1
|
Yamada S, Zahra PW, Vine JH. Investigative testing of miscellaneous materials. Drug Test Anal 2025; 17:420-426. [PMID: 38853297 DOI: 10.1002/dta.3743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Affiliation(s)
- Sean Yamada
- Racing Analytical Services Limited, Flemington, Victoria, Australia
| | - Paul W Zahra
- Shimadzu Australasia, Belmont, Western Australia, Australia
| | - John H Vine
- Racing Analytical Services Limited, Flemington, Victoria, Australia
| |
Collapse
|
2
|
Rodrigues Almeida LM, Gonzaga Fernandez L. Ethnomedical uses, biocompounds and biological properties of Cereus Jamacaru DC. (Cactaceae): a comprehensive review. Nat Prod Res 2025; 39:961-975. [PMID: 38534057 DOI: 10.1080/14786419.2024.2330541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Cereus jamacaru, popularly known as mandacaru, is a Cacactacea native to the Caatinga of Brazil, but it is distributed in arid and semiarid regions worldwide. This plant is used for various purposes, such as food, animal fodder, civil construction, and as an ornamental and medicinal plant. Traditional medicine uses the cladodes, roots, and seeds of C. jamacaru to treat various diseases. This review discusses the ethnobotanical uses, phytochemical composition, and biological properties of C. jamacaru. The data demonstrate that C. jamacaru produces a wide range of secondary metabolites involved in the defense mechanism against biotic agents and abiotic stresses. Carbohydrate polymers, phenolic compounds, terpenes, and bioactive nitrogen compounds, have been identified and linked to this plant's biological properties. The present review will support future scientific research in identifying new bioproducts and demonstrating the potential of C. jamacaru as a food and medicinal plant.
Collapse
Affiliation(s)
- Leila Magda Rodrigues Almeida
- Laboratory of Biochemistry, Biotechnology, and Bioproducts, Department of Biochemistry, and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Luzimar Gonzaga Fernandez
- Laboratory of Biochemistry, Biotechnology, and Bioproducts, Department of Biochemistry, and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
3
|
Liu S, Li S, Cheng S, Liu M, Li J, Li S, Li X, Zhang L, Jian F. Effect of Artemisia annua on anticoccidial action, intestinal microbiota and metabolites of Hu lambs. BMC Vet Res 2025; 21:41. [PMID: 39885481 PMCID: PMC11783854 DOI: 10.1186/s12917-025-04493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Coccidia are among the primary pathogens causing diarrhea and even fatalities in lambs. With the increasing use of chemical drugs to treat coccidiosis, the problem of drug resistance is becoming more and more threatening. Therefore, there is an urgent need to identify novel alternative drugs for the treatment of the lamb coccidia. In this study, the effect of different doses and extraction methods of Artemisia annua (A. annua) on anticoccidial activity and growth performance was assessed by oocysts output (OPG), fecal index, average daily gain (ADG) and the new production value of experimental lambs. High-throughput sequencing technology was employed to investigate the effect of A. annua on the intestinal microbiota and metabolites of lambs afflicted with coccidiosis. RESULTS The results revealed that all A. annua treatment groups exhibited good anticoccidial effects. According to the soft stool index and ADG analysis, the Low-dose A. annua (AL) and A. annua alcohol extract (AA) groups demonstrated a better overall effect. The microbiota and metabolites of lambs changed after A. annua was administered. Unclassified_Muribaculaceae exhibited a significant positive correlation with ADG (P < 0.05) and a negative correlation with OPG, although the latter was not statistically significant (P > 0.05). Alistipes displayed a significant negative correlation with ADG (P < 0.05), and a positive correlation with OPG (P > 0.05). Additionally, UCG 005 exhibited a highly significant negative correlation with OPG (P < 0.01). CONCLUSION The above results demonstrated that AL and AA groups had more effective anticoccidial action. Unclassified_Muribaculaceae could be employed as a suitable probiotic to enhance weight gain in lambs, while UCG-005 could inhibit intestinal Eimeria colonization in lambs. Alistipes may serve as a biomarker for predicting the risk of intestinal coccidia outbreaks in lambs. A. annua induced significant changes in gut microbiota, accompanied by corresponding changes in metabolites. These differences in gut microbiota and metabolites provide valuable insights for subsequent research on the mechanisms underlying anticoccidial action.
Collapse
Affiliation(s)
- Shuaiqi Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan Province, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou , China
| | - Shiheng Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan Province, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou , China
| | - Shuqi Cheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan Province, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou , China
| | - Manyu Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan Province, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou , China
| | - Jing Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan Province, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou , China
| | - Senyang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan Province, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou , China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan Province, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou , China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan Province, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou , China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan Province, China.
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou , China.
| |
Collapse
|
4
|
Bai Y, He J, Yao Y, An L, Cui Y, Li X, Yao X, Xiao S, Wu K. Identification and functional analysis of long non-coding RNA (lncRNA) and metabolites response to mowing in hulless barley (Hordeum vulgare L. var. nudum hook. f.). BMC PLANT BIOLOGY 2024; 24:666. [PMID: 38997634 PMCID: PMC11241897 DOI: 10.1186/s12870-024-05334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Hulless barley (Hordeum vulgare L. var. nudum Hook. f.) is a significant cereal crop and a substantial source of forage for livestock. Long non-coding RNAs (lncRNAs) and metabolites play crucial roles in the nutrient accumulation and regeneration of hulless barley plants following mowing. The study aimed to identify differentially expressed lncRNAs and metabolites in hulless barley plants by analyzing transcriptomic and metabolomic datasets at 2 h, 24 h, and 72 h following mowing. RESULTS The study revealed that 190, 90, and 438 lncRNA genes were differentially expressed at the 2 h, 24 h, and 72 h time points compared to the non-mowing control. We identified 14 lncRNA genes-11 downregulated and 3 upregulated-showing consistently significant differential expression across all time points after mowing. These differentially expressed lncRNAs target genes involved in critical processes such as cytokinin signaling, cell wall degradation, storage protein accumulation, and biomass increase. In addition, we identified ten differentially expressed metabolites targeting diverse metabolic pathways, including plant hormones, alkaloids, and flavonoids, before and after mowing at various time points. Endogenous hormone analysis revealed that cytokinin most likely played a crucial role in the regeneration of hulless barley after mowing. CONCLUSIONS This study created a comprehensive dataset of lncRNAs, metabolites, and hormones in hulless barley after mowing, revealing valuable insights into the functional characteristics of lncRNAs, metabolites, and hormones in regulating plant regeneration. The results indicated that cytokinin plays a significant role in facilitating the regeneration process of hulless barley after mowing. This comprehensive dataset is an invaluable resource for better understanding the complex mechanisms that underlie plant regeneration, with significant implications for crop improvement.
Collapse
Affiliation(s)
- Yixiong Bai
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai Province, 810016, China
| | - Jiaqi He
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai Province, 810016, China
| | - Youhua Yao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai Province, 810016, China
| | - Likun An
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai Province, 810016, China
| | - Yongmei Cui
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai Province, 810016, China
| | - Xin Li
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai Province, 810016, China
| | - Xiaohua Yao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai Province, 810016, China
| | - Shanshan Xiao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai Province, 810016, China
| | - Kunlun Wu
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai Province, 810016, China.
| |
Collapse
|
5
|
Tang C, Li X, Wang T, Wang J, Xiao M, He M, Chang X, Fan Y, Li Y. Characterization of Metabolite Landscape Distinguishes Medicinal Fungus Cordyceps sinensis and other Cordyceps by UHPLC-Q Exactive HF-X Untargeted Metabolomics. Molecules 2023; 28:7745. [PMID: 38067475 PMCID: PMC10708286 DOI: 10.3390/molecules28237745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Cordyceps represent a valuable class of medicinal fungi with potential utilization. The overexploitation and resource scarcity of Cordyceps sinensis (CS) have led to the emergence of Cordyceps such as Cordyceps militaris (CM) and Cordyceps cicadae (CC) as substitutes. The medicinal value of CS is often considered superior to other Cordyceps, potentially owing to differences in active ingredients. This study aimed to evaluate the differences in the composition and abundance of the primary and secondary metabolites of CS and its substitutes by untargeted metabolomics. A total of 4671 metabolites from 18 superclasses were detected. CS and its substitutes were rich in amino acids, lipids, organic acids, and their derivatives. We statistically analyzed the metabolites and found a total of 285 differential metabolites (3'-Adenylic acid, O-Adipoylcarnitine, L-Dopachrome, etc.) between CS and CC, CS and CM, and CM and CC, which are potential biomarkers. L-glutamate and glycerophospholipids were differential metabolites. A KEGG enrichment analysis indicated that the tyrosine metabolic pathway and tryptophan metabolism pathway are the most differentially expressed pathways among the three Cordyceps. In contrast, CS was enriched in a higher abundance of most lipid metabolites when compared to CM and CC, which may be an indispensable foundation for the pharmacological functions of CS. In conclusion, systematic, untargeted metabolomics analyses for CS and other Cordyceps have delivered a precious resource for insights into metabolite landscapes and predicted potential components of disease therapeutics.
Collapse
Affiliation(s)
- Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Jie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China;
| | - Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Xiyun Chang
- Qinghai Institute of Health Sciences, Xining 810000, China;
| | - Yuejun Fan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| |
Collapse
|
6
|
Ultrasensitive quantification of trace amines based on N-phosphorylation labeling chip 2D LC-QQQ/MS. J Pharm Anal 2023; 13:315-322. [PMID: 37102107 PMCID: PMC10123937 DOI: 10.1016/j.jpha.2023.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/29/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Trace amines (TAs) are metabolically related to catecholamine and associated with cancer and neurological disorders. Comprehensive measurement of TAs is essential for understanding pathological processes and providing proper drug intervention. However, the trace amounts and chemical instability of TAs challenge quantification. Here, diisopropyl phosphite coupled with chip two-dimensional (2D) liquid chromatography tandem triple-quadrupole mass spectrometry (LC-QQQ/MS) was developed to simultaneously determine TAs and associated metabolites. The results showed that the sensitivities of TAs increased up to 5520 times compared with those using nonderivatized LC-QQQ/MS. This sensitive method was utilized to investigate their alterations in hepatoma cells after treatment with sorafenib. The significantly altered TAs and associated metabolites suggested that phenylalanine and tyrosine metabolic pathways were related to sorafenib treatment in Hep3B cells. This sensitive method has great potential to elucidate the mechanism and diagnose diseases considering that an increasing number of physiological functions of TAs have been discovered in recent decades.
Collapse
|
7
|
Padró J, De Panis DN, Luisi P, Dopazo H, Szajnman S, Hasson E, Soto IM. Ortholog genes from cactophilic Drosophila provide insight into human adaptation to hallucinogenic cacti. Sci Rep 2022; 12:13180. [PMID: 35915153 PMCID: PMC9343604 DOI: 10.1038/s41598-022-17118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Cultural transformations of lifestyles and dietary practices have been key drivers of human evolution. However, while most of the evidence of genomic adaptations is related to the hunter-gatherer transition to agricultural societies, little is known on the influence of other major cultural manifestations. Shamanism is considered the oldest religion that predominated throughout most of human prehistory and still prevails in many indigenous populations. Several lines of evidence from ethno-archeological studies have demonstrated the continuity and importance of psychoactive plants in South American cultures. However, despite the well-known importance of secondary metabolites in human health, little is known about its role in the evolution of ethnic differences. Herein, we identified candidate genes of adaptation to hallucinogenic cactus in Native Andean populations with a long history of shamanic practices. We used genome-wide expression data from the cactophilic fly Drosophila buzzatii exposed to a hallucinogenic columnar cactus, also consumed by humans, to identify ortholog genes exhibiting adaptive footprints of alkaloid tolerance. Genomic analyses in human populations revealed a suite of ortholog genes evolving under recent positive selection in indigenous populations of the Central Andes. Our results provide evidence of selection in genetic variants related to alkaloids toxicity, xenobiotic metabolism, and neuronal plasticity in Aymara and Quechua populations, suggesting a possible process of gene-culture coevolution driven by religious practices.
Collapse
Affiliation(s)
- Julian Padró
- INIBIOMA-CONICET, Universidad Nacional del Comahue, Quintral 1250, R8400FRF, San Carlos de Bariloche, Argentina.
| | - Diego N De Panis
- IEGEBA-CONICET, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina
| | - Pierre Luisi
- Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba (FFyH-UNC), Córdoba, Argentina.,Microbial Paleogenomics Unit, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Hernan Dopazo
- IEGEBA-CONICET, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina
| | - Sergio Szajnman
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina
| | - Esteban Hasson
- IEGEBA-CONICET, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina
| | - Ignacio M Soto
- IEGEBA-CONICET, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
8
|
Carpéné C, Viana P, Fontaine J, Laurell H, Grolleau JL. Multiple Direct Effects of the Dietary Protoalkaloid N-Methyltyramine in Human Adipocytes. Nutrients 2022; 14:nu14153118. [PMID: 35956295 PMCID: PMC9370673 DOI: 10.3390/nu14153118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
Dietary amines have been the subject of a novel interest in nutrition since the discovery of trace amine-associated receptors (TAARs), especially TAAR-1, which recognizes tyramine, phenethylamine, tryptamine, octopamine, N-methyltyramine (NMT), synephrine, amphetamine and related derivatives. Alongside the psychostimulant properties of TAAR-1 ligands, it is their ephedrine-like action on weight loss that drives their current consumption via dietary supplements advertised for ‘fat-burning’ properties. Among these trace amines, tyramine has recently been described, at high doses, to exhibit an antilipolytic action and activation of glucose transport in human adipocytes, i.e., effects that are facilitating lipid storage rather than mobilization. Because of its close structural similarity to tyramine, NMT actions on human adipocytes therefore must to be reevaluated. To this aim, we studied the lipolytic and antilipolytic properties of NMT together with its interplay with insulin stimulation of glucose transport along with amine oxidase activities in adipose cells obtained from women undergoing abdominal surgery. NMT activated 2-deoxyglucose uptake when incubated with freshly isolated adipocytes at 0.01–1 mM, reaching one-third of the maximal stimulation by insulin. However, when combined with insulin, NMT limited by half the action of the lipogenic hormone on glucose transport. The NMT-induced stimulation of hexose uptake was sensitive to inhibitors of monoamine oxidases (MAO) and of semicarbazide-sensitive amine oxidase (SSAO), as was the case for tyramine and benzylamine. All three amines inhibited isoprenaline-induced lipolysis to a greater extent than insulin, while they were poorly lipolytic on their own. All three amines—but not isoprenaline—interacted with MAO or SSAO. Due to these multiple effects on human adipocytes, NMT cannot be considered as a direct lipolytic agent, potentially able to improve lipid mobilization and fat oxidation in consumers of NMT-containing dietary supplements.
Collapse
Affiliation(s)
- Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1297), I2MC, CEDEX 4, 31432 Toulouse, France; (P.V.); (J.F.); (H.L.)
- CHU Rangueil, Université Paul Sabatier, I2MC, CEDEX 4, 31432 Toulouse, France
- Correspondence:
| | - Pénélope Viana
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1297), I2MC, CEDEX 4, 31432 Toulouse, France; (P.V.); (J.F.); (H.L.)
- CHU Rangueil, Université Paul Sabatier, I2MC, CEDEX 4, 31432 Toulouse, France
| | - Jessica Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1297), I2MC, CEDEX 4, 31432 Toulouse, France; (P.V.); (J.F.); (H.L.)
- CHU Rangueil, Université Paul Sabatier, I2MC, CEDEX 4, 31432 Toulouse, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1297), I2MC, CEDEX 4, 31432 Toulouse, France; (P.V.); (J.F.); (H.L.)
- CHU Rangueil, Université Paul Sabatier, I2MC, CEDEX 4, 31432 Toulouse, France
| | | |
Collapse
|
9
|
Drabo MS, Shumoy H, Savadogo A, Raes K. Inventory of human-edible products from native Acacia sensu lato in Africa, America, and Asia: Spotlight on Senegalia seeds, overlooked wild legumes in the arid tropics. Food Res Int 2022; 159:111596. [DOI: 10.1016/j.foodres.2022.111596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/11/2022] [Accepted: 06/28/2022] [Indexed: 01/12/2023]
|
10
|
Stohs SJ, Shara M, Ray SD. p-Synephrine, ephedrine, p-octopamine and m-synephrine: Comparative mechanistic, physiological and pharmacological properties. Phytother Res 2020; 34:1838-1846. [PMID: 32101364 PMCID: PMC7496387 DOI: 10.1002/ptr.6649] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/23/2023]
Abstract
Confusion and misunderstanding exist regarding the lack of cardiovascular and other adverse health effects of p-synephrine and p-octopamine relative to ephedrine and m-synephrine (phenylephrine) which are known for their effects on the cardiovascular system. These four molecules have some structural similarities. However, the structural and stereochemical differences of p-synephrine and p-octopamine as related to ephedrine and m-synephrine result in markedly different adrenergic receptor binding characteristics as well as other mechanistic differences which are reviewed. p-Synephrine and p-octopamine exhibit little binding to α-1, α-2, β-1 and β-2 adrenergic receptors, nor are they known to exhibit indirect actions leading to an increase in available levels of endogenous norepinephrine and epinephrine at commonly used doses. The relative absence of these mechanistic actions provides an explanation for their lack of production of cardiovascular effects at commonly used oral doses as compared to ephedrine and m-synephrine. As a consequence, the effects of ephedrine and m-synephrine cannot be directly extrapolated to p-synephrine and p-octopamine which exhibit significantly different pharmacokinetic, and physiological/pharmacological properties. These conclusions are supported by human, animal and in vitro studies that are discussed.
Collapse
Affiliation(s)
- Sidney J Stohs
- School of Pharmacy and Health Professions, Creighton University Medical Center, Omaha, Nebraska.,Department of Pharmaceutical & Biomedical Sciences, Kitsto Consulting LLC, Frisco, Texas
| | - Mohd Shara
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | |
Collapse
|
11
|
Ohta H, Murakami Y, Takebe Y, Murasaki K, Oshima K, Yoshihara H, Morimura S. N-Methyltyramine, a Gastrin-releasing Factor in Beer, and Structurally Related Compounds as Agonists for Human Trace Amine-associated Receptor 1. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hiroto Ohta
- Graduate School of Science and Technology, Kumamoto University
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University
| | - Yuka Murakami
- Graduate School of Science and Technology, Kumamoto University
| | - Youhei Takebe
- Graduate School of Science and Technology, Kumamoto University
| | - Kaori Murasaki
- Graduate School of Science and Technology, Kumamoto University
| | - Kenji Oshima
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College
| | - Hiroshi Yoshihara
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College
| | | |
Collapse
|
12
|
Biesterbos JWH, Sijm DTHM, van Dam R, Mol HGJ. A health risk for consumers: the presence of adulterated food supplements in the Netherlands. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1273-1288. [DOI: 10.1080/19440049.2019.1633020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jacqueline W. H. Biesterbos
- Office for Risk Assessment & Research, Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, The Netherlands
| | - Dick T. H. M. Sijm
- Office for Risk Assessment & Research, Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, The Netherlands
| | - Ruud van Dam
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, Wageningen, The Netherlands
| | - Hans G. J. Mol
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
13
|
Leroux M, Lemery T, Boulet N, Briot A, Zakaroff A, Bouloumié A, Andrade F, Pérez-Matute P, Arbones-Mainar JM, Carpéné C. Effects of the amino acid derivatives, β-hydroxy-β-methylbutyrate, taurine, and N-methyltyramine, on triacylglycerol breakdown in fat cells. J Physiol Biochem 2019; 75:263-273. [PMID: 30919256 DOI: 10.1007/s13105-019-00677-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 01/28/2023]
Abstract
Various amino acid (AA) metabolites are used as supplements to facilitate metabolic control and enhance responsiveness of insulin-sensitive tissues. β-hydroxy-β-methylbutyrate (HMB) is a leucine metabolite proposed to prevent muscle wasting and to mitigate insulin resistance. Taurine, commonly added to energizing drinks, is a metabolite of methionine and cysteine present in bile juice, and proposed to be involved in lipid digestion and to be pro-lipolytic in adipocytes. N-methyltyramine (NMT) is a phenylalanine metabolite found in orange juices at 0.1-3 ppm while its effects on lipid mobilization remain controversial. Here, the putative lipolytic effects of these AA metabolites were studied and it was tested whether they could enhance insulin antilipolytic response in adipocytes. Release of glycerol and non-esterified fatty acids (NEFAs) was measured after a 2-h incubation of adipocytes obtained from control and diet-induced obese mice or from obese patients. In mouse, none of the tested AA derivatives was lipolytic from 1 μM to 1 mM. These compounds did not improve insulin antilipolytic effect or isoprenaline lipolytic action, except for 1 mM NMT that impaired triacylglycerol breakdown in obese mice. In human adipocytes, HMB and taurine were not lipolytic, while NMT weakly activated glycerol and NEFA release at 1 mM. However, 100 μM NMT impaired isoprenaline-stimulated lipolysis in a manner that was hardly added to insulin antilipolytic effect. Since none of these AA derivatives acutely helped or replaced insulin antilipolytic effect in adipocytes, the present in vitro observations do not support their proposed insulin-sensitizing properties. Moreover, NMT, HMB, and taurine were not notably lipolytic.
Collapse
Affiliation(s)
- Mélanie Leroux
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Tristan Lemery
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Nathalie Boulet
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Anaïs Briot
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Alexia Zakaroff
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Anne Bouloumié
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Fernando Andrade
- Metabolomics Platform, BioCruces Bizkaia Health Research Institute, linked clinical group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain
| | - Patricia Pérez-Matute
- Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria (IIS) Aragón. Zaragoza, Spain. CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Christian Carpéné
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France. .,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France.
| |
Collapse
|
14
|
Ni J, Guo Y, Chang N, Cheng D, Yan M, Jiang M, Bai G. Effect of N-methyltyramine on the regulation of adrenergic receptors via enzymatic epinephrine synthesis for the treatment of gastrointestinal disorders. Biomed Pharmacother 2019; 111:1393-1398. [PMID: 30841454 DOI: 10.1016/j.biopha.2018.12.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/25/2018] [Accepted: 12/31/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Citri Reticulatae Pericarpium (CRP), Aurantii Fructus Immaturus (AFI) and Aurantii Fructus (AF) are all important Citrus species used in traditional Chinese medicines (TCMs) for the treatment of gastrointestinal disorders. Although they have been used since ancient times and are still in use today, the mechanistic basis for their regulation of adrenergic receptors (ARs) is still not clear. PURPOSE In this study, we aimed to determine the active components and mechanisms of action of CRP, AFI and AF in treating gastrointestinal disorders related to ARs. METHODS First, the phenethylamine alkaloid components of CRP, AFI and AF were identified and compared across 30 samples of three Citrus species by UPLC-Q/TOF-MS in combination with content difference analysis. Second, the effect of the main active alkaloid component on AR-based gastrointestinal disorders was investigated by an in vivo small intestinal propulsive test and an in vitro relaxing small intestinal smooth muscle activity test. The mechanism of AR regulation of the active alkaloid was further studied by evaluating its effect on relaxing small intestinal smooth muscle in the presence of an inhibitor. Lastly, the enzymes, which played an important role in epinephrine synthesis and AR regulation, were detected by immunohistochemistry. RESULTS Three phenethylamine AR regulators (N-methyltyramine, synephrine and hordenine) in CRP, AFI and AF were characterized. It was found that N-methyltyramine could relax mouse small intestinal smooth muscle and inhibit small intestinal propulsion. The effect of N-methyltyramine on relaxing small intestinal smooth muscle could be inhibited by a-methyl-l-tyrosine. The enzymes related epinephrine synthesis and AR function were found in the mouse small intestine. The biotransformation process that converts N-methyltyramine to epinephrine was determined. CONCLUSION The treatment of gastrointestinal disorders of CRP, AFI and AF is associated with their alkaloid component N-methyltyramine via the regulation of ARs, and the mechanism is considered to be the biotransformation of N-methyltyramine to epinephrine by serial synthase, which takes place at the nerves cells in small intestine.
Collapse
Affiliation(s)
- Jianan Ni
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China
| | - Yingying Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China
| | - Nianwei Chang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China
| | - Dandan Cheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China
| | - Menglin Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.
| |
Collapse
|
15
|
Genotoxicity and pharmacokinetic characterization of Cereus jamacaru ethanolic extract in rats. Biosci Rep 2019; 39:BSR20180672. [PMID: 30563925 PMCID: PMC6341123 DOI: 10.1042/bsr20180672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 12/02/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
The effect of Cereus jamacaru ethanolic extract in rats was analyzed using genotoxicity assays and liver ABCB1 and CYP2D4 gene expression. The lyophilized extract of C. jamacaru cladodes was analyzed with LC-MS/MS. Male Wistar rats (n=36) were equally distributed into six groups that did (+) or did not (-) receive cyclophosphamide treatments: Control (-); Control (+); EXP 1 (-), and EXP 1 (+), both treated with 210 mg/kg of ethanolic extract; and EXP 2 (-) and EXP 2 (+), both treated with 420 mg/kg of ethanolic extract. After 30 d of treatment, body weight and food and water intake were monitored. Right femur of the rats and spinal canal fluid were harvested and used for genotoxicity assays, and the liver samples were used for gene expression studies. The phytochemical analysis identified novel compounds. Animals treated with C. jamacaru showed lower body weight and food ingestion compared to controls (P<0.05). The genotoxicity assay showed an absence of ethanolic extract cytotoxicity. CYP2D4 expression was higher in EXP 2 groups compared with EXP 1 (-) group (P<0.05). ABCB1A expression was higher in negative groups compared with the positive groups. These results indicated a new phytochemical characterization of C. jamacaru and its effect on food ingestion and body weight gain. Moreover, the genotoxicity assay suggested that C. jamacaru ethanolic extract treatment presents significant intrinsic genotoxic potential and the enhanced expression of ABCB1 and CYP2D4 on C. jamacaru extract treatment suggests a role of the efflux transporter and microsomal enzyme, respectively, in C. jamacaru pharmacokinetics.
Collapse
|
16
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
17
|
Carpéné C, Mercader J, Le Gonidec S, Schaak S, Mialet‐Perez J, Zakaroff‐Girard A, Galitzky J. Body fat reduction without cardiovascular changes in mice after oral treatment with the MAO inhibitor phenelzine. Br J Pharmacol 2018; 175:2428-2440. [PMID: 29582416 PMCID: PMC5980542 DOI: 10.1111/bph.14211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Phenelzine is an antidepressant drug known to increase the risk of hypertensive crisis when dietary tyramine is not restricted. However, this MAO inhibitor inhibits other enzymes not limited to the nervous system. Here we investigated if its antiadipogenic and antilipogenic effects in cultured adipocytes could contribute to decreased body fat in vivo, without unwanted hypertensive or cardiovascular effects. EXPERIMENTAL APPROACH Mice were fed a standard chow and given 0.028% phenelzine in drinking water for 12 weeks. Body composition was determined by NMR. Cardiovascular dysfunction was assessed by heart rate variability analyses and by evaluation of cardiac oxidative stress markers. MAO activity, hydrogen peroxide release and triacylglycerol turnover were assayed in white adipose tissue (WAT), alongside determination of glucose and lipid circulating levels. KEY RESULTS Phenelzine-treated mice exhibited lower body fat content, subcutaneous WAT mass and lipid content in skeletal muscles than control, without decreased body weight gain or food consumption. A modest alteration of cardiac sympathovagal balance occurred without depressed aconitase activity. In WAT, phenelzine impaired the lipogenic but not the antilipolytic actions of insulin, MAO activity and hydrogen peroxide release. Phenelzine treatment lowered non-fasting blood glucose and phosphoenolpyruvate carboxykinase expression. In vitro, high doses of phenelzine decreased both lipolytic and lipogenic responses in mouse adipocytes. CONCLUSION AND IMPLICATIONS As phenelzine reduced body fat content without affecting cardiovascular function in mice, it may be of benefit in the treatment of obesity-associated complications, with the precautions of use recommended for antidepressant therapy.
Collapse
Affiliation(s)
- Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1048) and Université Paul SabatierToulouse Cedex 4France
| | - Josep Mercader
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1048) and Université Paul SabatierToulouse Cedex 4France
| | - Sophie Le Gonidec
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1048) and Université Paul SabatierToulouse Cedex 4France
| | - Stéphane Schaak
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1048) and Université Paul SabatierToulouse Cedex 4France
| | - Jeanne Mialet‐Perez
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1048) and Université Paul SabatierToulouse Cedex 4France
| | - Alexia Zakaroff‐Girard
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1048) and Université Paul SabatierToulouse Cedex 4France
| | - Jean Galitzky
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1048) and Université Paul SabatierToulouse Cedex 4France
| |
Collapse
|
18
|
Stohs SJ. Safety, Efficacy, and Mechanistic Studies Regarding Citrus aurantium (Bitter Orange) Extract and p-Synephrine. Phytother Res 2017; 31:1463-1474. [PMID: 28752649 PMCID: PMC5655712 DOI: 10.1002/ptr.5879] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/21/2017] [Accepted: 07/01/2017] [Indexed: 12/25/2022]
Abstract
Citrus aurantium L. (bitter orange) extracts that contain p-synephrine as the primary protoalkaloid are widely used for weight loss/weight management, sports performance, appetite control, energy, and mental focus and cognition. Questions have been raised about the safety of p-synephrine because it has some structural similarity to ephedrine. This review focuses on current human, animal, in vitro, and mechanistic studies that address the safety, efficacy, and mechanisms of action of bitter orange extracts and p-synephrine. Numerous studies have been conducted with respect to p-synephrine and bitter orange extract because ephedra and ephedrine were banned from use in dietary supplements in 2004. Approximately 30 human studies indicate that p-synephrine and bitter orange extracts do not result in cardiovascular effects and do not act as stimulants at commonly used doses. Mechanistic studies suggest that p-synephrine exerts its effects through multiple actions, which are discussed. Because p-synephrine exhibits greater adrenergic receptor binding in rodents than humans, data from animals cannot be directly extrapolated to humans. This review, as well as several other assessments published in recent years, has concluded that bitter orange extract and p-synephrine are safe for use in dietary supplements and foods at the commonly used doses. Copyright © 2017 The Authors Phytotherapy Research Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Sidney J. Stohs
- Creighton University Medical CenterKitsto Consulting LLCFriscoTXUSA
| |
Collapse
|
19
|
Servillo L, Castaldo D, Giovane A, Casale R, D'Onofrio N, Cautela D, Balestrieri ML. Tyramine Pathways in Citrus Plant Defense: Glycoconjugates of Tyramine and Its N-Methylated Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:892-899. [PMID: 28117581 DOI: 10.1021/acs.jafc.6b04423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glucosylated forms of tyramine and some of its N-methylated derivatives are here reported for the first time to occur in Citrus genus plants. The compounds tyramine-O-β-d-glucoside, N-methyltyramine-O-β-d-glucoside, and N,N-dimethyltyramine-O-β-d-glucoside were detected in juice and leaves of sweet orange, bitter orange, bergamot, citron, lemon, mandarin, and pomelo. The compounds were identified by mass spectrometric analysis, enzymatic synthesis, and comparison with extracts of Stapelia hirsuta L., a plant belonging to the Apocynaceae family in which N,N-dimethyltyramine-O-β-d-glucoside was identified by others. Interestingly, in Stapelia hirsuta we discovered also tyramine-O-β-d-glucoside, N-methyltyramine-O-β-d-glucoside, and the tyramine metabolite, N,N,N-trimethyltyramine-O-β-glucoside. However, the latter tyramine metabolite, never described before, was not detected in any of the Citrus plants included in this study. The presence of N-methylated tyramine derivatives and their glucosylated forms in Citrus plants, together with octopamine and synephrine, also deriving from tyramine, supports the hypothesis of specific biosynthetic pathways of adrenergic compounds aimed to defend against biotic stress.
Collapse
Affiliation(s)
- Luigi Servillo
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli" , via L. De Crecchio 7, 80138, Naples, Italy
| | - Domenico Castaldo
- Stazione Sperimentale per le Industrie delle Essenze e dei derivati dagli Agrumi, Azienda Speciale della Camera di Commercio di Reggio Calabria , Via Generale Tommasini 2, 89127 Reggio Calabria, Italy
- Ministero dello Sviluppo Economico , Via Molise 2, Roma, Italy
| | - Alfonso Giovane
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli" , via L. De Crecchio 7, 80138, Naples, Italy
| | - Rosario Casale
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli" , via L. De Crecchio 7, 80138, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli" , via L. De Crecchio 7, 80138, Naples, Italy
| | - Domenico Cautela
- Stazione Sperimentale per le Industrie delle Essenze e dei derivati dagli Agrumi, Azienda Speciale della Camera di Commercio di Reggio Calabria , Via Generale Tommasini 2, 89127 Reggio Calabria, Italy
| | - Maria Luisa Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli" , via L. De Crecchio 7, 80138, Naples, Italy
| |
Collapse
|
20
|
Les F, Iffiú-Soltész Z, Mercarder J, Carpéné C. Tyramine activates lipid accumulation in rat adipocytes: influences of <em>in vitro</em> and <em>in vivo</em> administration. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
High intake of dietary tyramine does not deteriorate glucose handling and does not cause adverse cardiovascular effects in mice. J Physiol Biochem 2015; 72:539-53. [DOI: 10.1007/s13105-015-0456-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/26/2015] [Indexed: 01/31/2023]
|