1
|
Valle‐Tamayo N, Aranha MR, Pérez‐González R, Serrano‐Requena S, Videla L, Barroeta I, Benejam B, Chiva‐Blanch G, Jimenez A, Busciglio J, Wisniewski T, Do Carmo S, Álvarez‐Sánchez E, Muñoz L, Bejanin A, Belbin O, Alcolea D, Carmona‐Iragui M, Lleó A, Cuello AC, Fortea J, Dols‐Icardo O, Iulita MF. Nerve growth factor precursor alterations in neuron-derived extracellular vesicles from individuals with Down syndrome along the Alzheimer's disease continuum. Alzheimers Dement 2025; 21:e70137. [PMID: 40257051 PMCID: PMC12010274 DOI: 10.1002/alz.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND In Down syndrome (DS) and Alzheimer's disease (AD), nerve growth factor precursor protein (proNGF) accumulates in the brain. However, its non-invasive detection using neuron-derived extracellular vesicles (NDEVs) from plasma remains unexplored. METHODS We included 139 adults with DS (45 asymptomatic [aDS], 94 symptomatic for AD [sDS]) and 37 healthy controls. NDEVs were isolated from plasma. ProNGF and tetraspanin (CD81) were quantified by enzyme-linked immunosorbent assay. We assessed proNGF/CD81 changes with age, along the AD continuum (aDS and sDS), and associations with cerebrospinal fluid (CSF), plasma biomarkers, episodic memory, and basal forebrain volume. RESULTS In DS, proNGF/CD81 levels increased with age and were higher in NDEVs from asymptomatic and symptomatic individuals compared to controls, with the highest levels in the symptomatic group. ProNGF correlated with CSF phosphorylated tau (p-tau)181, plasma p-tau217, neurofilament light chain, and episodic memory. DISCUSSION ProNGF/CD81 levels in NDEVs increase along the AD continuum in DS and parallel tau pathology, indicating the potential as a promising biomarker for monitoring disease progression in plasma. HIGHLIGHTS Nerve growth factor precursor protein (ProNGF)/tetraspanin (CD81) ratio increased in the third decade of life, 20 years before Alzheimer's disease (AD) symptom onset in Down syndrome (DS). proNGF/CD81 concentrations were significantly higher in individuals with DS compared to controls and were notably elevated in individuals with DS and symptomatic AD compared to asymptomatic AD. proNGF/CD81 concentrations were associated with tau pathology and neuronal injury.
Collapse
Grants
- P01AG060882 NIH HHS
- PI20/01330 Instituto de Salud Carlos III (Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España)
- R01 AG081394 NIA NIH HHS
- PI22/00307 Instituto de Salud Carlos III (Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España)
- PI21/01395 Instituto de Salud Carlos III (Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España)
- RF1 AG061566 NIA NIH HHS
- RF1 AG056850 NIA NIH HHS
- R61AG066543 NIH HHS
- PI18/00435 Instituto de Salud Carlos III (Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España)
- H2020-SC1-BHC-2018-2020 Horizon Europe - Research and Innovation Funding Programme
- INT21/00073 Instituto de Salud Carlos III (Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España)
- SLT002/16/00408 Department de Salut de la Generalitat de Catalunya, Pla Estratègic de Recerca I Innovació en Salut
- R61 AG066543 NIA NIH HHS
- R01AG061566 NIH HHS
- PDC-2023-51 Jerome Lejeune Foundation (France)
- R01AG087002 NIH HHS
- R21AG056974 NIH HHS
- P30AG066512 NIH HHS
- P30 AG066512 NIA NIH HHS
- CP20/00038 Instituto de Salud Carlos III (Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España)
- SLT006/17/00119 Department de Salut de la Generalitat de Catalunya, Pla Estratègic de Recerca I Innovació en Salut
- Alzheimer's Association
- IIBSP-DOW-2020-151 Fundación Tatiana Pérez de Guzmán el Bueno
- R01AG056850 NIH HHS
- R01AG081394 NIH HHS
- P01 AG060882 NIA NIH HHS
- PI20/01473 Instituto de Salud Carlos III (Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España)
- 1913 Jerome Lejeune Foundation (France)
- PI24/01087 Instituto de Salud Carlos III (Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España)
- PI23/01786 Instituto de Salud Carlos III (Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España)
- 1941 Jerome Lejeune Foundation (France)
- FI22/00077 Instituto de Salud Carlos III (Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España)
- R21 AG056974 NIA NIH HHS
- National Institutes of Health
- Fundación Tatiana Pérez de Guzmán el Bueno
- Alzheimer's Association
Collapse
|
2
|
Han L, Ho CT, Lu M. Regulatory Role of Bioactive Compounds from Natural Spices on Mitochondrial Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5711-5723. [PMID: 40019340 DOI: 10.1021/acs.jafc.4c12341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Natural spices have gained much attention for their aromatic and pungent flavors as well as their multiple beneficial health effects. As complex organelles that play a central role in energy production, stress response control, cell signal transduction, and metabolism regulation, mitochondria could be regulated by many bioactive components in spices. In this review, the role of mitochondria in maintaining cellular and metabolism homeostasis is summarized. The regulatory effects of mitochondrial function by major bioactive compounds from natural spices are evaluated, including capsaicin, 6-gingerol, 6-shogaol, allicin, quercetin, curcumin, tetrahydrocurcumin, and cinnamaldehyde. The underlying molecular mechanisms are also discussed. This work could enhance our understanding toward health-promoting properties of spice compounds as well as provide new insights into the prevention and treatment of disorders associated with mitochondrial dysfunctions by those nutraceuticals.
Collapse
Affiliation(s)
- Liguang Han
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Singh AA, Katiyar S, Song M. Phytochemicals Targeting BDNF Signaling for Treating Neurological Disorders. Brain Sci 2025; 15:252. [PMID: 40149774 PMCID: PMC11939912 DOI: 10.3390/brainsci15030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Neurological disorders are defined by a deterioration or disruption of the nervous system's structure and function. These diseases, which include multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and schizophrenia, are caused by intricate pathological processes that include excitotoxicity, neuroinflammation, oxidative stress, genetic mutations, and compromised neurotrophic signaling. Although current pharmaceutical treatments relieve symptoms, their long-term efficacy is limited due to adverse side effects and weak neuroprotective properties. However, when combined with other neuroprotective drugs or adjunct therapy, they may offer additional benefits and improve treatment outcomes. Phytochemicals have emerged as attractive therapeutic agents due to their ability to regulate essential neurotrophic pathways, especially the brain-derived neurotrophic factor (BDNF) signaling cascade. BDNF is an important target for neurodegenerative disease (ND) treatment since it regulates neuronal survival, synaptic plasticity, neurogenesis, and neuroprotection. This review emphasizes the molecular pathways through which various phytochemicals-such as flavonoids, terpenoids, alkaloids, and phenolic compounds-stimulate BDNF expression and modulate its downstream signaling pathways, including GSK-3β, MAPK/ERK, PI3K/Akt/mTOR, CREB, and Wnt/β-catenin. This paper also highlights how phytochemical combinations may interact to enhance BDNF activity, offering new therapeutic options for ND treatment. Despite their potential for neuroprotection, phytochemicals face challenges related to pharmacokinetics, blood-brain barrier (BBB) permeability, and absorption, highlighting the need for further research into combination therapies and improved formulations. Clinical assessment and mechanistic understanding of BDNF-targeted phytotherapy should be the main goals of future studies. The therapeutic efficacy of natural compounds in regulating neurotrophic signaling is highlighted in this review, providing a viable approach to the prevention and treatment of NDs.
Collapse
Affiliation(s)
- Alka Ashok Singh
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Shweta Katiyar
- Department of Botany, SBN Government PG College, Barwani 451551, MP, India;
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
4
|
Yang C, Chen W, Ye B, Nie K. An overview of 6-shogaol: new insights into its pharmacological properties and potential therapeutic activities. Food Funct 2024; 15:7252-7270. [PMID: 38287779 DOI: 10.1039/d3fo04753a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Ginger (Zingiber officinale Roscoe) has traditionally been used as a cooking spice and herbal medicine for treating nausea and vomiting. More recently, ginger was found to effectively reduce the risk of diseases such as gastroenteritis, migraine, gonarthritis, etc., due to its various bioactive compounds. 6-Shogaol, the pungent phenolic substance in ginger, is the most pharmacologically active among such compounds. The aim of the present study was to review the pharmacological characteristic of 6-shogaol, including the properties of anti-inflammatory, antioxidant and antitumour, and its corresponding molecular mechanism. With its multiple mechanisms, 6-shogaol is considered a beneficial natural compound, and therefore, this review will shed some light on the therapeutic role of 6-shogaol and provide a theoretical basis for the development and clinical application of 6-shogaol.
Collapse
Affiliation(s)
- Chenglu Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Weijian Chen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Binbin Ye
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Ke Nie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Angelopoulou E, Paudel YN, Papageorgiou SG, Piperi C. Elucidating the Beneficial Effects of Ginger ( Zingiber officinale Roscoe) in Parkinson's Disease. ACS Pharmacol Transl Sci 2022; 5:838-848. [PMID: 36268117 PMCID: PMC9578130 DOI: 10.1021/acsptsci.2c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease (AD), and its pathogenesis remains obscure. Current treatment approaches mainly including levodopa and dopamine agonists provide symptomatic relief but fail to halt disease progression, and they are often accompanied by severe side effects. In this context, natural phytochemicals have received increasing attention as promising preventive or therapeutic candidates for PD, given their multitarget pharmaceutical mechanisms of actions and good safety profile. Ginger (Zingiber officinale Roscoe, Zingiberaceae) is a very popular spice used as a medicinal herb throughout the world since the ancient years, for a wide range of conditions, including nausea, diabetes, dyslipidemia, and cancer. Emerging in vivo and in vitro evidence supports the neuroprotective effects of ginger and its main pharmaceutically active compounds (zingerone, 6-shogaol, and 6-gingerol) in PD, mainly via the regulation of neuroinflammation, oxidative stress, intestinal permeability, dopamine synaptic transmission, and possibly mitochondrial dysfunction. The regulation of several transcription factors and signaling pathways, including nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), phosphatidylinositol-3-kinase (PI3K)/Ak strain transforming (Akt), extracellular signal-regulated kinase (ERK) 1/2, and AMP-activated protein kinase (AMPK)/proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) have been shown to contribute to the protective effects of ginger. Herein, we discuss recent findings on the beneficial role of ginger in PD as a preventive agent or potential supplement to current treatment strategies, focusing on potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department
of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
- First
Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition University
Hospital, 15784Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology
Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500Bandar Sunway, Malaysia
| | - Sokratis G. Papageorgiou
- First
Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition University
Hospital, 15784Athens, Greece
| | - Christina Piperi
- Department
of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| |
Collapse
|
6
|
Liu J, Li B, Li W, Pan T, Diao Y, Wang F. 6-Shogaol Inhibits Oxidative Stress-Induced Rat Vascular Smooth Muscle Cell Apoptosis by Regulating OXR1-p53 Axis. Front Mol Biosci 2022; 9:808162. [PMID: 35174215 PMCID: PMC8841977 DOI: 10.3389/fmolb.2022.808162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Apoptosis of vascular smooth muscle cells (VSMCs) is closely related to the pathogenesis of cardiovascular diseases, and oxidative stress is an important cause of VSMCs' death. Inhibiting VSMCs apoptosis is an effective preventive strategy in slowing down the development of cardiovascular disease, especially for atherosclerosis. In this study, we found that oxidation resistance protein 1 (OXR1), a crucial participator for responding to oxidative stress, could modulate the expression of p53, the key regulator of cell apoptosis. Our results revealed that oxidative stress promoted VSMCs apoptosis by overexpression of the OXR1-p53 axis, and 6-shogaol (6S), a major biologically active compound in ginger, could effectively attenuate cell death by preventing the upregulated expression of the OXR1-p53 axis. Quantitative proteomics analysis revealed that the degradation of p53 mediated by OXR1 might be related to the enhanced assembly of SCF ubiquitin ligase complexes, which is reported to closely relate to the modification of ubiquitination or neddylation and subsequent degradation of p53.
Collapse
Affiliation(s)
- Jing Liu
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China
| | - Bin Li
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
- Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China
| | - Wenlian Li
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Taowen Pan
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
- Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China
| | - Yunpeng Diao
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
- Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China
| | - Fangjun Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
7
|
da Rosa N, de Medeiros FD, de Oliveira J, Laurentino AOM, Peretti EDM, Machado RS, Lourenço MP, da Silva TI, Fernandes TDC, Reis PA, de Castro Faria Neto HC, Prophiro JS, Fortunato JJ, Petronilho F. 6-shogaol exerts a neuroprotective factor in offspring after maternal immune activation in rats. Dev Neurosci 2021; 44:13-22. [PMID: 34695825 DOI: 10.1159/000519992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Fabiana Durante de Medeiros
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Juliana de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Ana Olívia Martins Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Eduardo de Medeiros Peretti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Millena Pais Lourenço
- Immunopharmacology Laboratory, Oswaldo Cruz Institute/IOC/FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | - Patrícia Alves Reis
- Immunopharmacology Laboratory, Oswaldo Cruz Institute/IOC/FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Josiane Somariva Prophiro
- Research Group in Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, (UNISUL), Tubarão, Brazil
| | - Jucélia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| |
Collapse
|
8
|
Jafarzadeh A, Jafarzadeh S, Nemati M. Therapeutic potential of ginger against COVID-19: Is there enough evidence? JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [PMCID: PMC8492833 DOI: 10.1016/j.jtcms.2021.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In addition to the respiratory system, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strikes other systems, including the digestive, circulatory, urogenital, and even the central nervous system, as its receptor angiotensin-converting enzyme 2 (ACE2) is expressed in various organs, such as lungs, intestine, heart, esophagus, kidneys, bladder, testis, liver, and brain. Different mechanisms, in particular, massive virus replication, extensive apoptosis and necrosis of the lung-related epithelial and endothelial cells, vascular leakage, hyper-inflammatory responses, overproduction of pro-inflammatory mediators, cytokine storm, oxidative stress, downregulation of ACE2, and impairment of the renin-angiotensin system contribute to the COVID-19 pathogenesis. Currently, COVID-19 is a global pandemic with no specific anti-viral treatment. The favorable capabilities of the ginger were indicated in patients suffering from osteoarthritis, neurodegenerative disorders, rheumatoid arthritis, type 2 diabetes, respiratory distress, liver diseases and primary dysmenorrheal. Ginger or its compounds exhibited strong anti-inflammatory and anti-oxidative influences in numerous animal models. This review provides evidence regarding the potential effects of ginger against SARS-CoV-2 infection and highlights its antiviral, anti-inflammatory, antioxidative, and immunomodulatory impacts in an attempt to consider this plant as an alternative therapeutic agent for COVID-19 treatment.
Collapse
|
9
|
Kropf E, Fahnestock M. Effects of Reactive Oxygen and Nitrogen Species on TrkA Expression and Signalling: Implications for proNGF in Aging and Alzheimer's Disease. Cells 2021; 10:cells10081983. [PMID: 34440751 PMCID: PMC8392605 DOI: 10.3390/cells10081983] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Nerve growth factor (NGF) and its precursor form, proNGF, are critical for neuronal survival and cognitive function. In the brain, proNGF is the only detectable form of NGF. Dysregulation of proNGF in the brain is implicated in age-related memory loss and Alzheimer’s disease (AD). AD is characterized by early and progressive degeneration of the basal forebrain, an area critical for learning, memory, and attention. Learning and memory deficits in AD are associated with loss of proNGF survival signalling and impaired retrograde transport of proNGF to the basal forebrain. ProNGF transport and signalling may be impaired by the increased reactive oxygen and nitrogen species (ROS/RNS) observed in the aged and AD brain. The current literature suggests that ROS/RNS nitrate proNGF and reduce the expression of the proNGF receptor tropomyosin-related kinase A (TrkA), disrupting its downstream survival signalling. ROS/RNS-induced reductions in TrkA expression reduce cell viability, as proNGF loses its neurotrophic function in the absence of TrkA and instead generates apoptotic signalling via the pan-neurotrophin receptor p75NTR. ROS/RNS also interfere with kinesin and dynein motor functions, causing transport deficits. ROS/RNS-induced deficits in microtubule motor function and TrkA expression and signalling may contribute to the vulnerability of the basal forebrain in AD. Antioxidant treatments may be beneficial in restoring proNGF signalling and axonal transport and reducing basal forebrain neurodegeneration and related deficits in cognitive function.
Collapse
Affiliation(s)
- Erika Kropf
- Graduate Program in Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence:
| |
Collapse
|
10
|
Choi JG, Khan Z, Hong SM, Kim YC, Oh MS, Kim SY. The Mixture of Gotu Kola, Cnidium Fruit, and Goji Berry Enhances Memory Functions by Inducing Nerve-Growth-Factor-Mediated Actions Both In Vitro and In Vivo. Nutrients 2020; 12:nu12051372. [PMID: 32403381 PMCID: PMC7285178 DOI: 10.3390/nu12051372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/02/2022] Open
Abstract
Nerve growth factor (NGF), a typical neurotrophin, has been characterized by the regulation of neuronal cell differentiation and survival involved in learning and memory functions. NGF has a main role in neurite extension and synapse formation by activating the cyclic adenosine monophosphate-response-element-binding protein (CREB) in the hippocampus. The purpose of this study was to determine whether a mixture of Gotu Kola, Cnidium fruit, and Goji berry (KYJ) enhances memory function by inducing NGF-mediated actions both in vitro and in vivo. The KYJ combination increased NGF concentration and neurite length in C6 glioma and N2a neuronal cells, respectively. Additionally, we discovered memory-enhancing effects of KYJ through increased NGF-mediated synapse maturation, CREB phosphorylation, and cell differentiation in the mouse hippocampus. These findings suggest that this combination may be a potential nootropic cognitive enhancer via the induction of NGF and NGF-dependent activities.
Collapse
Affiliation(s)
- Jin Gyu Choi
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Zahra Khan
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (Z.K.); (S.M.H.)
| | - Seong Min Hong
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (Z.K.); (S.M.H.)
| | - Young Choong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul 08826, Korea;
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: (M.S.O.); (S.Y.K.); Tel.: +82-2-961-2252 (M.S.O.); +82-32-820-4931 (S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (Z.K.); (S.M.H.)
- Correspondence: (M.S.O.); (S.Y.K.); Tel.: +82-2-961-2252 (M.S.O.); +82-32-820-4931 (S.Y.K.)
| |
Collapse
|
11
|
Choi JG, Khan Z, Choi SZ, Kim SY, Oh MS. DA-9801, a standardized Dioscorea extract, improves memory function via the activation of nerve growth factor-mediated signaling. Nutr Neurosci 2020; 25:219-230. [DOI: 10.1080/1028415x.2020.1743916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jin Gyu Choi
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East–West Pharmaceutical Research Institute, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| | - Zahra Khan
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Republic of Korea
| | | | - Sun Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East–West Pharmaceutical Research Institute, Kyung Hee University, Dongdaemun-gu, Republic of Korea
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| |
Collapse
|
12
|
Jafarzadeh A, Nemati M. Therapeutic potentials of ginger for treatment of Multiple sclerosis: A review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties. J Neuroimmunol 2018; 324:54-75. [PMID: 30243185 DOI: 10.1016/j.jneuroim.2018.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is characterized by chronic inflammatory response-induced demyelination of the neurons and degeneration of the axons within the central nervous system (CNS). A complex network of immunopathological-, inflammatory- and oxidative parameters involve in the development and advancement of MS. The anti-inflammatory, immunomodulatory and anti-oxidative characteristics of the ginger and several of its components have been indicated in some of experimental and clinical investigations. The possible therapeutic potentials of ginger and its ingredients in the treatment of MS may exert mainly through the regulation of the Th1-, Th2-, Th9-, Th17-, Th22- and Treg cell-related immune responses, down-regulation of the B cell-related immune responses, modulation of the macrophages-related responses, modulation of the production of pro- and anti-inflammatory cytokines, down-regulation of the arachidonic acid-derived mediators, interfering with the toll like receptor-related signaling pathways, suppression of the inflammasomes, down-regulation of the oxidative stress, reduction of the adhesion molecules expression, and down-regulation of the expression of the chemokines and chemokine receptors. This review aimed to provide a comprehensive knowledge regarding the immunomodulatory-, anti-inflammatory and anti-oxidative properties of ginger and its components, and highlight novel insights into the possible therapeutic potentials of this plant for treatment of MS. The review encourages more investigations to consider the therapeutic potentials of ginger and its effective components for managing of MS.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Maryam Nemati
- Department of Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Choi JG, Kim SY, Jeong M, Oh MS. Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders. Pharmacol Ther 2018; 182:56-69. [PMID: 28842272 DOI: 10.1016/j.pharmthera.2017.08.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Age-related neurological disorders (ANDs), including neurodegenerative diseases, are multifactorial disorders with a risk that increases with aging. ANDs are generally characterized by common neuropathological conditions of the central nervous system, such as oxidative stress, neuroinflammation, and protein misfolding. Recently, efforts have been made to overcome ANDs because of the increase in age-dependent prevalence. Ginger, the rhizome of Zingiber officinale Roscoe, is a popular food spice and has a long history of use in traditional medicine for treating various disease symptoms. The structure-activity relationships of ginger phytochemicals show that ginger can be used to treat ANDs by targeting different ligand sites. This review shows that ginger and its constituents, such as 6-gingerol, 6-shogaol, 6-paradol, zingerone, and dehydrozingerone, are effective for ameliorating the neurological symptoms and pathological conditions of ANDs through by modulating cell death or cell survival signaling molecules. From this review, we conclude that the active ingredients in ginger have therapeutic potential in ANDs.
Collapse
Affiliation(s)
- Jin Gyu Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea
| | - Minsun Jeong
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
14
|
Xu Y, Bai L, Chen X, Li Y, Qin Y, Meng X, Zhang Q. 6-Shogaol ameliorates diabetic nephropathy through anti-inflammatory, hyperlipidemic, anti-oxidative activity in db/db mice. Biomed Pharmacother 2018; 97:633-641. [DOI: 10.1016/j.biopha.2017.10.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/06/2017] [Accepted: 10/16/2017] [Indexed: 11/29/2022] Open
|
15
|
O'Sullivan SA, Dev KK. The chemokine fractalkine (CX3CL1) attenuates H 2O 2-induced demyelination in cerebellar slices. J Neuroinflammation 2017; 14:159. [PMID: 28810923 PMCID: PMC5558650 DOI: 10.1186/s12974-017-0932-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023] Open
Abstract
Background Fractalkine/CX3CR1 signalling has been implicated in many neurodegenerative and neurological diseases of the central nervous system (CNS). This signalling pathway plays an important role in regulating reactive oxygen species (ROS), as well as itself being altered in conditions of oxidative stress. Here, we investigated the effects of recombinant fractalkine (rCX3CL1) in models of hydrogen peroxide (H2O2)-induced demyelination and astrocyte toxicity, within organotypic cerebellar slice cultures. Methods Organotypic cerebellar slice cultures were generated from postnatal day 10 C57BL/6J mice to assess myelination. Immunohistochemistry was used to measure the degree of myelination. Fluorescent images were obtained using a leica SP8 confocal microscope and data analysed using ImageJ software. Results We show here, for the first time, that rCX3CL1 significantly attenuated bolus H2O2-induced demyelination as measured by expression of myelin basic protein (MBP) and attenuated reduced vimentin expression. Using the GOX-CAT system to continuously generate low levels of H2O2 and induce demyelination, we observed similar protective effects of rCX3CL1 on MBP and MOG fluorescence, although in this model, the decrease in vimentin expression was not altered. Conclusions This data indicates possible protective effects of fractalkine signalling in oxidative stress-induced demyelination in the central nervous system. This opens up the possibility of fractalkine receptor (CX3CR1) modulation as a potential new target for protecting against oxidative stress-induced demyelination in both inflammatory and non-inflammatory nervous system disorders.
Collapse
Affiliation(s)
- Sinead A O'Sullivan
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
16
|
6-Shogaol has anti-amyloidogenic activity and ameliorates Alzheimer’s disease via CysLT1R-mediated inhibition of cathepsin B. Biochem Biophys Res Commun 2016; 477:96-102. [DOI: 10.1016/j.bbrc.2016.06.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
|
17
|
Subedi L, Gaire BP, Do MH, Lee TH, Kim SY. Anti-neuroinflammatory and neuroprotective effects of the Lindera neesiana fruit in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:872-81. [PMID: 27288923 DOI: 10.1016/j.phymed.2016.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/09/2016] [Accepted: 05/07/2016] [Indexed: 05/14/2023]
Abstract
BACKGROUND Lindera neesiana Kurz (Lauraceae), popularly known as Siltimur in Nepal, is an aromatic and spicy plant with edible fruits. It is a traditional herbal medicine widely used for the treatment of diarrhea, tooth pain, headache, and gastric disorders and is also used as a stimulant. PURPOSE The aim of the present study was to examine in vitro cytoprotective, anti-neuroinflammatory and neuroprotective potential of an aqueous extract of L. neesiana (LNE) fruit using different central nervous system (CNS) cell lines. METHODS In order to study the neuroprotective potential of LNE, we used three different types of CNS cell lines: murine microglia (BV2), rat glioma (C6), and mouse neuroblastoma (N2a). Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent, and prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and nerve growth factor (NGF) release in the culture media was determined using enzyme linked immunosorbent assay (ELISA) kits. Western blot analysis was performed to determine the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), mitogen activated protein kinase (MAPK) family proteins, Bax, B cell lymphoma (BCL)-2, and cleaved caspase 3. Neurite outgrowth was determined using the IncuCyte imaging system. RESULTS LNE treatment not only reduced nitric oxide (NO) production in a dose-dependent manner, but also significantly reduced proinflammatory cytokines, iNOS and COX-2 production by lipopolysaccharide (LPS) stimulated BV-2 cells. LNE increased the expression of phosphorylated (p)-extracellular signal-regulated kinase (ERK), whereas p-p38 and p- janus kinase (JNK) expression was significantly decreased in activated microglia. Furthermore, LNE increased cell viability of N2a cells, which was accompanied by decreased caspase-3 expression and the ratio of Bax/Bcl2 protein expression as well as increased NGF and neurite outgrowth, suggesting its neuroprotective potential against LPS-induced effects. Additionally, LNE substantially increased nuclear factor erythroid 2-related factor 2 (Nrf2) secretion in N2a cells and inhibited lipid dehydrogenase (LDH) release in H2O2-stimulated BV2 cells demonstrating the strong anti-inflammatory and antioxidant effects of LNE in CNS cell lines. CONCLUSION Here we found that water the soluble extract of LNE has promising anti-neuroinflammation and anti-apoptotic properties and identify LNE as a potential natural candidate for neuroprotection.
Collapse
Affiliation(s)
- Lalita Subedi
- Laboratoy of Pharmacognosy, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 406-799, Republic of Korea
| | - Bhakta Prasad Gaire
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 406-799, Republic of Korea
| | - Moon Ho Do
- Laboratoy of Pharmacognosy, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 406-799, Republic of Korea
| | - Taek Hwan Lee
- College of Pharmacy, Yonsei University, #162-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Sun Yeou Kim
- Laboratoy of Pharmacognosy, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 406-799, Republic of Korea.
| |
Collapse
|
18
|
Kim CS, Subedi L, Kim SY, Choi SU, Kim KH, Lee KR. Diterpenes from the Trunk of Abies holophylla and Their Potential Neuroprotective and Anti-inflammatory Activities. JOURNAL OF NATURAL PRODUCTS 2016; 79:387-394. [PMID: 26812172 DOI: 10.1021/acs.jnatprod.5b01053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Eleven new abietane-type diterpenes, holophyllins D-N (1-11), and 17 known analogues (12-28), were isolated from a MeOH extract of the trunk of Abies holophylla. The chemical structures of 1-11 were determined through spectroscopic data analysis, including NMR ((1)H and (13)C NMR, DEPT, (1)H-(1)H COSY, HMQC, HMBC, and NOESY) and HRFABMS methods. All isolated compounds (1-28) were evaluated for their cytotoxicity against four human tumor cell lines (A549, SK-OV-3, SK-MEL-2, and HCT-116), for their potential neuroprotective effects through induction of nerve growth factor in C6 glioma cells, and for their effects on nitric oxide levels in lipopolysaccharide-stimulated murine microglia BV2 cells.
Collapse
Affiliation(s)
- Chung Sub Kim
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Lalita Subedi
- Gachon Institute of Pharmaceutical Science, Gachon University , Incheon 21936, Republic of Korea
- College of Pharmacy, Gachon University , #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science, Gachon University , Incheon 21936, Republic of Korea
- College of Pharmacy, Gachon University , #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Sang Un Choi
- Korea Research Institute of Chemical Technology , Daejeon 34114, Republic of Korea
| | - Ki Hyun Kim
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Kang Ro Lee
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University , Suwon 16419, Republic of Korea
| |
Collapse
|
19
|
Song K, Na JY, Kim S, Kwon J. Rutin upregulates neurotrophic factors resulting in attenuation of ethanol-induced oxidative stress in HT22 hippocampal neuronal cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2117-2123. [PMID: 25251136 DOI: 10.1002/jsfa.6927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Alcoholism, which refers to the excessive consumption of alcohol, has deleterious effects on personal and social health worldwide. Oxidative stress evoked by ethanol plays an important role in the pathogenesis of neurodegenerative diseases. Rutin is a bioflavonoid that has been demonstrated to scavenge superoxide radicals. However, the effects of rutin on neuronal toxicity following ethanol-induced oxidative stress have not previously been investigated. Thus we investigated the antioxidant effect of rutin in hippocampal neuronal cells (HT22 cells) exposed to ethanol. RESULTS We found that rutin pretreatment prevented the ethanol-induced decrease in protein level expression of nerve growth factor, glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in HT22 cells. Cell viability as analyzed by the MTT method revealed a significant increase in cell viability in the rutin-treated group compared with the ethanol-only treated group. Antioxidant effect of rutin was confirmed to be due to reduction of intracellular reactive oxidative species production in ethanol-treated HT22 cells. Moreover, rutin significantly increased the level of the antioxidant glutathione, and the activities of the antioxidant enzymes superoxide dismutase and catalase. CONCLUSION These findings indicate that rutin has potential as a therapeutic agent to treat alcohol-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Kibbeum Song
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-156, Republic of Korea
| | - Ji-Young Na
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-156, Republic of Korea
| | - Sokho Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-156, Republic of Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-156, Republic of Korea
| |
Collapse
|
20
|
Venkatesan R, Ji E, Kim SY. Phytochemicals that regulate neurodegenerative disease by targeting neurotrophins: a comprehensive review. BIOMED RESEARCH INTERNATIONAL 2015; 2015:814068. [PMID: 26075266 PMCID: PMC4446472 DOI: 10.1155/2015/814068] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/17/2015] [Accepted: 04/24/2015] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), characterized by progressive dementia and deterioration of cognitive function, is an unsolved social and medical problem. Age, nutrition, and toxins are the most common causes of AD. However, currently no credible treatment is available for AD. Traditional herbs and phytochemicals may delay its onset and slow its progression and also allow recovery by targeting multiple pathological causes by antioxidative, anti-inflammatory, and antiamyloidogenic properties. They also regulate mitochondrial stress, apoptotic factors, free radical scavenging system, and neurotrophic factors. Neurotrophins such as BDNF, NGF, NT3, and NT4/5 play a vital role in neuronal and nonneuronal responses to AD. Neurotrophins depletion accelerates the progression of AD and therefore, replacing such neurotrophins may be a potential treatment for neurodegenerative disease. Here, we review the phytochemicals that mediate the signaling pathways involved in neuroprotection specifically neurotrophin-mediated activation of Trk receptors and members of p75(NTR) superfamily. We focus on representative phenolic derivatives, iridoid glycosides, terpenoids, alkaloids, and steroidal saponins as regulators of neurotrophin-mediated neuroprotection. Although these phytochemicals have attracted attention owing to their in vitro neurotrophin potentiating activity, their in vivo and clinical efficacy trials has yet to be established. Therefore, further research is necessary to prove the neuroprotective effects in preclinical models and in humans.
Collapse
Affiliation(s)
- Ramu Venkatesan
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic of Korea
| | - Eunhee Ji
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic of Korea
- Gachon Medical Research Institute, Gil Medical Center, Inchon 405-760, Republic of Korea
- Gachon Institute of Pharmaceutical Science, Gachon University, No. 191 Hambakmoe-ro, Yeonsu-gu, Incheon 406-799, Republic of Korea
| |
Collapse
|
21
|
Lim S, Moon M, Oh H, Kim HG, Kim SY, Oh MS. Ginger improves cognitive function via NGF-induced ERK/CREB activation in the hippocampus of the mouse. J Nutr Biochem 2014; 25:1058-65. [PMID: 25049196 DOI: 10.1016/j.jnutbio.2014.05.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/30/2014] [Accepted: 05/13/2014] [Indexed: 12/27/2022]
Abstract
Ginger (the rhizome of Zingiber officinale Roscoe) has been used worldwide for many centuries in cooking and for treatment of several diseases. The main pharmacological properties of ginger include anti-inflammatory, antihyperglycemic, antiarthritic, antiemetic and neuroprotective actions. Recent studies demonstrated that ginger significantly enhances cognitive function in various cognitive disorders as well as in healthy brain. However, the biochemical mechanisms underlying the ginger-mediated enhancement of cognition have not yet been studied in normal or diseased brain. In the present study, we assessed the memory-enhancing effects of dried ginger extract (GE) in a model of scopolamine-induced memory deficits and in normal animals by performing a novel object recognition test. We found that GE administration significantly improved the ability of mice to recognize novel objects, indicating improvements in learning and memory. Furthermore, to elucidate the mechanisms of GE-mediated cognitive enhancement, we focused on nerve growth factor (NGF)-induced signaling pathways. NGF enzyme-linked immunosorbent assay analysis revealed that GE administration led to elevated NGF levels in both the mouse hippocampus and rat glioma C6 cells. GE administration also resulted in phosphorylation of extracellular-signal-regulated kinase (ERK) and cyclic AMP response element-binding protein (CREB), as revealed by Western blotting analysis. Neutralization of NGF with a specific NGF antibody inhibited GE-triggered activation of ERK and CREB in the hippocampus. Also, GE treatment significantly increased pre- and postsynaptic markers, synaptophysin and PSD-95, which are related to synapse formation in the brain. These data suggest that GE has a synaptogenic effect via NGF-induced ERK/CREB activation, resulting in memory enhancement.
Collapse
Affiliation(s)
- Soonmin Lim
- Department of Life and Nanopharmaceutical Science, Graduates school and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Minho Moon
- School of Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Hyein Oh
- Department of Life and Nanopharmaceutical Science, Graduates school and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Hyo Geun Kim
- Department of Life and Nanopharmaceutical Science, Graduates school and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 406-799, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Science, Graduates school and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
22
|
Moon M, Kim HG, Choi JG, Oh H, Lee PKJ, Ha SK, Kim SY, Park Y, Huh Y, Oh MS. 6-Shogaol, an active constituent of ginger, attenuates neuroinflammation and cognitive deficits in animal models of dementia. Biochem Biophys Res Commun 2014; 449:8-13. [PMID: 24796668 DOI: 10.1016/j.bbrc.2014.04.121] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 01/24/2023]
Abstract
Recently, increased attention has been directed towards medicinal extracts as potential new drug candidates for dementia. Ginger has long been used as an important ingredient in cooking and traditional herbal medicine. In particular, ginger has been known to have disease-modifying effects in Alzheimer's disease (AD). However, there is no evidence of which constituents of ginger exhibit therapeutic effects against AD. A growing number of experimental studies suggest that 6-shogaol, a bioactive component of ginger, may play an important role as a memory-enhancing and anti-oxidant agent against neurological diseases. 6-Shogaol has also recently been shown to have anti-neuroinflammatory effects in lipopolysaccharide (LPS)-treated astrocytes and animal models of Parkinson's disease, LPS-induced inflammation and transient global ischemia. However, it is still unknown whether 6-shogaol has anti-inflammatory effects against oligomeric forms of the Aβ (AβO) in animal brains. Furthermore, the effects of 6-shogaol against memory impairment in dementia models are also yet to be investigated. In this study, we found that administration of 6-shogaol significantly reduced microgliosis and astrogliosis in intrahippocampal AβO-injected mice, ameliorated AβO and scopolamine-induced memory impairment, and elevated NGF levels and pre- and post-synaptic marker in the hippocampus. All these results suggest that 6-shogaol may play a role in inhibiting glial cell activation and reducing memory impairment in animal models of dementia.
Collapse
Affiliation(s)
- Minho Moon
- School of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea; Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - Hyo Geun Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea; Department of Life and Nanopharmaceutical Science, Graduate School and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jin Gyu Choi
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Hyein Oh
- Department of Life and Nanopharmaceutical Science, Graduate School and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Paula K J Lee
- Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - Sang Keun Ha
- Concordia International School, Shanghai 999, Mingyue Road, Jinqiao, Pudong, Shanghai 201206, China
| | - Sun Yeou Kim
- Functional Materials Research Group, Korea Food Research Institute, Gyeonggi 463-746, Republic of Korea
| | - Yongkon Park
- Functional Materials Research Group, Korea Food Research Institute, Gyeonggi 463-746, Republic of Korea
| | - Youngbuhm Huh
- School of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea; Department of Life and Nanopharmaceutical Science, Graduate School and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
23
|
R K, D M A, C N, S N W, C D. Oxidative imbalance and anxiety disorders. Curr Neuropharmacol 2014; 12:193-204. [PMID: 24669212 PMCID: PMC3964749 DOI: 10.2174/1570159x11666131120223530] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 05/15/2013] [Accepted: 11/02/2013] [Indexed: 01/22/2023] Open
Abstract
The oxidative imbalance appears to have an important role in anxiety development. Studies in both humans and animals have shown a strong correlation between anxiety and oxidative stress. In humans, for example, the increased malondialdehyde levels and discrepancies in antioxidant enzymes in erythrocytes have been observed. In animals, several studies also show that anxiety-like behavior is related to the oxidative imbalance. Moreover, anxiety-like behavior can be caused by pharmacological-induced oxidative stress. Studies using knockout or overexpression of antioxidant enzymes have shown a relationship between anxiety-like behavior and oxidative stress. Related factors of oxidative stress that could influence anxious behavior are revised, including impaired function of different mitochondrial proteins, inflammatory cytokines, and neurotrophic factors. It has been suggested that a therapy specifically focus in reducing reactive species production may have a beneficial effect in reducing anxiety. However, the neurobiological pathways underlying the effect of oxidative stress on anxiety symptoms are not fully comprehended. The challenge now is to identify the oxidative stress mechanisms likely to be involved in the induction of anxiety symptoms. Understanding these pathways could help to clarify the neurobiology of the anxiety disorder and provide tools for new discovery in therapies and preventive strategies.
Collapse
Affiliation(s)
- Krolow R
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Arcego D M
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Noschang C
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Weis S N
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Dalmaz C
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|