1
|
Wang X, Wang X, Yao H, Shen C, Geng K, Xie H. A comprehensive review on Schisandrin and its pharmacological features. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:783-794. [PMID: 37658213 DOI: 10.1007/s00210-023-02687-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Schisandrin stands as one of the primary active compounds within the widely used traditional medicinal plant Schisandra chinensis (Turcz.) Baill. This compound exhibits sedative, hypnotic, anti-aging, antioxidant, and immunomodulatory properties, showcasing its effectiveness across various liver diseases while maintaining a favorable safety profile. However, the bioavailability of schisandrin is largely affected by hepatic and intestinal first-pass metabolism, which limits the clinical efficacy of schisandrin. In this paper, we review the various pharmacological effects and related mechanisms of schisandrin, in order to provide reference for subsequent drug research and promote its medicinal value.
Collapse
Affiliation(s)
- Xiaohu Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
- Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Xingwen Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Hui Yao
- Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Chaozhuang Shen
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Kuo Geng
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China.
| |
Collapse
|
2
|
E2F1 Affects the Therapeutic Response to Neoadjuvant Therapy in Breast Cancer. DISEASE MARKERS 2022; 2022:8168517. [PMID: 36164372 PMCID: PMC9509280 DOI: 10.1155/2022/8168517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
This study is aimed at screening genes for predicting the sensitivity response and favorable outcome of neoadjuvant therapy in breast cancer. We downloaded neoadjuvant therapy genetic data of breast cancer and separated it into the pathological complete response (pCR) group and the non-pCR group. Differential expression analysis was performed to select the differentially expressed genes (DEGs). After that, we investigated the enriched biological processes and pathways of DEGs. Then, core up/down protein-protein interaction (PPI) network was, respectively, constructed to identify the hub genes. A transcription factor-target gene regulation network was built to screen core transcription factors (TFs). We found one upregulated DEG (KLHDC7B) and four downregulated DEGs (TFF1, LOC440335, SLC39A6, and MLPH) overlapped in three datasets. All DEGs were mainly enriched in pathways related to DNA biosynthesis, cell cycle, immune response, metabolism, and angiogenesis. The hub genes were KRT18, IL7R, HIST1H1A, and E2F1. The core TFs were HOXA9, SPDEF, FOXA1, E2F1, and PGR. RT-qPCR suggested that E2F1 was overexpressed in MCF-7, but HOXA9 was low-expressed. Western blot suggested that the MAPK signal pathway was inhibited in MCF-7/ADR. That is to say, some genes and core TFs can predict the sensitivity response of neoadjuvant therapy in breast cancer. And E2F1 may be involved in the process of drug resistance by regulating the MAPK signaling pathway. These might be useful as sensitive genes for the efficacy evaluation of neoadjuvant chemotherapy in breast cancer.
Collapse
|
3
|
Zhu L, Wang Y, Lv W, Wu X, Sheng H, He C, Hu J. Schizandrin A can inhibit non‑small cell lung cancer cell proliferation by inducing cell cycle arrest, apoptosis and autophagy. Int J Mol Med 2021; 48:214. [PMID: 34643254 PMCID: PMC8522958 DOI: 10.3892/ijmm.2021.5047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
Schizandrin A (SchA) can be extracted from the vine plant Schisandra chinensis and has been reported to confer various biologically active properties. However, its potential biological effects on non‑small cell lung cancer (NSCLC) remain unknown. Therefore, the present study aims to address this issue. NSCLC and normal lung epithelial cell lines were first treated with SchA. Cell viability and proliferation were measured using CellTiter‑Glo Assay and colony formation assays, respectively. PI staining was used to measure cell cycle distribution. Cell cycle‑related proteins p53, p21, cyclin D1, CDK4, CDK6, cyclin E1, cyclin E2, CDK2 and DNA damage‑related protein SOX4 were detected by western blot analysis. Annexin V‑FITC/PI staining, DNA electrophoresis and Hoechst 33342/PI dual staining were used to detect apoptosis. JC‑1 and DCFH‑DA fluorescent dyes were used to measure the mitochondrial membrane potential and reactive oxygen species concentrations, respectively. Apoptosis‑related proteins caspase‑3, cleaved caspase‑3, poly(ADP‑ribose) polymerase (PARP), cleaved PARP, BimEL, BimL, BimS, Bcl2, Bax, caspase‑9 and cleaved caspas‑9 were measured by western blot analysis. Dansylcadaverine was used to detect the presence of the acidic lysosomal vesicles. The expression levels of the autophagy‑related proteins LC3‑I/II, p62/SQSTM and AMPKα activation were measured using western blot analysis. In addition, the autophagy inhibitor 3‑methyladenine was used to inhibit autophagy. SchA treatment was found to reduce NSCLC cell viability whilst inhibiting cell proliferation. Low concentrations of SchA (10‑20 µM) mainly induced G1/S‑phase cell cycle arrest. By contrast, as the concentration of SchA used increases (20‑50 µM), cells underwent apoptosis and G2/M‑phase cell cycle a13rrest. As the treatment concentration of SchA increased from 0 to 50 µM, the expression of p53 and SOX4 protein also concomitantly increased, but the expression of p21 protein was increased by 10 µM SchA and decreased by higher concentrations (20‑50 µM). In addition, the mRNA and protein expression levels of Bcl‑like 11 (Bim)EL, BimL and BimS increased following SchA application. SchA induced the accumulation of acidic vesicles and induced a marked increase in the expression of LC3‑II protein, suggsting that SchA activated the autophagy pathway. However, the expression of the p62 protein was found to be increased by SchA, suggesting that p62 was not degraded during the autophagic flux. The 3‑methyladenine exerted no notable effects on SchA‑induced apoptosis. Taken together, results from the present study suggest that SchA exerted inhibitory effects on NSCLC physiology by inducing cell cycle arrest and apoptosis. In addition, SchA partially induced autophagy, which did not result in any cytoprotective effects.
Collapse
Affiliation(s)
- Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ying Wang
- Operating Room, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiao Wu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hongxu Sheng
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Cheng He
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
4
|
Ko YH, Jeong M, Jang DS, Choi JH. Gomisin L1, a Lignan Isolated from Schisandra Berries, Induces Apoptosis by Regulating NADPH Oxidase in Human Ovarian Cancer Cells. Life (Basel) 2021; 11:life11080858. [PMID: 34440602 PMCID: PMC8398161 DOI: 10.3390/life11080858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023] Open
Abstract
The fruits of Schisandra chinensis (Schisandra berries) are used as health food supplements and popular food ingredients in East Asia. Lignans, major and characteristic polyphenol compounds of Schisandra berries, possess various biological activities, including hepatoprotective and anticancer effects. However, the biological activities of gomisin L1, a lignan isolated from Schisandra berries, are less to be investigated. In this study, the antitumor activity of gomisin L1 and its underlying molecular mechanism in human ovarian cancer cells were investigated. Gomisin L1 exhibited potent cytotoxic activity against A2780 and SKOV3 ovarian cancer cells. Flow cytometry analysis revealed that the growth inhibitory effects of gomisin L1 were mediated by the induction of apoptosis. Furthermore, gomisin L1 induced an increase in intracellular reactive oxygen species (ROS) levels, and the antioxidant N-acetyl cysteine significantly negated gomisin L1-induced cell death. Moreover, inhibition of NADPH oxidase (NOX) using an inhibitor and siRNA attenuated gomisin L1-induced death of, and ROS production in, human ovarian cancer cells. Taken together, these data indicate that the lignan gomisin L1 from Schisandra berries induces apoptotic cell death by regulating intracellular ROS production via NOX.
Collapse
Affiliation(s)
- Young Hyun Ko
- Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (Y.H.K.); (M.J.)
| | - Miran Jeong
- Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (Y.H.K.); (M.J.)
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Korea;
| | - Jung-Hye Choi
- Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (Y.H.K.); (M.J.)
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Korea;
- Correspondence:
| |
Collapse
|
5
|
Yan H, Guo M. Schizandrin A inhibits cellular phenotypes of breast cancer cells by repressing miR-155. IUBMB Life 2020; 72:1640-1648. [PMID: 32623835 DOI: 10.1002/iub.2329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022]
Abstract
AIMS Schizandrin A (SchA) is a type of lignan with biological properties against oxidation, inflammation, and cancer. Here, we aimed to sustain the bioactive properties of SchA in proliferative and motional phenotypes of MDA-MB-231 cells and their molecular mechanism. METHODS MDA-MB-231 cells were exposed to SchA. At 24 h after SchA treatment, the viability and proliferation were measured using CCK-8 and BrdU incorporation methods, respectively. Propidium iodide/Annexin V-FITC staining was carried out for detecting apoptotic cells. Migration and invasion were detected by 24-Transwell assay. Proteins expression was evaluated by Western blotting. MDA-MB-231 cells were transfected with microRNA (miR)-155 mimic, and miR-155 was detected by qRT-PCR. RESULTS SchA weakens the viability of MDA-MB-231 cells in a dose-relative way (0-40 μM). Furthermore, 30 μM SchA significantly suppresses proliferation, enhances apoptosis, and inhibits migration and invasion. SchA strikingly decreases miR-155. Exogenous miR-155 counteracts the inhibitory effects that SchA confers on proliferative and motional activities. Finally, SchA was observed to blunt PI3K/AKT and Wnt/β-catenin while miR-155 mimic reverses the effects. CONCLUSION Taken together, SchA downregulates miR-155 and results in the suppression of proliferation and motility in breast cancer cells. Our findings proposed that SchA might be used as an underlying therapeutic agent.
Collapse
Affiliation(s)
- Huiling Yan
- Department of Traditional Chinese Medicine, Jining No. 1 People's Hospital, Jining, Shandong, China.,Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Meng Guo
- Department of Breast and Thyroid Surgery, Jining No. 1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
6
|
Ji L, Ma L. MEG3 is restored by schisandrin A and represses tumor growth in choriocarcinoma cells. J Biochem Mol Toxicol 2020; 34:e22455. [PMID: 32057180 DOI: 10.1002/jbt.22455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/17/2019] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Schisandrin A (SchA) has been reported as a multidrug resistance-reversing agent; however, its antitumor effects have been rarely reported. Consequently, we attempted to explore whether SchA per se possesses an antitumor property in choriocarcinoma JEG-3 and BeWo cells and its potential mechanisms. JEG-3, BeWo, and HTR-8/SVneo cells were stimulated with SchA at different concentrations (10-100 μM), and cellular viability was evaluated with Cell Counting Kit-8. After stimulation with SchA, proliferation, apoptosis, migration, and invasion were detected by bromodeoxyuridine assay, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) method, and a Transwell system, in JEG-3 cells transfected with short hairpin-RNA for maternally expressed 3. Western blot was performed to quantify protein. MEG3 was examined by a quantitative reverse transcription-polymerase chain reaction. MEG3 was downregulated in choriocarcinoma tissues. SchA diminished cellular viability, decreased proliferative activity, inhibited migratory and invasive behaviors, and repressed phosphorylation of regulators of phosphatidylinositol 3 kinase/protein kinase B/nuclear factor κB (PI3K/AKT/NF-κB) signaling cascade in gestational choriocarcinoma cells. MEG3 was upregulated by SchA in JEG-3 and BeWo cells. SchA exhibited little suppressive effects in JEG-3 cells lacking MEG3. Besides, the phosphorylation of transducers was evoked in MEG3-silenced JEG-3 cells despite stimulation with SchA. SchA administration repressed the growth of JEG-3 and BeWo cells by upregulating MEG3. Besides, SchA blocked PI3K/AKT/NF-κB signal cascade by elevating MEG3.
Collapse
Affiliation(s)
- Li Ji
- Department of Obstetrics, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Li Ma
- Department of Obstetrics, Jining No. 1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
7
|
Sesamin suppresses NSCLC cell proliferation and induces apoptosis via Akt/p53 pathway. Toxicol Appl Pharmacol 2020; 387:114848. [DOI: 10.1016/j.taap.2019.114848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
|
8
|
Schizandrin A Protects Human Retinal Pigment Epithelial Cell Line ARPE-19 against HG-Induced Cell Injury by Regulation of miR-145. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:42-49. [PMID: 31794890 PMCID: PMC6909158 DOI: 10.1016/j.omtn.2019.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes, which is the main cause of blindness among adults. Traditional Chinese medicines (TCMs) have been proven to delay the development of DR. Nonetheless, the effect of Schizandrin A (SchA) on DR remains uninvestigated. The present study aimed to probe the protective effect of SchA on high-glucose (HG)-induced injury in ARPE-19 cells. We observed that SchA accelerated cell proliferation, prohibited apoptosis, and restrained pro-inflammatory cytokines (monocyte chemoattractant protein-1 [MCP-1], interleukin-6 [IL-6], and tumor necrosis factor alpha [TNF-α]) and reactive oxygen species (ROS) level in HG-stimulated cells. Additionally, miR-145 expression was upregulated in HG and SchA co-treated cells, and miR-145 inhibition reversed the protective effect of SchA on HG-managed ARPE-19 cells. Interestingly, downregulated myeloid differentiation factor 88 (MyD88) was found in HG and SchA co-treated cells, and upregulation of MyD88 was observed in miR-145 inhibitor-transfected cells. Additionally, SchA hindered nuclear factor κB (NF-κB) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways in HG-treated ARPE-19 cells. The findings validated that SchA could protect ARPE-19 cells from HG-induced cell injury by regulation of miR-145.
Collapse
|
9
|
Bi Y, Fu Y, Wang S, Chen X, Cai X. Schizandrin A exerts anti-tumor effects on A375 cells by down-regulating H19. ACTA ACUST UNITED AC 2019; 52:e8385. [PMID: 31618367 PMCID: PMC6787960 DOI: 10.1590/1414-431x20198385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
Malignant melanoma (MM) is one of the malignant tumors with highly metastatic and aggressive biological actions. Schizandrin A (SchA) is a bioactive lignin compound with strong anti-oxidant and anti-aging properties, which is stable at room temperature and is often stored in a cool dry place. Hence, we investigated the effects of SchA on MM cell line A375 and its underlying mechanism. A375 cells were used to construct an in vitro MM cell model. Cell viability, proliferation, apoptosis, and migration were detected by Cell Counting Kit-8, BrdU assay, flow cytometry, and transwell two-chamber assay, respectively. The cell cycle-related protein cyclin D1 and cell apoptotic proteins (Bcl-2, Bax, cleaved-caspase-3, and cleaved-caspase-9) were analyzed by western blot. Alteration of H19 expression was achieved by transfecting with pEX-H19. PI3K/AKT pathway was measured by detecting phosphorylation of PI3K and AKT. SchA significantly decreased cell viability in a dose-dependent manner. Furthermore, SchA inhibited cell proliferation and cyclin D1 expression. SchA increased cell apoptosis along with the up-regulation of pro-apoptotic proteins (cleaved-caspase-3, cleaved-caspase-9, and Bax) and the down-regulation of anti-apoptotic protein (Bcl-2). Besides, SchA decreased migration and down-regulated matrix metalloproteinases (MMP)-2 and MMP-9. SchA down-regulated lncRNA H19. Overexpression of H19 blockaded the inhibitory effects of SchA on A375 cells. SchA decreased the phosphorylation of PI3K and AKT while H19 overexpression promoted the phosphorylation of PI3K and AKT. SchA inhibited A375 cell growth, migration, and the PI3K/AKT pathway through down-regulating H19.
Collapse
Affiliation(s)
- Yiming Bi
- Department of Oncology, Binzhou People's Hospital, Binzhou, China
| | - Yan Fu
- Department of Dermatology, Binzhou People's Hospital, Binzhou, China
| | - Shuyan Wang
- Department of Oncology, Binzhou People's Hospital, Binzhou, China
| | - Xingxiu Chen
- Department of Oncology, Binzhou People's Hospital, Binzhou, China
| | - Xiaoping Cai
- Department of Oncology, Binzhou People's Hospital, Binzhou, China
| |
Collapse
|
10
|
Ding Q, Li X, Sun Y, Zhang X. Schizandrin A inhibits proliferation, migration and invasion of thyroid cancer cell line TPC-1 by down regulation of microRNA-429. Cancer Biomark 2019; 24:497-508. [PMID: 30909188 DOI: 10.3233/cbm-182222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Schizandrin A (SchA) exerts anticancer potential. However, the effects of SchA on thyroid cancer (TC) have not been clear illuminated. Therefore, we investigated the effects of SchA on TC cell line TPC-1 and the underlying mechanisms. METHODS TPC-1 cells were treated with SchA and/or transfected with miR-429 mimic, anti-miR-429 and their corresponding negative controls (NC). Cell viability, proliferation, migration, invasion and cell apoptosis were examined by CCK-8 assay, bromodeoxyuridine, modified two-chamber migration assay, Millicell Hanging Cell Culture and flow cytometry analysis, respectively. The expression of miR-429, p16, Cyclin D1, cyclin-dependent kinases 4 (CDK4), matrix metalloprotein (MMP)-2, MMP-9 and Vimentin was detected by qRT-PCR. All protein expression was examined by western blot. RESULTS SchA inhibited cell proliferation, metastasis and induced cell apoptosis. Moreover, SchA negatively regulated miR-429 expression. Treatment with miR-429 mimic and SchA reversed the results led by SchA and NC. Furthermore, the phosphorylation β-catenin, mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK) were statistically down-regulated by SchA while co-treatment with miR-429 mimic and SchA led to the opposite trend. Moreover, miR-429 knockdown showed contrary results. CONCLUSION SchA inhibits cell proliferation, migration, invasion and inactivates Wnt/β-catenin and MEK/ERK signaling pathways by down regulating miR-429.
Collapse
|
11
|
Detecting Schisandrae Chinensis Fructus and Its Chinese Patent Medicines with a Nucleotide Signature. Genes (Basel) 2019; 10:genes10050397. [PMID: 31121984 PMCID: PMC6562420 DOI: 10.3390/genes10050397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
Schisandrae Chinensis Fructus (Wuweizi) is often adulterated with Schisandrae Sphenantherae Fructus (Nanwuweizi) in the herbal market. This adulteration is a threat to clinical treatment and safety. In this study, we aimed to develop a nucleotide signature for the identification of Wuweizi and its Chinese patent medicines based on the mini-DNA barcoding technique. We collected 49 samples to obtain internal transcribed spacer 2 (ITS2) sequences and developed a 26-bp nucleotide signature (5′-CGCTTTGCGACGCTCCCCTCCCTCCC-3′) on the basis of a single nucleotide polymorphism (SNP) site within the ITS2 region that is unique to Wuweizi. Then, using the nucleotide signature, we investigated 27 batches of commercial crude drug samples labeled as Wuweizi and eight batches of Chinese patent medicines containing Wuweizi. Results showed that eight commercial crude drug samples were adulterants and one of the Chinese patent medicines contained adulterants. The nucleotide signature can serve as an effective tool for identifying Wuweizi and its Chinese patent medicines and can thus be used to ensure clinical drug safety.
Collapse
|
12
|
Li X, Yao Z, Jiang X, Sun J, Ran G, Yang X, Zhao Y, Yan Y, Chen Z, Tian L, Bai W. Bioactive compounds from Cudrania tricuspidata: A natural anticancer source. Crit Rev Food Sci Nutr 2018; 60:494-514. [PMID: 30582344 DOI: 10.1080/10408398.2018.1541866] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor is becoming a critical threat to our lives in these years. Searching for antitumor substances from natural products is a great interest of scientists. Cudrania tricuspidata (C. tricuspidata) is a regional plant containing 158 flavonoids and 99 xanthones, and others ingredients with favorable bioactivity. This review comprehensively analyzes the antitumor compounds from C. tricuspidata against different tumors, and 78 flavonoids plus xanthones are considered as underlying antineoplastic. Importantly, the structure of preylation groups is the primary source of antitumor activity among 45 flavonoids plus xanthones, which could be a direction of structural modification for a better antitumor ability. Additionally, the fruits are also preferable sources of antitumor compounds compared to the roots and barks due to the abundant isoflavones and sustainability. However, many studies only focused on the cells viability inhibition of the compounds, the underlying molecular mechanisms, and the intracellular targets remain ambiguous. In conclusion, C. tricuspidata has a great potential for anti-tumor prevention or therapy, but more attention should be paid to deeper research in vitro and in vivo models.
Collapse
Affiliation(s)
- Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Zilan Yao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- >Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Guojing Ran
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Xuan Yang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Yaqi Zhao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Ying Yan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Zisheng Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| |
Collapse
|
13
|
Takanche JS, Kim JS, Kim JE, Han SH, Yi HK. Schisandrin C enhances odontoblastic differentiation through autophagy and mitochondrial biogenesis in human dental pulp cells. Arch Oral Biol 2018; 88:60-66. [PMID: 29407753 DOI: 10.1016/j.archoralbio.2018.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/02/2018] [Accepted: 01/25/2018] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To investigate the role of Schisandrin C in odontoblastic differentiation, and its relations between autophagy and mitochondrial biogenesis in human dental pulp cells (HPDCs). DESIGN Fresh third molars were used, and cultured for HDPCs. Western blotting technique, Alizarin red S staining, alkaline phosphatase (ALP) activity, and confocal microscopy were used to detect autophagy, mitochondrial biogenesis, and odontoblastic differentiation. To understand the mechanism of Schisandrin C, the HDPCs were treated with lipopolysaccharide (LPS), autophagy and heme oxygenase-1 (HO-1) inhibitors: 3-Methyladenine (3-MA) and Zinc protoporphyrin IX (ZnPP), respectively. RESULTS LPS decreased the expression of autophagy molecules [autophagy protein 5 (ATG-5), beclin-1, and microtubule-associated protein 1A/1B light chain 3 (LC3-I/II)] and mitochondrial biogenesis molecules [heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)], and disrupted odontoblastic differentiation. The down-regulation of autophagy and mitochondrial biogenesis with 3-MA and ZnPP inhibited odontoblastic differentiation. However, Schisandrin C restored the expression of all the above molecules, even with LPS and inhibitor treatment. This result demonstrates that autophagy and mitochondrial biogenesis plays an essential role in odontoblastic differentiation, and Schisandrin C activates these systems to promote odontoblastic differentiation of HDPCs. CONCLUSION Schisandrin C has potential characters to regulate odontoblastic differentiation, and may be recommended for use as a compound for pulp homeostasis.
Collapse
Affiliation(s)
- Jyoti Shrestha Takanche
- Department of Oral Biochemistry and Institute of Oral Bioscience, BK21 Program, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Jeong-Seok Kim
- Department of Oral Biochemistry and Institute of Oral Bioscience, BK21 Program, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Ji-Eun Kim
- Department of Oral Biochemistry and Institute of Oral Bioscience, BK21 Program, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - S-H Han
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Eumseong, Republic of Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry and Institute of Oral Bioscience, BK21 Program, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
14
|
Schisandrin C enhances mitochondrial biogenesis and autophagy in C2C12 skeletal muscle cells: potential involvement of anti-oxidative mechanisms. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:197-206. [DOI: 10.1007/s00210-017-1449-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022]
|
15
|
Zhang ZL, Jiang QC, Wang SR. Schisandrin A reverses doxorubicin-resistant human breast cancer cell line by the inhibition of P65 and Stat3 phosphorylation. Breast Cancer 2017; 25:233-242. [PMID: 29181822 DOI: 10.1007/s12282-017-0821-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/15/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) in breast cancer therapy occurs frequently. Thus, anti-MDR agents from natural products or synthetic compounds were tested extensively. We have also explored the reverse effect and mechanism of Schisandrin A (Sch A), a natural product, on MCF-7 breast cancer doxorubicin (DOX)-resistant subline MCF-7/DOX. METHODS MTT assay was performed to measure the viability of MCF-7 cells to assess the reverse effect of Sch A. Western blot analysis was used to study the protein levels. Laser scanning confocal microscopy was performed to detect the intercellular DOX and Rhodamine 123 accumulation. The qRT-PCR was used to analysis the target gene expression. Dual-luciferase reporter assay was performed to test the transcriptional activity of P-glycoprotein (P-gp). RESULTS Sch A, at the concentration of 20 µM, showed selective reverse effect (better than the positive control, verapamil at 5 µM) on MCF-7/DOX cell line but not on BEL-7402/DOX, Hep G2/DOX, and K-562/DOX cells. In addition, Sch A enhanced DOX-induced cleavage of Caspase-9 and PARP levels by increasing intracellular DOX accumulation and inhibiting P-gp function. Furthermore, Sch A selectively suppressed P-gp at gene and protein levels in MCF-7/DOX cells which express high level of MDR1 but not MRP1, MRP3, or BCRP. Besides, Sch A showed inhibitory effect on P-gp transcriptional activity. Sch A significantly reduced p-IκB-α (Ser32) and p-Stat3 (Tyr705) levels which mediate P-gp expression. In addition, Stat3 knockdown enhanced the reverse effect of siP65. The combined effect of siStat3 and siP65 was better than Sch A single treatment in MCF-7/DOX cells. CONCLUSION Sch A specifically reverses P-gp-mediated DOX resistance in MCF-7/DOX cells by blocking P-gp, NF-κB, and Stat3 signaling. Inhibition of P65 and Stat3 shows potent anti-MDR effect on MCF-7/DOX cells.
Collapse
Affiliation(s)
- Zong-Lin Zhang
- Department of Pharmacy, Linyi People's Hospital, Linyi, Shandong, China
| | - Qing-Cheng Jiang
- Department of Pharmacy, First People's Hospital of Tancheng County, Tancheng, Shandong, China
| | - Su-Rong Wang
- Department of Gynecology and Obstetrics, Linyi People's Hospital, 27# Jie fang lu dong duan, Linyi, Shandong, China.
| |
Collapse
|
16
|
Kiyama R. Estrogenic Potentials of Traditional Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1365-1399. [DOI: 10.1142/s0192415x17500756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Estrogen, a steroid hormone, is associated with several human activities, including environmental, industrial, agricultural, pharmaceutical and medical fields. In this review paper, estrogenic activity associated with traditional Chinese medicines (TCMs) is discussed first by focusing on the assays needed to detect estrogenic activity (animal test, cell assay, ligand-binding assay, protein assay, reporter-gene assay, transcription assay and yeast two-hybrid assay), and then, their sources, the nature of activities (estrogenic or anti-estrogenic, or other types), and pathways/functions, along with the assay used to detect the activity, which is followed by a summary of effective chemicals found in or associated with TCM. Applications of estrogens in TCM are then discussed by a comprehensive search of the literature, which include basic study/pathway analysis, cell functions, diseases/symptoms and medicine/supplements. Discrepancies and conflicting cases about estrogenicity of TCM among assays or between TCM and their effective chemicals, are focused on to enlarge estrogenic potentials of TCM by referring to omic knowledge such as transcriptome, proteome, glycome, chemome, cellome, ligandome, interactome and effectome.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University, Fukuoka, Japan
| |
Collapse
|
17
|
|
18
|
Liao J, Zang J, Yuan F, Liu S, Zhang Y, Li H, Piao Z, Li H. Identification and analysis of anthocyanin components in fruit color variation in Schisandra chinensis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3213-3219. [PMID: 26493497 DOI: 10.1002/jsfa.7503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Fruit color is an important index and parameter for measuring fruit quality. As an important pigment, anthocyanin is a determinant which appears in all sorts of colors of fruits in nature. RESULTS Color parameters were measured using a spectrometer and used as a basis to divide the materials into three groups: reddish-orange, orange and yellow. A validated high-performance liquid chromatographic-electrospray ionization-mass spectrometric method was used for the analysis of anthocyanin in Schisandra chinensis and for determining major anthocyanin components in S. chinensis fruits, i.e. cyanidin xylosyl-glucoside (CyXylGlu), cyanidin glucosyl-rutinoside (CyGluRutin), cyanidin rutinoside (CyRutin) and cyanidin xylosyl-rutinoside (CyXylRutin). The anthocyanin contents vary obviously in different colored fruits in S. chinensis. The impact of anthocyanin on coloration of fruits was investigated by multiple regression analysis between color parameters and anthocyanin components, which indicated that CyRutin is the primary cause of fruit color variation in S. chinensis. CONCLUSION The content and type of anthocyanin determine fruit coloration in S. chinensis, laying the early foundations for systematically interpreting the mechanism of fruit coloration in S. chinensis. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingjing Liao
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Jian Zang
- Analytical Instrumentation Center, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Fei Yuan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Shuang Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Yibo Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Haiyan Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Hongbo Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
19
|
Jeong SC, Tulasi R, Koyyalamudi SR. Antioxidant Capacities of Hot Water Extracts and Endopolysaccharides of Selected Chinese Medicinal Fruits. Cancers (Basel) 2016; 8:E33. [PMID: 27005663 PMCID: PMC4810117 DOI: 10.3390/cancers8030033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 12/22/2022] Open
Abstract
Fruits are a rich source of antioxidants and traditional Chinese fruits have been studied for their chemopreventive and chemotherapeutic properties against cancers and other diseases. The total phenol and flavonoid contents of eleven Chinese fruits extracts were determined. Total phenolic and flavonoid contents were estimated by both the Folin-Ciocalteau and aluminium chloride methods. The antioxidant activities were evaluated by four assays: a biological assay using Saccharomyces cerevisiae, DPPH radical scavenging activity, chelating ability for ferrous ions and ferric reducing antioxidant power (FRAP). The phenols and flavonoids contents of the hot water extracts were in the range of 17.7 to 94.7 mg/g and 12.3 to 295.4 mg/g, whereas the endopolysaccharides lie in the range of 4.5 to 77.4 mg/g and 22.7 to 230.0 mg/g. Significant amounts of phenols and flavonoids were present in the majority of the fruit extracts and showed strong antioxidant activities. The antioxidant properties of the fruit extracts of Crataegus pinnatifida, Illicium verum, Ligustrum lucidum, Momordica grosvenori and Psoralea corylifolia as determined by the DPPH and FRAP methods, were significant compared to other fruit extracts. In the present study, we found that significant amounts of phenolic and flavonoid compounds were present in these fruit extracts and may contribute to in vitro antioxidant activities.
Collapse
Affiliation(s)
- Sang Chul Jeong
- School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia.
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju-si 37242, Korea.
| | - Ratna Tulasi
- Department of Nuclear Medicine, Prince of Wales Hospital, Randwick, Sydney, NSW 2031, Australia.
| | - Sundar Rao Koyyalamudi
- School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia.
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia.
- Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, The University of Sydney, Sydney, NSW 2145, Australia.
| |
Collapse
|
20
|
Lee JH, Park KM, Han DJ, Bang NY, Kim DH, Na H, Lim S, Kim TB, Kim DG, Kim HJ, Chung Y, Sung SH, Surh YJ, Kim S, Han BW. PharmDB-K: Integrated Bio-Pharmacological Network Database for Traditional Korean Medicine. PLoS One 2015; 10:e0142624. [PMID: 26555441 PMCID: PMC4640719 DOI: 10.1371/journal.pone.0142624] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/23/2015] [Indexed: 01/10/2023] Open
Abstract
Despite the growing attention given to Traditional Medicine (TM) worldwide, there is no well-known, publicly available, integrated bio-pharmacological Traditional Korean Medicine (TKM) database for researchers in drug discovery. In this study, we have constructed PharmDB-K, which offers comprehensive information relating to TKM-associated drugs (compound), disease indication, and protein relationships. To explore the underlying molecular interaction of TKM, we integrated fourteen different databases, six Pharmacopoeias, and literature, and established a massive bio-pharmacological network for TKM and experimentally validated some cases predicted from the PharmDB-K analyses. Currently, PharmDB-K contains information about 262 TKMs, 7,815 drugs, 3,721 diseases, 32,373 proteins, and 1,887 side effects. One of the unique sets of information in PharmDB-K includes 400 indicator compounds used for standardization of herbal medicine. Furthermore, we are operating PharmDB-K via phExplorer (a network visualization software) and BioMart (a data federation framework) for convenient search and analysis of the TKM network. Database URL: http://pharmdb-k.org, http://biomart.i-pharm.org.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 152–742, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Republic of Korea
- Information Center for Bio-pharmacological Network, Seoul National University, Suwon 443–270, Republic of Korea
| | - Kyoung Mii Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Republic of Korea
- Information Center for Bio-pharmacological Network, Seoul National University, Suwon 443–270, Republic of Korea
| | - Dong-Jin Han
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 152–742, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151–742, Republic of Korea
| | - Nam Young Bang
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 152–742, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151–742, Republic of Korea
| | - Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Republic of Korea
| | - Hyeongjin Na
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Republic of Korea
| | - Semi Lim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 152–742, Republic of Korea
| | - Tae Bum Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Republic of Korea
| | - Dae Gyu Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 152–742, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 156–756, Republic of Korea
| | - Yeonseok Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Republic of Korea
| | - Sang Hyun Sung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Republic of Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 152–742, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151–742, Republic of Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Republic of Korea
- Information Center for Bio-pharmacological Network, Seoul National University, Suwon 443–270, Republic of Korea
- * E-mail:
| |
Collapse
|
21
|
Yim NH, Kim A, Jung YP, Kim T, Ma CJ, Ma JY. Fermented So-Cheong-Ryong-Tang (FCY) induces apoptosis via the activation of caspases and the regulation of MAPK signaling pathways in cancer cells. Altern Ther Health Med 2015; 15:336. [PMID: 26403976 PMCID: PMC4582731 DOI: 10.1186/s12906-015-0821-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022]
Abstract
Background So-Cheong-Ryong-Tang (CY), a traditional herbal formula, mainly has been shown to possess allergic rhinitis and asthma for hundreds of years in Asian countries. Although this medicine has been attracted Asian scientists with investigating mechanisms of action against inflammatory-related diseases, there is a little available information on the anti-cancer effect of CY, especially on the fermented form (FCY). In this study, we explored the chemopreventive/chemotherapeutic efficacy of FCY against cancer cells and proved the efficacy of FCY through performing in vivo xenograft assay. Methods CY was fermented with bacteria and lyophilized. For analysis of the constituents of CY and FCY, high performance liquid chromatography (HPLC)-DAD system was performed. To detect the anti-cancer effect of FCY, cell viability assay, caspase activity assay, cell cycle analysis, and Western blot analysis were performed in AGS human gastric cancer cells. The inhibitory effects of tumor growth by CY and FCY were evaluated in athymic nude mice inoculated with HCT116 human colon cancer cells. Results As a result of analyzing the 11components present in CY and FCY, the contents of ephedrine HCl, glycyrrhizin, gingerol, schisandrin, and gomisin A were respectively increased by fermentation in FCY. The treatment of CY or FCY inhibited the viability of AGS cells, interestingly, the inhibition of cancer cell growth was enhanced by fermentation of CY. FCY induced the apoptosis through activating the caspase-3, −8, and −9. Additionally, FCY regulated the activation of mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase (JNK). In vivo xenografts, administration of FCY significantly inhibited the tumor formation, and improved the anti-tumor effect compared to that of CY in athymic nude mice. Conclusions FCY indicated significant anti-cancer effects, and its efficacy against tumor formation was improved than that of CY, therefore, FCY might be used for applications of traditional medicine against cancer in modern complementary and alternative therapeutics. ᅟ ![]()
Collapse
|
22
|
Park JH, Yoon J. Schizandrin inhibits fibrosis and epithelial-mesenchymal transition in transforming growth factor-β1-stimulated AML12 cells. Int Immunopharmacol 2015; 25:276-84. [PMID: 25701504 DOI: 10.1016/j.intimp.2015.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 11/15/2022]
Abstract
The transforming growth factor (TGF)-β1 plays a crucial role in the induction of the epithelial-to-mesenchymal transition (EMT) in hepatocytes, which contributes to the pathogenesis of liver fibrosis. The inhibition of the TGF-β1 cascade suppresses EMT and the resultant fibrosis. Schizandrin (Sch) has various therapeutic effects on a range of medical conditions such as anti-asthmatic, anti-cancer, and anti-inflammatory effects. However, the effect of Sch on TGF-β1-stimulated hepatic fibrosis and EMT is still unknown. In the present investigation, we evaluated the anti-fibrotic and anti-EMT properties of Sch and its underlying mechanisms in murine hepatocyte AML12 cells. Overall, we found that Sch inhibited the pro-fibrotic activity of TGF-β1 in AML12 cells; thus, it suppressed the accumulation of ECM proteins. Also, Sch inhibited the EMT as assessed by reduced expression of vimentin and fibronectin, and increased E-cadherin and ZO-1 in TGF-β1 induced AML12 cells. Sch reduced TGF-β1-mediated phosphorylation of Smad2/3 and Smad3/4 DNA binding activity. On the other hand, Sch reduced TGF-β1-induced ERK1/2 and PI3K/Akt phosphorylation in the non-Smad pathway. In conclusion, Sch can antagonize TGF-β1-mediated fibrosis and EMT in AML12 cells. Sch may possess potential as an anti-fibrotic molecule in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Ji-hyun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Republic of Korea
| | - Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Republic of Korea.
| |
Collapse
|
23
|
Xia YZ, Yang L, Wang ZD, Guo C, Zhang C, Geng YD, Kong LY. Schisandrin A enhances the cytotoxicity of doxorubicin by the inhibition of nuclear factor-kappa B signaling in a doxorubicin-resistant human osteosarcoma cell line. RSC Adv 2015. [DOI: 10.1039/c4ra14324h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Schisandrin A reversed chemoresistance in doxorubicin-induced MG-63 subline by inhibiting NF-kappaB-mediate expression of P-gp.
Collapse
Affiliation(s)
- Yuan-Zheng Xia
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- NanJing 210009
- People's Republic of China
| | - Lei Yang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- NanJing 210009
- People's Republic of China
| | - Zhen-Dong Wang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- NanJing 210009
- People's Republic of China
| | - Chao Guo
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- NanJing 210009
- People's Republic of China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- NanJing 210009
- People's Republic of China
| | - Ya-Di Geng
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- NanJing 210009
- People's Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- NanJing 210009
- People's Republic of China
| |
Collapse
|
24
|
Sung M, Park SS, Kim SS, Han CK, Hur JM. Antioxidant activity and hepatoprotective effect of Schizandra chinensis Baill. Extracts containing active components in alcohol-induced HepG2 cells. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0220-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
25
|
Schisandrin A and B affect subventricular zone neurogenesis in mouse. Eur J Pharmacol 2014; 740:552-9. [DOI: 10.1016/j.ejphar.2014.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 11/21/2022]
|
26
|
Figueiredo CR, Matsuo AL, Massaoka MH, Girola N, Azevedo RA, Rabaça AN, Farias CF, Pereira FV, Matias NS, Silva LP, Rodrigues EG, Lago JHG, Travassos LR, Silva RMG. Antitumor activity of kielmeyera coriacea leaf constituents in experimental melanoma, tested in vitro and in vivo in syngeneic mice. Adv Pharm Bull 2014; 4:429-36. [PMID: 25364658 DOI: 10.5681/apb.2014.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/07/2014] [Accepted: 02/19/2014] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The antitumor activity of Kielmeyera coriacea (Clusiaceae), a medicinal plant used in the treatment of parasitic, as well as fungal and bacterial infections by the Brazilian Cerrado population, was investigated. METHODS A chloroform extract (CE) of K. coriacea was tested in the murine melanoma cell line (B16F10-Nex2) and a panel of human tumor cell lines. Tumor cell migration was determined by the wound-healing assay and the in vivo antitumor activity of CE was investigated in a melanoma cell metastatic model. 1H NMR and GC/MS were used to determine CE chemical composition. RESULTS We found that CE exhibited strong cytotoxic activity against murine melanoma cells and a panel of human tumor cell lines in vitro. CE also inhibited growth of B16F10-Nex2 cells at sub lethal concentrations, inducing cell cycle arrest at S phase, and inhibition of tumor cell migration. Most importantly, administration of CE significantly reduced the number of melanoma metastatic nodules in vivo. Chemical analysis of CE indicated the presence of the long chain fatty compounds, 1-eicosanol, 1-docosanol, and 2-nonadecanone as main constituents. CONCLUSION These results indicate that K. coriacea is a promising medicinal plant in cancer therapy exhibiting antitumor activity both in vitro and in vivo against different tumor cell lines.
Collapse
Affiliation(s)
- Carlos Rogério Figueiredo
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Alisson Leonardo Matsuo
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Mariana Hiromi Massaoka
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Natalia Girola
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Ricardo Alexandre Azevedo
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Aline Nogueira Rabaça
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Camyla Fernandes Farias
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Felipe Valença Pereira
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Natalia Silva Matias
- Department of Biological Sciences - Laboratory of Herbal Medicines, Universidade Estadual Paulista (UNESP- FLC/Assis), São Paulo, Brazil
| | - Luciana Pereira Silva
- Department of Biological Sciences - Laboratory of Herbal Medicines, Universidade Estadual Paulista (UNESP- FLC/Assis), São Paulo, Brazil
| | - Elaine Guadelupe Rodrigues
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - João Henrique Guilardi Lago
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, São Paulo, SP, Brazil
| | - Luiz Rodolpho Travassos
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Regildo Márcio Gonçalves Silva
- Department of Biological Sciences - Laboratory of Herbal Medicines, Universidade Estadual Paulista (UNESP- FLC/Assis), São Paulo, Brazil
| |
Collapse
|
27
|
Kim MH, Choi YY, Han JM, Lee HS, Hong SB, Lee SG, Yang WM. Ameliorative effects of Schizandra chinensis on osteoporosis via activation of estrogen receptor (ER)-α/-β. Food Funct 2014; 5:1594-601. [PMID: 24881676 DOI: 10.1039/c4fo00133h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Estrogen deficiency in menopausal women is the main cause of osteoporosis. Phytoestrogen could be a suitable candidate for treatment of post-menopausal osteoporosis. Recent studies showed that S. chinensis contains several lignans, which may be phytoestrogen. In this study, we investigated the ameliorative effects of S. chinensis on post-menopausal osteoporosis. 30% ethanol extract of S. chinensis (SC) was administered orally for 6 weeks after 7 weeks of ovariectomized-induced osteoporosis. Bone mineral density was significantly increased following increased serum osteocalcin levels by SC treatment. Histological analysis showed that SC reduced the increased growth plate of the epiphyseal plate in femur. In addition, pores within bone marrow cells filling the lateral and medial epicondyle were decreased. Serum estradiol concentration was significantly increased in the SC-treated group. The expressions of estrogen receptor-α and -β were increased in uterus and MCF-7 breast cancer cells by SC treatment. And two transcriptions of proto-oncogenes, c-fos and c-Jun, were suppressed by treatment of SC. From these data, we propose that S. chinensis attenuates post-menopausal osteoporosis with its phytoestrogenic effects. S. chinensis may have the potential to be used as an alternative for treatment of osteoporosis.
Collapse
Affiliation(s)
- Mi Hye Kim
- College of Korean Medicine and Institute of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | | | | | | | | | | | | |
Collapse
|
28
|
Park SY, Kim DY, Kang JK, Park G, Choi YW. Involvement of activation of the Nrf2/ARE pathway in protection against 6-OHDA-induced SH-SY5Y cell death by α-iso-cubebenol. Neurotoxicology 2014; 44:160-8. [PMID: 24997245 DOI: 10.1016/j.neuro.2014.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 12/16/2022]
Abstract
Free radical-mediated neurodegeneration is one of the many causes of Parkinson's disease (PD). As part of our ongoing studies on the identification of biologically active Schisandra chinensis components, we have isolated and structurally elucidated α-iso-cubebenol. This study was carried out in an attempt to clarify the neuroprotective effect of α-iso-cubebenol on toxin-insulted dopaminergic neuronal death using 6-hydroxy-dopamine (6-OHDA)-induced dopaminergic SH-SY5Y cells. α-iso-cubebenol significantly attenuated the loss of mitochondrial function (MTT assay) and membrane integrity (lactate dehydrogenase assay) associated with 6-OHDA-induced neurotoxicity. Pretreatment of the cells with α-iso-cubebenol diminished the intracellular accumulation of reactive oxygen species (ROS) and calcium in response to 6-OHDA. Moreover, α-iso-cubebenol protected against 6-OHDA-induced neurotoxicity through inhibition of SH-SY5Y cell apoptosis. In addition, JC-1 staining, which is a well-established measure of mitochondrial damage, was decreased after treatment with α-iso-cubebenol. Notably, α-iso-cubebenol inhibited the release of mitochondrial flavoprotein apoptosis inducing factor (AIF) from the mitochondria to the cytosol and nucleus following 6-OHDA treatment. In addition, α-iso-cubebenol reduced the 6-OHDA-induced phosphorylation of ERK and induced the phosphorylation of PKA, PKB, and CREB in a dose-dependent manner. Moreover, α-iso-cubebenol stimulated the activation of Nrf2, a downstream target of CREB. Furthermore, α-iso-cubebenol stimulated the expression of multiple antioxidant response genes (NQO-1 and HO-1). Finally, CREB and Nrf2 siRNA transfection diminished α-iso-cubebenol-mediated neuroprotection.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 609-735, Republic of Korea
| | - Do Yeon Kim
- Department of Horticultural Bioscience, Pusan National University, Miryang 627-706, Republic of Korea
| | - Jong-Koo Kang
- College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Geuntae Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 609-735, Republic of Korea; Institute for Research &Industry Cooperation, Pusan National University, Busan 609-735, Republic of Korea
| | - Young-Whan Choi
- College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea; Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea.
| |
Collapse
|
29
|
Chu C, Zhang S, Tong S, Li X, Yan J. An efficient strategy for the extraction and purification of lignans fromSchisandra chinensisby a combination of supercritical fluid extraction and high-speed counter-current chromatography. J Sep Sci 2013; 36:3958-64. [DOI: 10.1002/jssc.201300896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/13/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Chu Chu
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Shidi Zhang
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Shengqiang Tong
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Xingnuo Li
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Jizhong Yan
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| |
Collapse
|
30
|
Lee HT, Choi MR, Doh MS, Jung KH, Chai YG. Effects of the monoamine oxidase inhibitors pargyline and tranylcypromine on cellular proliferation in human prostate cancer cells. Oncol Rep 2013; 30:1587-92. [PMID: 23900512 PMCID: PMC3810355 DOI: 10.3892/or.2013.2635] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy is one of the therapeutic strategies that has been used for the inhibition of cancer cell proliferation in several types of cancer, including prostate cancer. Although monoamine oxidase (MAO) inhibitors, phytoestrogen and antioxidants used in chemotherapy have been systematically studied, their effects on cancer cell growth remain to be fully understood. The purpose of this study was to investigate the effects of the MAO inhibitors, pargyline and tranylcypromine on cell survival in human prostate carcinoma (LNCaP-LN3) cells. After treating LNCaP-LN3 cells with pargyline or tranylcypromine, we examined cell proliferation, cell cycle pattern, apoptosis and the expression levels of apoptosis-related genes. The proliferation of cells exposed to pargyline decreased in a dose- and time-dependent manner, while tranylcypromine-treated cells showed the opposite results. Treatment with pargyline significantly induced cell cycle arrest at the G1 phase compared to the control and tranylcypromine-treated cells. In addition, pargyline induced an increase in the cell death rate by promoting apoptosis; however, tranylcypromine had no effect on LNCaP-LN3 cells. Based on our results, we suggest that pargyline is more powerful than tranylcypromine for the treatment of human prostate cancer.
Collapse
Affiliation(s)
- Hyung Tae Lee
- Department of Molecular and Life Sciences, Hanyang University, Ansan 426-791, Republic of Korea
| | | | | | | | | |
Collapse
|
31
|
Kim MS, Shin YJ, Jang J. Antimicrobial Finish of Cotton and Silk Fabrics Dyed with Schizandra chinensis Fruit Extract. ACTA ACUST UNITED AC 2013. [DOI: 10.12772/tse.2013.50.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Effects of schizandrin on the expression of thymic stromal lymphopoietin in human mast cell line HMC-1. Life Sci 2012; 91:384-388. [PMID: 22906632 DOI: 10.1016/j.lfs.2012.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/19/2012] [Accepted: 08/02/2012] [Indexed: 01/29/2023]
Abstract
AIMS Thymic stromal lymphopoietin (TSLP) plays an important role in allergic diseases such as asthma and atopic dermatitis. Schizandrin has various effects such as anti-asthmatic, anti-cancer and anti-inflammatory effects. However, the effect of schizandrin on the production of TSLP has not been clarified. Thus, we investigated how schizandrin inhibits the production of TSLP in the human mast cell line HMC-1 cells. MAIN METHODS We used enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, luciferase assay, and Western blot analysis to investigate the effects of schizandrin. KEY FINDINGS Schizandrin inhibited the production and mRNA expression of TSLP in HMC-1 cells. The maximal inhibition rate of TSLP production by schizandrin (10 μM) was 68.62 ± 3.47%. Schizandrin inhibited the translocation and luciferase activity of nuclear factor-κB induced by phorbol myristate acetate plus A23187. In the activated HMC-1 cells, the activation of caspase-1 was increased, whereas the activation of caspase-1 was decreased by pretreatment with schizandrin. SIGNIFICANCE These results suggest that schizandrin can be used to treat inflammatory and atopic diseases through the inhibition of TSLP.
Collapse
|
33
|
Zheng S, Aves SJ, Laraia L, Galloway WRJD, Pike KG, Wu W, Spring DR. A Concise Total Synthesis of Deoxyschizandrin and Exploration of Its Antiproliferative Effects and those of Structurally Related Derivatives. Chemistry 2012; 18:3193-8. [DOI: 10.1002/chem.201103530] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Indexed: 11/09/2022]
|
34
|
Song JX, Lin X, Wong RNS, Sze SCW, Tong Y, Shaw PC, Zhang YB. Protective effects of dibenzocyclooctadiene lignans from Schisandra chinensis against beta-amyloid and homocysteine neurotoxicity in PC12 cells. Phytother Res 2010; 25:435-43. [PMID: 20740476 DOI: 10.1002/ptr.3269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/29/2010] [Accepted: 06/22/2010] [Indexed: 02/04/2023]
Abstract
Aggregated beta-amyloid (Aβ) and elevated plasma levels of homocysteine have been implicated as critical factors in the pathogenesis of Alzheimer's disease. The neuroprotective effects and possible mechanism of four structurally similar dibenzocyclooctadiene lignans (namely schisandrin, schisantherin A, schisandrin B and schisandrin C) isolated from the fruit of Schisandra chinensis (Turcz.) Baill. (Schisandraceae) against Aβ₂₅₋₃₅ and homocysteine toxicity in PC12 cells was studied. Exposure of PC12 cells to 0.5 µm Aβ₂₅₋₃₅ caused significant cell death, increased the number of apoptotic cells, elevated reactive oxygen species, increased the levels of the pro-apoptotic protein Bax and caspase-3 activation. All these effects induced by Aβ₂₅₋₃₅ were markedly reversed by schisandrin B and schisandrin C pretreatment, while schisandrin and schisantherin A had no obvious effects. Meanwhile, schisandrin B and schisandrin C reversed homocysteine-induced cytotoxicity. The results indicated that schisandrin B and schisandrin C protected PC12 cells against Aβ toxicity by attenuating ROS production and modulating the apoptotic signal pathway through Bax and caspase-3. Further structure-activity analysis of Schisandra lignans and evaluations of their neuroprotective effects using AD animal models are warranted.
Collapse
Affiliation(s)
- Ju-Xian Song
- The School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Na M, Hung TM, Oh WK, Min BS, Lee SH, Bae K. Fatty acid synthase inhibitory activity of dibenzocyclooctadiene lignans isolated from Schisandra chinensis. Phytother Res 2010; 24 Suppl 2:S225-8. [DOI: 10.1002/ptr.3149] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|