinatorial peptide libraries. By defining the advantages and disadvantages of naked TMAs, ADCs and PDCs it should be possible to develop a more rational approach to the application of targeted drug delivery strategies in different situations and ultimately, to a broader basket of more effective therapies for cancer patients.
Collapse
Affiliation(s)
- Michael A Firer
- Department of Chemical Engineering and Biotechnology, Ariel University Center, Ariel, Israel.
| | | |
Collapse
|
19
|
Caliendo G, Santagada V, Perissutti E, Severino B, Fiorino F, Frecentese F, Juliano L. Kallikrein protease activated receptor (PAR) axis: an attractive target for drug development. J Med Chem 2012; 55:6669-86. [PMID: 22607152 DOI: 10.1021/jm300407t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Giuseppe Caliendo
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università degli Studi di Napoli Federico II, Via D. Montesano, 49, 80131, Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Tal-Gan Y, Freeman NS, Klein S, Levitzki A, Gilon C. Metabolic stability of peptidomimetics: N-methyl and aza heptapeptide analogs of a PKB/Akt inhibitor. Chem Biol Drug Des 2011; 78:887-92. [PMID: 21824328 DOI: 10.1111/j.1747-0285.2011.01207.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Linear peptides suffer from poor pharmacokinetic and pharmacodynamic properties. Peptidomimetics are designed to overcome these pharmacological drawbacks while maintaining the biological effects of the parent peptides. Aza-peptides, in which an alpha carbon is replaced with nitrogen, are promising peptidomimetic analogs; however, little is known about the stability of these analogs toward enzymatic degradation. We performed systematic aza and N-methyl scans of a PKB/Akt inhibitor, PTR6154. We evaluated the stability of the aza-scan and N-methyl scan libraries toward enzymatic degradation by trypsin/chymotrypsin. Our results indicate that the modification site is important for metabolic stability and that aza-peptides have a more global effect than N-methylation, affecting cleavage sites distant from the modification site.
Collapse
Affiliation(s)
- Yftah Tal-Gan
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
21
|
Rotstein BH, Mourtada R, Kelley SO, Yudin AK. Solvatochromic reagents for multicomponent reactions and their utility in the development of cell-permeable macrocyclic peptide vectors. Chemistry 2011; 17:12257-61. [PMID: 21932287 DOI: 10.1002/chem.201102096] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Indexed: 01/05/2023]
Affiliation(s)
- Benjamin H Rotstein
- Department of Chemistry, University of Toronto, Toronto, ON, M5H 3H5, Canada
| | | | | | | |
Collapse
|
22
|
Lee SH, Lee S. Genetic association study of a single nucleotide polymorphism of kallikrein-related peptidase 2 with male infertility. Clin Exp Reprod Med 2011; 38:6-9. [PMID: 22384411 PMCID: PMC3283048 DOI: 10.5653/cerm.2011.38.1.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/08/2010] [Accepted: 01/01/2011] [Indexed: 12/16/2022] Open
Abstract
Objective To investigate a kallikrein-related peptidase 2 (KLK2) single nucleotide polymorphism (SNP) in relation to male infertility because of its role in semen processing. We investigated the genetic association of the KLK2+255G>A genotype with male infertility. Methods We genotyped the SNP site located in intron 1 (+255G>A, rs2664155) of KLK2 from 218 men with male infertility (cases) and 220 fertile males (controls). Pyrosequencing analysis was performed for the genotyping. Results The SNP of the KLK2 gene had a statistically significant association with male infertility (p<0.05). The odds ratio for the minor allele (+255A) in the pooled sample was 0.47 (95% confidence intervals, 0.26-0.85) for rs2664155. Conclusion The relationship of KLK2 SNP to male infertility is statistically significant, especially within the non-azoospermia group. Further study is needed to understand the mechanisms associated with male infertility.
Collapse
Affiliation(s)
- Sun-Hee Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | | |
Collapse
|
23
|
Turhanen PA, Weisell J, Lehtolainen-Dalkilic P, Määttä AM, Vepsäläinen J, Närvänen A. A novel strategy for the synthesis of enzymatically stable biotin–DOTA conjugates for in vivo use. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00111f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Liu J, Liu J, Chu L, Wang Y, Duan Y, Feng L, Yang C, Wang L, Kong D. Novel peptide-dendrimer conjugates as drug carriers for targeting nonsmall cell lung cancer. Int J Nanomedicine 2010; 6:59-69. [PMID: 21289982 PMCID: PMC3025585 DOI: 10.2147/ijn.s14601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Phage display technology has been demonstrated to be a powerful tool for screening useful ligands that are capable of specifically binding to biomarkers on the surface of tumor cells. The ligands found by this technique, such as peptides, have been successfully applied in the fields of early cancer diagnostics and chemotherapy. In this study, a novel nonsmall cell lung cancer-targeting peptide (LCTP, sequence RCPLSHSLICY) was screened in vivo using a Ph.D.-C7C(™) phage display library. In order to develop a universal tumor-targeting drug carrier, the LCTP and fluorescence-labeled molecule (FITC) were conjugated to an acetylated polyamidoamine (PAMAM) dendrimer of generation 4 (G4) to form a PAMAM-Ac-FITC-LCTP conjugate. The performance of the conjugate was first tested in vitro. In vitro results of cell experiments analyzed by flow cytometry and inverted fluorescence microscopy indicated that PAMAM-Ac-FITC-LCTP was enriched more in NCI-H460 cells than in 293T cells, and cellular uptake was both time- and dose-dependent. The tissue distribution of the conjugate in athymic mice with lung cancer xenografts was also investigated to test the targeting efficiency of PAMAM-Ac-FITC-LCTP in vivo. The results showed that LCTP can effectively facilitate the targeting of PAMAM-Ac-FITC-LCTP to nonsmall cell lung cancer cells and tumors. These results suggest that the LCTP-conjugated PAMAM dendrimer might be a promising drug carrier for targeted cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jianfeng Liu
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjian, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Goettig P, Magdolen V, Brandstetter H. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 2010; 92:1546-67. [PMID: 20615447 PMCID: PMC3014083 DOI: 10.1016/j.biochi.2010.06.022] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/29/2010] [Indexed: 01/21/2023]
Abstract
Including the true tissue kallikrein KLK1, kallikrein-related peptidases (KLKs) represent a family of fifteen mammalian serine proteases. While the physiological roles of several KLKs have been at least partially elucidated, their activation and regulation remain largely unclear. This obscurity may be related to the fact that a given KLK fulfills many different tasks in diverse fetal and adult tissues, and consequently, the timescale of some of their physiological actions varies significantly. To date, a variety of endogenous inhibitors that target distinct KLKs have been identified. Among them are the attenuating Zn(2+) ions, active site-directed proteinaceous inhibitors, such as serpins and the Kazal-type inhibitors, or the huge, unspecific compartment forming α(2)-macroglobulin. Failure of these inhibitory systems can lead to certain pathophysiological conditions. One of the most prominent examples is the Netherton syndrome, which is caused by dysfunctional domains of the Kazal-type inhibitor LEKTI-1 which fail to appropriately regulate KLKs in the skin. Small synthetic inhibitory compounds and natural polypeptidic exogenous inhibitors have been widely employed to characterize the activity and substrate specificity of KLKs and to further investigate their structures and biophysical properties. Overall, this knowledge leads not only to a better understanding of the physiological tasks of KLKs, but is also a strong fundament for the synthesis of small compound drugs and engineered biomolecules for pharmaceutical approaches. In several types of cancer, KLKs have been found to be overexpressed, which makes them clinically relevant biomarkers for prognosis and monitoring. Thus, down regulation of excessive KLK activity in cancer and in skin diseases by small inhibitor compounds may represent attractive therapeutical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria.
| | | | | |
Collapse
|
26
|
Tal-Gan Y, Freeman NS, Klein S, Levitzki A, Gilon C. Synthesis and structure–activity relationship studies of peptidomimetic PKB/Akt inhibitors: The significance of backbone interactions. Bioorg Med Chem 2010; 18:2976-85. [DOI: 10.1016/j.bmc.2010.02.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|
27
|
Swedberg JE, de Veer SJ, Harris JM. Natural and engineered kallikrein inhibitors: an emerging pharmacopoeia. Biol Chem 2010; 391:357-74. [DOI: 10.1515/bc.2010.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe kallikreins and kallikrein-related peptidases are serine proteases that control a plethora of developmental and homeostatic phenomena, ranging from semen liquefaction to skin desquamation and blood pressure. The diversity of roles played by kallikreins has stimulated considerable interest in these enzymes from the perspective of diagnostics and drug design. Kallikreins already have well-established credentials as targets for therapeutic intervention and there is increasing appreciation of their potential both as biomarkers and as targets for inhibitor design. Here, we explore the current status of naturally occurring kallikrein protease-inhibitor complexes and illustrate how this knowledge can interface with strategies for rational re-engineering of bioscaffolds and design of small-molecule inhibitors.
Collapse
|
28
|
Pakkala M, Weisell J, Hekim C, Vepsäläinen J, Wallen EAA, Stenman UH, Koistinen H, Närvänen A. Mimetics of the disulfide bridge between the N- and C-terminal cysteines of the KLK3-stimulating peptide B-2. Amino Acids 2009; 39:233-42. [DOI: 10.1007/s00726-009-0433-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 11/18/2009] [Indexed: 02/07/2023]
|
29
|
Oyston PCF, Fox MA, Richards SJ, Clark GC. Novel peptide therapeutics for treatment of infections. J Med Microbiol 2009; 58:977-987. [DOI: 10.1099/jmm.0.011122-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As antibiotic resistance increases worldwide, there is an increasing pressure to develop novel classes of antimicrobial compounds to fight infectious disease. Peptide therapeutics represent a novel class of therapeutic agents. Some, such as cationic antimicrobial peptides and peptidoglycan recognition proteins, have been identified from studies of innate immune effector mechanisms, while others are completely novel compounds generated in biological systems. Currently, only selected cationic antimicrobial peptides have been licensed, and only for topical applications. However, research using new approaches to identify novel antimicrobial peptide therapeutics, and new approaches to delivery and improving stability, will result in an increased range of peptide therapeutics available in the clinic for broader applications.
Collapse
Affiliation(s)
- P. C. F. Oyston
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - M. A. Fox
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - S. J. Richards
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - G. C. Clark
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
30
|
Yongye AB, Li Y, Giulianotti MA, Yu Y, Houghten RA, Martínez-Mayorga K. Modeling of peptides containing D-amino acids: implications on cyclization. J Comput Aided Mol Des 2009; 23:677-89. [PMID: 19593648 DOI: 10.1007/s10822-009-9295-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 06/25/2009] [Indexed: 11/25/2022]
Abstract
Cyclic peptides are therapeutically attractive due to their high bioavailability, potential selectivity, and scaffold novelty. Furthermore, the presence of D-residues induces conformational preferences not followed by peptides consisting of naturally abundant L-residues. Therefore, comprehending how amino acids induce turns in peptides, subsequently facilitating cyclization, is significant in peptide design. Here, we performed 20-ns explicit-solvent molecular dynamics simulations for three diastereomeric peptides with stereochemistries: LLLLL, LLLDL, and LDLDL. Experimentally LLLLL and LDLDL readily cyclize, whereas LLLDL cyclizes in low yield. Simulations at 310 K produced conformations with inter-terminal hydrogen bonds that correlated qualitatively with the experimental cyclization trend. Energies obtained for representative structures from quantum chemical (B3LYP/PCM/cc-pVTZ//HF/6-31G*) calculations predicted pseudo-cyclic and extended conformations as the most stable for LLLLL and LLLDL, respectively, in agreement with the experimental data. In contrast, the most stable conformer predicted for peptide LDLDL was not a pseudo-cyclic structure. Moreover, D-residues preferred the experimentally less populated alpha(L) rotamers even when simulations were performed at a higher temperature and with strategically selected starting conformations. Energies calculated with molecular mechanics were consistent only with peptide LLLLL. Thus, the conformational preferences obtained for the all L: -amino acid peptide were in agreement with the experimental observations. Moreover, refinement of the force field is expected to provide far-reaching conformational sampling of peptides containing D-residues to further develop force field-based conformational-searching methods.
Collapse
Affiliation(s)
- Austin B Yongye
- Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL 34987, USA
| | | | | | | | | | | |
Collapse
|
31
|
Koistinen H, Närvänen A, Pakkala M, Hekim C, Mattsson JM, Zhu L, Laakkonen P, Stenman UH. Development of peptides specifically modulating the activity of KLK2 and KLK3. Biol Chem 2008; 389:633-42. [PMID: 18627344 DOI: 10.1515/bc.2008.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The prostate produces several proteases, the most abundant ones being kallikrein-related peptidase 3 (KLK3, PSA) and KLK2 (hK2), which are potential targets for tumor imaging and treatment. KLK3 expression is lower in malignant than in normal prostatic epithelium and it is further reduced in poorly differentiated tumors, in which the expression of KLK2 is increased. KLK3 has been shown to inhibit angiogenesis, whereas KLK2 may mediate tumor growth and invasion by participating in proteolytic cascades. Thus, it may be possible to control prostate cancer growth by modulating the proteolytic activity of KLK3 and KLK2. We have developed peptides that very specifically stimulate the activity of KLK3 or inhibit that of KLK2. Using these peptides we have established peptide-based methods for the determination of enzymatically active KLK3. The first-generation peptides are unstable in vivo and are rapidly cleared from the circulation. Currently we are modifying the peptides to make them suitable for in vivo applications. We have been able to considerably improve the stability of KLK2-binding peptides by cyclization. In this review we summarize the possible roles of KLK3 and KLK2 in prostate cancer and then concentrate on the development of peptides that modulate the activity of these proteases.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital, 00014 Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Udugamasooriya DG, Spaller MR. Conformational constraint in protein ligand design and the inconsistency of binding entropy. Biopolymers 2008; 89:653-67. [DOI: 10.1002/bip.20983] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Tomsho JW, Benkovic SJ. Unnatural translation initiation. ACS Chem Biol 2008; 3:87-8. [PMID: 18278847 DOI: 10.1021/cb8000233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein translation in nature always begins with an initiator transfer RNA (tRNA) carrying the amino acid methionine. This was circumvented in vitro with a reconstituted translation system utilizing initiator tRNA synthetically mischarged with the other natural amino acids. In addition, it was determined that this system could accommodate these non-methionine amino acids containing various N-alpha-acyl groups, many of which are useful for post-translational modification such as peptide cyclization.
Collapse
Affiliation(s)
- John W Tomsho
- The Pennsylvania State University, Department of Chemistry, 414 Wartik Laboratory, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|