1
|
Li H, Zhang Y, Zhang W, Sun C, Huang L, Dong Y, Yang Y, Li H, Zheng H, Tao J. Unravelling the gene regulatory network linking red leaf and red flesh traits in teinturier grape. JOURNAL OF PLANT PHYSIOLOGY 2025; 308:154488. [PMID: 40158233 DOI: 10.1016/j.jplph.2025.154488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Despite the extensive research conducted on grape anthocyanins, previous studies have predominantly focused on grape skin colour changes, with limited research on flesh colour and leaf colour. In this study, we utilised the superior line 'Zhongshan 151' strain (red flesh and red leaves) as a target and identified that the primary driving force for the transition of leaf colour from green to red was the accumulation of anthocyanins. The study identified a candidate gene, VvMYBA6, and determined that the encoded protein is located in the nucleus and possesses transcriptional activation activity. Subsequent experiments revealed that VvMYBA6 significantly promoted anthocyanin accumulation in tobacco through its overexpression. Further mechanistic investigations elucidated the interaction of VvMYBA6 with the VvMYC1 protein, which activates the expression of VvUFGT, thereby promoting anthocyanin accumulation. Furthermore, an interaction between VvMYBA1 and VvMYC1 was identified in leaves, which is consistent with the mechanism of flesh colour regulation in red-fleshed grapes and affects anthocyanin accumulation by regulating the expression of VvUFGT. The interaction between VvMYBA1 and VvMYBA6 was further verified by yeast two-hybrid (Y2H) and pull-down experiments. This finding indicates that the interaction between VvMYBA6, VvMYBA1 and VvMYC1 plays a pivotal role in the regulation of anthocyanin synthesis, which may significantly impact the development of fruit colour in teinturier grapes.
Collapse
Affiliation(s)
- Haoran Li
- Sanya Research Institute, Nanjing Agricultural University, Sanya, 572000, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Zhang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Chenxu Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liyuan Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaxin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Zheng
- Sanya Research Institute, Nanjing Agricultural University, Sanya, 572000, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Tao
- Sanya Research Institute, Nanjing Agricultural University, Sanya, 572000, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| |
Collapse
|
2
|
Ishihara H, Alegre S, Pascual J, Trotta A, Yang W, Yang B, Seyednasrollah F, Burow M, Kangasjärvi S. Growth conditions trigger genotype-specific metabolic responses that affect the nutritional quality of kale cultivars. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1427-1445. [PMID: 38630600 PMCID: PMC11906305 DOI: 10.1093/jxb/erae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Kales (Brassica oleracea convar. acephala) are fast-growing, nutritious leafy vegetables ideal for year-round indoor farming. However, selection of the best cultivars for growth under artificial lighting necessitates a deeper understanding of leaf metabolism in different kale types. Here we examined a curly-leaved cultivar, Half Tall, and a lacinato-type cultivar, Black Magic, under moderate light (130 µmol photons m-2 s-1/22 °C) and high light (800 µmol photons m-2 s-1/26 °C) conditions. These conditions induced genotype-dependent differences in nutritionally important metabolites, especially anthocyanins and glucosinolates (GSLs), in kale cultivars. In the pale green Half Tall, growth under high light conditions did not induce changes in either pigmentation or total GSL content. In contrast, the purple pigmentation of Black Magic intensified due to increased anthocyanin accumulation. Black Magic showed reduced contents of indole GSLs and increased contents of aliphatic GSLs under high light conditions, with notable cultivar-specific adjustments in individual GSL species. Correlation analysis of metabolite profiles suggested cultivar-specific metabolic interplay between serine biosynthesis and the production of indole GSLs. RNA sequencing identified candidate genes encoding metabolic enzymes and regulatory components behind anthocyanin and GSL biosynthesis. These findings improve our understanding of leaf metabolism and its effects on the nutritional quality of kale cultivars.
Collapse
Affiliation(s)
- Hirofumi Ishihara
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, 00014 University of Helsinki, Helsinki, Finland
| | - Sara Alegre
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014, Turku, Finland
| | - Jesús Pascual
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014, Turku, Finland
| | - Andrea Trotta
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014, Turku, Finland
- Institute of Bioscience and BioResources (IBBR), National Research Council of Italy (CNR), via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Wei Yang
- Food Sciences, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Fatemeh Seyednasrollah
- Institute of Biotechnology, HILIFE – Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Saijaliisa Kangasjärvi
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, 00014 University of Helsinki, Helsinki, Finland
- Faculty of Agriculture and Forestry, Department of Agricultural Sciences, 00014 University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Shao Q, Chen M, Cheng S, Lin H, Lin B, Lin H, Liu J, Zhu H. Preliminary Analysis of the Formation Mechanism of Floret Color in Broccoli ( Brassica oleracea L var. italica) Based on Transcriptomics and Targeted Metabolomics. PLANTS (BASEL, SWITZERLAND) 2025; 14:849. [PMID: 40265788 PMCID: PMC11945052 DOI: 10.3390/plants14060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 04/24/2025]
Abstract
Floret color is a crucial phenotypic trait in broccoli, serving as an indicator of maturity and determining its market value. However, the mechanisms underlying color variation remain unclear. In this study, six broccoli varieties with different floret colors at harvest were chosen as materials. The color difference and pigment content of florets were measured, and a combined analysis of anthocyanin-targeted metabolome and transcriptome was conducted. Our findings revealed that chlorophyll a primarily influences green, yellow-green, and light green coloration, while the wax content may contribute to gray-green coloration. The blue-green and dark blue-green coloration are regulated by both chlorophyll a and anthocyanins. Targeted metabolomics identified five anthocyanin compounds, with peonidin-3-O-glucoside as a key metabolite for blue-green coloration and delphinidin-3-O-glucoside-5-O-galactoside and peonidin-3,5-O-diglucoside for dark blue-green coloration. Transcriptomic analysis identified CHLG as a potential key regulator for yellow-green and light-green floret coloration. The blue-green coloration appears to be coregulated by a combination of genes, including the chlorophyll biosynthesis gene HEMF; anthocyanin biosynthesis genes (PAL, FLS, and UGT); and chlorophyll degradation genes (SGR, PPD, and NYC). Furthermore, upstream genes involved in both chlorophyll metabolism (CHLI, CHLD, CHLM, DVR, and CLH) and anthocyanin biosynthesis (PAL, 4CL, CHS, F3'H, and FLS) play crucial roles in determining the dark blue-green coloration of florets. Meanwhile, transcription factors of the WRKY, NAC, and TCP families are involved in chlorophyll metabolism, while those of the bHLH and MYB families participate in anthocyanin synthesis. The WGCNA identified one Hub gene for chlorophyll metabolism and two for anthocyanin synthesis. In conclusion, 35 candidate genes were identified, including 21 involved in chlorophyll metabolism and 14 in anthocyanin biosynthesis. This study provides novel insights into the molecular mechanisms of floret coloration and establishes a foundation for molecular breeding in broccoli.
Collapse
Affiliation(s)
- Qingqing Shao
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China; (Q.S.); (M.C.); (S.C.); (H.L.); (H.L.); (J.L.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350000, China;
| | - Mindong Chen
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China; (Q.S.); (M.C.); (S.C.); (H.L.); (H.L.); (J.L.)
| | - Saichuan Cheng
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China; (Q.S.); (M.C.); (S.C.); (H.L.); (H.L.); (J.L.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350000, China;
| | - Huangfang Lin
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China; (Q.S.); (M.C.); (S.C.); (H.L.); (H.L.); (J.L.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350000, China;
| | - Biying Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350000, China;
| | - Honghui Lin
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China; (Q.S.); (M.C.); (S.C.); (H.L.); (H.L.); (J.L.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350000, China;
| | - Jianting Liu
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China; (Q.S.); (M.C.); (S.C.); (H.L.); (H.L.); (J.L.)
| | - Haisheng Zhu
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China; (Q.S.); (M.C.); (S.C.); (H.L.); (H.L.); (J.L.)
| |
Collapse
|
4
|
Chen HUIYING, Xiong BIXIA, Huang RONGBING, Ni YING, Li XIA. Integrated metabolomics and proteomics analysis of anthocyanin biosynthesis regulations in passion fruit (Passiflora edulis) pericarp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109441. [PMID: 39778376 DOI: 10.1016/j.plaphy.2024.109441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/07/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Anthocyanin is the primary color-developing component in the pericarp of the passion fruit. Although the pericarp of the passion fruit is anticipated to be a significant source of anthocyanin, however, information regarding anthocyanin biosynthesis in the passion fruit pericarp remains unexplored. Based on metabolomics analysis, a total of five anthocyanins were identified in the purple-skinned passion fruit pericarp, among which three anthocyanins, petunidin-3-O-arabinoside, geranylgeranyl-3,5-O-diglucoside, and petunidin-3-O-rutinoside, play key roles in the coloration of the passion fruit pericarp. Based on proteomics analysis, a total of nine differential proteins are involved in the flavonoid metabolic process, which involves the following chalcone isomerase, flavonol synthase and anthocyanin synthasein. These proteins play important regulatory roles in anthocyanin biosynthesis and are the key regulators in anthocyanin accumulation. qRT-PCR was used to identify nine structural genes (PePAL2, PePAL4, PeC4H1, Pe4CL5, Pe4CL6, Pe4CL7, PeCHS2, PeCHS3 and PeUFGT2) playing key regulatory roles in anthocyanin synthesis in purple passion fruit pericarp. This study is expected to lay a foundation for the subsequent exploration of the regulatory mechanism of anthocyanin biosynthesis and the functional identification of related genes in passion fruit pericarp, and also to provide data support for the in-depth utilization of passion fruit resources.
Collapse
Affiliation(s)
- H U I-Y I N G Chen
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China; Zhaoqing University, Zhaoqing, China.
| | - B I-X I A Xiong
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - R O N G-B I N G Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Y I N G Ni
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - X I A Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
5
|
Wang C, Lin A, Zhou Y, Liu Z, Bai P, Zhu Y, Fan J, Bi X, Kuang H, Lian H, Xu P. Mutation in FvPAL2 leads to light red strawberry fruits and yellow-green petioles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112370. [PMID: 39725163 DOI: 10.1016/j.plantsci.2024.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
In recent years, light red or white strawberries have attracted much attention because of their unusual color, however, the mechanism of strawberry color formation, especially light red strawberry color, is not well understood. By EMS mutagenesis of woodland strawberry (Fragaria vesca), we identified two mutants, rg40 and rg120, with light red fruit and yellow-green petiole, and allelic hybridization and BSA mixed-pool sequencing revealed that the phenotype was caused by mutation in the FvPAL2 protein in the anthocyanin synthesis pathway. Enzyme activity experiments showed that the mutant FvPAL2 protein barely catalyzed the substrate conversion normally, thus blocking anthocyanin synthesis, which in turn led to a decrease in anthocyanin accumulation in fruits and petioles. Analysis of the active pockets of the wild-type and mutant FvPAL2 proteins revealed that the mutant FvPAL2 could not bind to the substrate properly. The specific transcription factors FvMYB10 and FvMYB10L were further found to bind and activate the expression of FvPAL1 and FvPAL2 in both fruit and petiole. The discovery of the key site of FvPAL2 protein activity provides a clear modification target for the breeding of light red strawberry varieties, which has important application value.
Collapse
Affiliation(s)
- Chong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Anqi Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yankong Zhou
- Agricultural Technology Center of Pudong New Area, Shanghai, China
| | - Zheng Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Peng Bai
- Dandong Academy of Agricultural Sciences, Dandong, China
| | - Yuxuan Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Junmiao Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyi Bi
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Huiyun Kuang
- Shanghai Agricultural Science and Technology Service Center, Shanghai, China
| | - Hongli Lian
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pengbo Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Mandache MB, Vijan LE, Cosmulescu S. Insight into Bioactive Compounds and Antioxidant Activity of Bakery Products Fortified with Fruit Pomace. Foods 2025; 14:806. [PMID: 40077509 PMCID: PMC11899624 DOI: 10.3390/foods14050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
The aim of this work was to analyse the influence of the application of apple, sour cherry and peach pomace on the content of bioactive compounds and antioxidant activity in bakery products supplemented with different proportions of pomace (5%, 10% and 15%). The type of pomace applied determined some variations, but it was observed that at a maximum substitution percentage (15%), breads with peach pomace recorded the highest levels of polyphenols (855.10 mg GAE/100 g), flavonoids (181.01 mg CE/100 g) and tannins (385.26 mg GAE/100 g), which also generated the highest antiradical activity (42.84%). In general, an evolutionary distribution was observed between the increase in the content of polyphenols, flavonoids, tannins and antioxidant activity, which could indicate a synergistic action between all components. In all the analysed samples, increases in the constituent compounds and antioxidant activity were observed, consistent with the percentage of added pomace, with the analysis of the inclusion of different types of pomace becoming relevant in the context of industrial production.
Collapse
Affiliation(s)
- Maria Bianca Mandache
- Doctoral School of Plant and Animal Resources Engineering, Faculty of Horticulture, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania;
| | - Loredana Elena Vijan
- Faculty of Sciences, Physical Education and Computer Science, The National University of Science and Technology Politehnica Bucharest, Pitesti University Centre, 1 Targu din Vale Street, 110040 Pitesti, Romania
| | - Sina Cosmulescu
- Department of Horticulture and Food Science, Faculty of Horticulture, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania
| |
Collapse
|
7
|
Li Y, Li M, Guo Z, Liu J, Chen P, Lu W, Jiang C, Xiao J, Lei F, Zheng Y. AoMYB114 transcription factor regulates anthocyanin biosynthesis in the epidermis of tender asparagus stems. FRONTIERS IN PLANT SCIENCE 2025; 16:1531574. [PMID: 40041014 PMCID: PMC11876374 DOI: 10.3389/fpls.2025.1531574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/07/2025] [Indexed: 03/06/2025]
Abstract
Introduction Asparagus is a valuable vegetable, and its edible part is a tender stem. The color of the tender stem epidermis is an important trait. In particular, purple asparagus is rich in anthocyanins. However, the molecular mechanisms underlying anthocyanin accumulation in purple asparagus remains unclear. Methods The white variety 'Jinguan' (JG), the green variety 'Fengdao 2' (FD), and the purple variety 'Jingzilu 2' (JZ) were compared using physiological and transcriptomic analysis. High-performance liquid chromatography and real-time quantitative polymerase chain reaction were employed to detect anthocyanins and validate gene expression. Results Cyanidin 3-glucoside and cyanidin 3-rutinoside were detected as the main anthocyanins in JZ. Transcriptome data demonstrated that 4,694 and 9,427 differentially expressed genes (DEGs) were detected in the JZ versus FD and JZ versus JG control groups, respectively. These DEGs were significantly enriched in pathways associated with anthocyanin accumulation, including phenylalanine metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis. A total of 29 structural genes related to anthocyanin biosynthesis were identified. The expression of these structural genes was higher in JZ than in FD and JG, thereby activating the anthocyanin biosynthesis pathway. Additionally, a candidate gene, AoMYB114, was identified based on transcriptomic data. The expression of AoMYB114 was associated with anthocyanin accumulation in different tissues. Further research found that overexpression of AoMYB114 activated the anthocyanin biosynthesis pathway. It promoted leaf pigment accumulation in transgenic Arabidopsis. Discussion These findings demonstrate that AoMYB114 positively regulated anthocyanin biosynthesis. This study elucidates the molecular mechanism underlying purple coloration in asparagus. It provides important insights for improving asparagus quality and for breeding high-anthocyanin varieties.
Collapse
Affiliation(s)
- Yanwen Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zheng Guo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Junting Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Peiran Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Chengyao Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jiachang Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Fengyun Lei
- Agricultural Equipment Research Institute, Chengdu Academy of Agricultural and Forest Sciences, Chengdu, China
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Ramos-Lopez O. Personalizing Dietary Polyphenols for Health Maintenance and Disease Management: A Nutrigenetic Approach. Curr Nutr Rep 2025; 14:29. [PMID: 39907890 DOI: 10.1007/s13668-025-00620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE OF THE REVIEW This literature review provides examples of the influence of certain genetic variants on health outcomes after dietary polyphenol consumption or supplementation. Available evidence is organized according to the major classes of polyphenols (flavonoids, phenolic acids, stilbenes, lignans, and tannins) and their derived subgroups. RECENT FINDINGS Nutrigenetic studies have identified mainly single nucleotide polymorphisms located within genes involved in the biotransformation of phenolic acids, stilbenes, lignans and several flavonoid molecules. These genetic variants may affect polyphenol metabolism rates and related predisposition to chronic non-communicable diseases. Moreover, differential cardiometabolic outcomes upon polyphenol supplementation as dietary sources or nutraceuticals have been modulated by specific genotypes. Although current evidence is still limited, growing gene-polyphenol interactions are contributing to systematically elucidate the biological functions of polyphenols; determine individual risk phenotypes to specific diseases or particular responses upon polyphenol exposure; and facilitate the prescription of personalized genotype-based doses of dietary polyphenols to optimize related health benefits. Additionally, the integration of genetics with other omics insights (epigenomics, transcriptomics, metagenomics, and metabolomics) trough biological systems and high-dimensional data analyses and interpretation may provide a more comprehensive understanding of polyphenol metabolism for precision nutrition applications in health and disease.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Universidad 14418, UABC, Parque Internacional Industrial Tijuana, Tijuana, BC, 22390, México.
| |
Collapse
|
9
|
Zhang J, Liu W, Cui F, Kolehmainen M, Chen J, Zhang L, Zarei I. Exploring the potential protective role of anthocyanins in mitigating micro/nanoplastic-induced reproductive toxicity: A steroid receptor perspective. J Pharm Anal 2025; 15:101148. [PMID: 39925697 PMCID: PMC11803829 DOI: 10.1016/j.jpha.2024.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 02/11/2025] Open
Abstract
Microplastics and nanoplastics (MPs/NPs) are ubiquitous environmental pollutants that act as endocrine-disrupting chemicals (EDCs), raising significant concerns about their impact on human health. Research highlights the hazardous effects of MPs/NPs on both male and female reproductive systems, influencing germ cells, embryo development, and progeny. Additionally, studies show that MPs/NPs affect the gene expression of anabolic steroid hormones in vitro and in vivo, inducing reproductive toxicity through mechanisms such as oxidative stress and inflammation. Considering these adverse effects, identifying natural compounds that can mitigate the toxicity of MPs/NPs is increasingly important. Plants offer a wealth of antioxidants and anti-inflammatory compounds that can counteract these harmful effects. Among these, anthocyanins, natural colorants responsible for the vibrant hues of fruits and flowers, exhibit a wide range of biological activities, including antioxidant, anti-inflammatory, and anti-neoplastic properties. Moreover, anthocyanins can modulate sex hormone levels and alleviate reproductive toxicity. Cyanidin-3-glucoside (C3G), one of the most extensively studied anthocyanins, shows promise in reducing reproductive toxicity, particularly in females, and in protecting male reproductive organs, including the testis and epididymis. This protective effect is believed to result from its interaction with steroid receptors, specifically the androgen and estrogen receptors (ERs). These findings highlight the need to explore the mechanisms by which anthocyanins mitigate the reproductive toxicity caused by MPs/NPs. This review provides novel insights into how natural compounds can be leveraged to lessen the impact of environmental contaminants on human health, especially concerning reproductive health.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wenyi Liu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Fuqiang Cui
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, Kuopio, 70211, Finland
| | - Jing Chen
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, N2L3G1, Canada
| | - Iman Zarei
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, Kuopio, 70211, Finland
| |
Collapse
|
10
|
Utpal BK, Roy SC, Zehravi M, Sweilam SH, Raja AD, Haque MA, Nayak C, Balakrishnan S, Singh LP, Panigrahi S, Alshehri MA, Rab SO, Minhaj NS, Emran TB. Polyphenols as Wnt/β-catenin pathway modulators: A promising strategy in clinical neurodegeneration. Animal Model Exp Med 2025; 8:266-286. [PMID: 39808166 PMCID: PMC11871115 DOI: 10.1002/ame2.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs. This study explores multiple polyphenolic compounds, such as flavonoids, stilbenes, lignans, and phenolic acids, and their potential to protect the nervous system. It provides a comprehensive analysis of their effects on the WβC pathway, elucidating their modes of action. The study highlights the dual function of polyphenols in regulating and protecting the nervous system, providing reassurance about the research benefits. This review provides a comprehensive analysis of the results obtained from both in vitro studies and in vivo research, shedding light on how these substances influence the various components of the pathway. The focus is mainly on the molecular mechanisms that allow polyphenols to reduce oxidative stress, inflammation, and apoptotic processes, ultimately improving the function and survival of neurons. This study aims to offer a thorough understanding of the potential of polyphenols in targeting the WβC signaling pathway, which could lead to the development of innovative therapeutic options for NDs.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| | - Sajib Chandra Roy
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry and PharmacyBuraydah Private CollegesBuraydahSaudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
- Department of Pharmacognosy, Faculty of PharmacyEgyptian Russian UniversityCairoEgypt
| | - A. Dinesh Raja
- Department of PharmaceuticsKMCH College of PharmacyCoimbatoreIndia
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, HyderabadIndia
| | - Chandan Nayak
- Department of Pharmaceutics, School of PharmacyArka Jain UniversityJharkhandIndia
| | - Senthilkumar Balakrishnan
- Department of PharmaceuticsJKKMMRF‐Annai JKK Sampoorani Ammal College of PharmacyKomarapalayamNamakkalIndia
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of PharmacyGopal Narayan Singh UniversitySasaramIndia
| | - Saswati Panigrahi
- Department of Pharmaceutical ChemistrySt. John Institute of Pharmacy and ResearchVevoorPalgharIndia
| | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical ScienceKing Khalid UniversityAbhaSaudi Arabia
| | - Najmus Sakib Minhaj
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| |
Collapse
|
11
|
Xu Y, Li H, Shi T, Luo Q, Chen Y, Guo S, Tian W, An W, Zhao J, Yin Y, He J, Zheng R, Liang X, Wang Y, Zhang X, Shi Z, Duan L, Qin X, Huang T, Zhang B, Wan R, Li Y, Cao Y, Liu H, Shu S, Xiong A, Zhao J. High-quality genome of black wolfberry ( Lycium ruthenicum Murr.) provides insights into the genetics of anthocyanin biosynthesis regulation. HORTICULTURE RESEARCH 2025; 12:uhae298. [PMID: 39949881 PMCID: PMC11822397 DOI: 10.1093/hr/uhae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/11/2024] [Indexed: 02/16/2025]
Abstract
Black wolfberry (Lycium ruthenicum Murr.) is an important plant for ecological preservation. In addition, its fruits are rich in anthocyanins and have important edible and medicinal value. However, a high-quality chromosome-level genome for this species is not yet available, and the regulatory mechanisms involved in the biosynthesis of anthocyanins are unclear. In this study, haploid material was used to assemble a high-quality chromosome-level reference genome of Lycium ruthenicum, resulting in a genome size of 2272 Mb with contig N50 of 92.64 Mb, and 38 993 annotated gene models. In addition, the evolution of this genome and large-scale variations compared with the Ningxia wolfberry Lycium barbarum were determined. Importantly, homology annotation identified 86 genes involved in the regulatory pathway of anthocyanin biosynthesis, five of which [LrCHS1 (evm.TU.Chr05.295), LrCHS2 (evm.TU.Chr09.488), LrAOMT (evm.TU.Chr09.809), LrF3'5'H (evm.TU.Chr06.177), and LrAN2.1 (evm.TU.Chr05.2618)] were screened by differential expression analysis and correlation analysis using a combination of transcriptome and metabolome testing. Overexpression of these genes could significantly up- or downregulate anthocyanin-related metabolites. These results will help accelerate the functional genomic research of L. ruthenicum, and the elucidation of the genes involved in anthocyanin synthesis will be beneficial for breeding new varieties and further exploring its ecological conservation potential.
Collapse
Affiliation(s)
- Yuhui Xu
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Haoxia Li
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Tongwei Shi
- Planttech technologies Co. Ltd., Beijing, China
| | - Qing Luo
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Yuchao Chen
- Agricultural Biotechnology Centre, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Shenghu Guo
- Agricultural Biotechnology Centre, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Weiwei Tian
- Sichuan Academy of Chinese Medical Sciences, Chengdu 610041, China
| | - Wei An
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Jian Zhao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Yue Yin
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Jun He
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Rui Zheng
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China; College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Yajun Wang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xiyan Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Zhigang Shi
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Linyuan Duan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xiaoya Qin
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Ting Huang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Bo Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Ru Wan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Yanlong Li
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Youlong Cao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Shu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianhua Zhao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| |
Collapse
|
12
|
Stankovic S, Mutavdzin Krneta S, Djuric D, Milosevic V, Milenkovic D. Plant Polyphenols as Heart's Best Friends: From Health Properties, to Cellular Effects, to Molecular Mechanisms of Action. Int J Mol Sci 2025; 26:915. [PMID: 39940685 PMCID: PMC11816429 DOI: 10.3390/ijms26030915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/22/2024] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Polyphenols are micronutrients found in fruits, vegetables, tea, coffee, cocoa, medicinal herbs, fish, crustaceans, and algae. They can also be synthesized using recombinant microorganisms. Interest in plant-derived natural compounds has grown due to their potential therapeutic effects with minimal side effects. This is particularly important as the aging population faces increasing rates of chronic diseases such as cancer, diabetes, arthritis, cardiovascular, and neurological disorders. Studies have highlighted polyphenols' capacity to reduce risk factors linked to the onset of chronic illnesses. This narrative review discusses polyphenol families and their metabolism, and the cardioprotective effects of polyphenols evidenced from in vitro studies, as well as from in vivo studies, on different animal models of cardiac disease. This study also explores the molecular mechanisms underlying these benefits. Current research suggests that polyphenols may protect against ischemia, hypertension, cardiac hypertrophy, heart failure, and myocardial injury through complex mechanisms, including epigenetic and genomic modulation. However, further studies under nutritionally and physiologically relevant conditions, using untargeted multigenomic approaches, are needed to more comprehensively elucidate these mechanisms and firmly prove the cardioprotective effects of polyphenols.
Collapse
Affiliation(s)
- Sanja Stankovic
- Center for Medical Biochemistry, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Slavica Mutavdzin Krneta
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.K.); (D.D.)
| | - Dragan Djuric
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.K.); (D.D.)
| | - Verica Milosevic
- Department of Anatomy, Faculty of Medicine, University of Niš, 18000 Nis, Serbia;
| | - Dragan Milenkovic
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
da Costa P, Schetinger MRC, Baldissarelli J, Reichert KP, Stefanello N, Bottari NB, Vidal T, da Cruz IBM, Assmann CE, Morsch VMM. Blackcurrant (Ribes nigrum L.) and Its Association with Donepezil Restore Cognitive Impairment, Suppress Oxidative Stress and Pro-inflammatory Responses, and Improve Purinergic Signaling in a Scopolamine-Induced Amnesia Model in Mice. Neurochem Res 2025; 50:79. [PMID: 39800790 DOI: 10.1007/s11064-024-04327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 02/02/2025]
Abstract
Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking. This study investigated the effects of BC and its association with Donepezil (DNPZ) on learning and memory, on the modulation of purinergic signaling, pro-inflammatory responses, and oxidative markers in a mouse model of cognitive impairment chronically induced by scopolamine (SCO). Animals were divided into twelve groups and treated with BC (50 or 100 mg/kg), and/or DNPZ (5 mg/kg), and/or SCO (1 mg/kg). Results showed that SCO decreased spatial learning and memory as assessed by the Morris Water Maze test, and treatment with BC and/or DNPZ restored these effects. Furthermore, BC and/or DNPZ treatments also prevented changes in ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) and adenosine deaminase (ADA) activities and restored the increased density of P2X7 and A2A receptors in synaptosomes of the cerebral cortex of SCO-induced mice. Moreover, the increased Nod-like receptor protein 3 (NLRP3) and interleukin-1β expression, and the oxidative stress markers levels were reduced by BC and/or DNPZ treatments, compared with the SCO group. Overall, BC and/or DNPZ treatments ameliorated SCO-induced cognitive decline, alleviated oxidative stress and pro-inflammatory responses, and improved purinergic signaling. These findings underscore the potential of BC, especially when in combination with DNPZ, as a therapeutic agent for the prevention of memory deficits associated with aging or neurological diseases.
Collapse
Affiliation(s)
- Pauline da Costa
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | - Jucimara Baldissarelli
- Department of Physiology and Pharmacology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Karine Paula Reichert
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Nathieli Bianchin Bottari
- Department of Microbiology and Parasitology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Taís Vidal
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Vera Maria Melchiors Morsch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Hernández-Ruiz RG, Olivares-Ochoa XC, Salinas-Varela Y, Guajardo-Espinoza D, Roldán-Flores LG, Rivera-Leon EA, López-Quintero A. Phenolic Compounds and Anthocyanins in Legumes and Their Impact on Inflammation, Oxidative Stress, and Metabolism: Comprehensive Review. Molecules 2025; 30:174. [PMID: 39795230 PMCID: PMC11722078 DOI: 10.3390/molecules30010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammation, oxidative stress, and metabolic diseases are intricately linked in a complex, self-reinforcing relationship. Inflammation can induce oxidative stress, while oxidative stress can trigger inflammatory responses, creating a cycle that contributes to the development and progression of metabolic disorders; in addition, these effects can be observed at systemic and local scales. Both processes lead to cellular damage, mitochondrial dysfunction, and insulin resistance, particularly affecting adipose tissue, the liver, muscles, and the gastrointestinal tract. This results in impaired metabolic function and energy production, contributing to conditions such as type 2 diabetes, obesity, and metabolic syndrome. Legumes are a good source of phenolic compounds and anthocyanins that exert an antioxidant effect-they directly neutralize reactive oxygen species and free radicals, reducing oxidative stress. In vivo, in vitro, and clinical trial studies demonstrate that these compounds can modulate key cellular signaling pathways involved in inflammation and metabolism, improving insulin sensitivity and regulating lipid and glucose metabolism. They also exert anti-inflammatory effects by inhibiting proinflammatory enzymes and cytokines. Additionally, anthocyanins and phenolics may positively influence the gut microbiome, indirectly affecting metabolism and inflammation.
Collapse
Affiliation(s)
- Rocio Guadalupe Hernández-Ruiz
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
| | - Xochitl Citalli Olivares-Ochoa
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
| | - Yahatziri Salinas-Varela
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
| | | | | | - Edgar Alfonso Rivera-Leon
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico;
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos (CUAltos), UdeG, Tepatitlán de Morelos 47620, Jalisco, Mexico
| | - Andres López-Quintero
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico;
| |
Collapse
|
15
|
Kim SO, Choi A, Lee HH, Lee JY, Park SJ, Kim BH. Purple corn extract improves benign prostatic hyperplasia by inhibiting 5 alpha-reductase type 2 and inflammation in testosterone propionate-induced rats. Front Pharmacol 2025; 15:1485072. [PMID: 39830338 PMCID: PMC11739163 DOI: 10.3389/fphar.2024.1485072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
Benign prostatic hyperplasia (BPH) is a health issue caused by an enlarged prostate in older men. Its prevalence increases with age, and it results in urination-related problems. This works studied the effect of purple corn extract (PCE) on improving BPH symptoms using a testosterone propionate (TP)-induced rat model. PCE reduced the enlargement and weight of the prostate through the inhibition of the conversion of testosterone to dihydrotestosterone (DHT) by inhibiting 5α-reductase type 2 (Srd5a2) in TP-induced BPH rats. In these rats, PCE decreased androgen receptor (AR) expression, AR-mediated signaling, and cell proliferation and increased apoptotic cell death. Finally, PCE exhibited anti-inflammatory activity through the regulation of the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf-2) axis. These results indicate that the Srd5a2 inhibition and anti-inflammatory activity are some of the beneficial effects of PCE that improve BPH symptoms.
Collapse
|
16
|
Kiadehi FB, Samani P, Barazandeh S, Pam P, Hajipour A, Goli N, Asadi A. The Effect of Anthocyanin Supplementation on Pro-Inflammatory Biomarkers in Patients With Metabolic Disorders: A Grade-Assessed Systematic Review and Meta-Analysis. CURRENT THERAPEUTIC RESEARCH 2024; 102:100772. [PMID: 40034375 PMCID: PMC11874868 DOI: 10.1016/j.curtheres.2024.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/15/2024] [Indexed: 03/05/2025]
Abstract
Introduction and Aim Patients with metabolic disorders benefit from using anthocyanins. Nevertheless, the findings drawn from extant trials remain contentious. Thus, this meta-analysis evaluated anthocyanin's effect on inflammatory biomarkers in patients with metabolic disorders. Materials and Methods We comprehensively searched electronic databases, including PubMed, Scopus, Web of Science, and CENTRAL, from their inception to June 14, 2024. Findings A total of 11 randomized controlled clinical trials with 14 arms were analyzed. There was no significant effect of anthocyanin supplementation on interleukin (IL)-1β levels (standardized mean difference [SMD] = -0.01, 95% CI: -0.33, 0.31; P = 0.941, I 2 = 62.4%, P = 0.031), tumor necrosis factor-α (TNF-α) (SMD = -0.49, 95% CI: -1.07, 0.09; P = 0.098, I 2 = 94.0%, P < 0.001) and IL-6 (SMD = -0.69, 95% CI: -1.45, 0.06; P = 0.073, I 2 = 95.2%, P < 0.001), respectively. A significant between-study heterogeneity was identified, which was reduced when subgrouping by sample size, dosage, and study population. However, subgroup analysis showed that it might decrease TNF-α and IL-6 in patients with hypertension, and if the intervention lasted less than 12 weeks. Conclusions There was no significant impact of anthocyanin supplementation on IL-1β, TNF-α, and IL-6; however, it should be noted that the intervention has a decreasing impact on individuals with hypertension. Our observed effect sizes on IL-1β, TNF-α, and IL-6 are not clinically important.
Collapse
Affiliation(s)
- Fatemeh Babaee Kiadehi
- Department of Clinical Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Samani
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Sanaz Barazandeh
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Pedram Pam
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Hajipour
- Department of Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Goli
- School of Bioscience, University of Skövde, Skövde, Sweden
| | - Ali Asadi
- Department of Clinical Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Lyu J, Jin N, Ma X, Yin X, Jin L, Wang S, Xiao X, Yu J. A Comprehensive Evaluation of Nutritional Quality and Antioxidant Capacity of Different Chinese Eggplant Varieties Based on Multivariate Statistical Analysis. Antioxidants (Basel) 2024; 14:10. [PMID: 39857344 PMCID: PMC11761265 DOI: 10.3390/antiox14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Free amino acids, polyphenols, and anthocyanins were quantified in 30 Chinese eggplant varieties. Moreover, antioxidant capacity characterizations including 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric-reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were performed. The total amino acid content of the 30 eggplant varieties ranged from 15,267.19 to 26,827.4 mg kg-1 DW. The most abundant amino acids were glutamic acid, arginine, and aspartic acid. The coefficients of variation (CV) for the 20 amino acids ranged from 5.85 to 106.14%, of which 18 free amino acids had CVs > 20%. Total polyphenol and anthocyanin contents ranged from 17,097.41 to 39,474.98 µg g-1 DW and 5.28 to 978.32 µg g-1 DW, respectively. The variability of both polyphenol and anthocyanin components was >20%, with a range of 21.25-102.89%. Chlorogenic acid was the most abundant polyphenol. The total anthocyanin content of purple eggplant varieties was significantly higher than green varieties. Of the purple eggplant varieties, V28 ('E150725'), V30 ('1952'), and V16 ('Weichangqie101') had significantly higher total anthocyanins than the other eggplant varieties. DPPH, ABTS, and FRAP assays showed peaks at V3 ('Zhengqie924'). Pearson's correlation analysis revealed that polyphenols and anthocyanins were the main contributors to the antioxidant capacity of eggplants. A classification model with principal component analysis classified 30 Chinese eggplant varieties into two categories: high and low antioxidant capacities. The top five Chinese eggplant varieties ranked for amino acids, antioxidants, and antioxidant capacity were V29 ('Zhengqie903'), V24 ('Zhengqie78'), V1 ('1871'), V3 ('Zhengqie924'), and V28 ('E150725'). These findings provide theoretical basis for high-quality breeding and producer/consumer selection of eggplants.
Collapse
Affiliation(s)
- Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (N.J.); (X.M.); (X.X.)
- State Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (N.J.); (X.M.); (X.X.)
| | - Xianglan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (N.J.); (X.M.); (X.X.)
| | - Xueyun Yin
- Jiuquan City Suzhou District Vegetable Technology Service Center, Jiuquan 735000, China;
| | - Li Jin
- State Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| | - Shuya Wang
- State Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (N.J.); (X.M.); (X.X.)
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (N.J.); (X.M.); (X.X.)
- State Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| |
Collapse
|
18
|
Pu R, Wu Y, Bai T, Li Y, Li X, Li N, Zhou Y, Zhang J. Molecular and Metabolic Regulation of Flavonoid Biosynthesis in Two Varieties of Dendrobium devonianum. Curr Issues Mol Biol 2024; 46:14270-14290. [PMID: 39727983 DOI: 10.3390/cimb46120855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Dendrobium devonianum is an important medicinal plant, rich in flavonoid, with various pharmacological activities such as stomachic and antioxidant properties. In this study, we integrated metabolome and transcriptome analyses to reveal metabolite and gene expression profiles of D. devonianum, both green (GDd) and purple-red (RDd) of semi-annual and annual stems. A total of 244 flavonoid metabolites, mainly flavones and flavonols, were identified and annotated. Cyanidin and delphinidin were the major anthocyanidins, with cyanidin-3-O-(6″-O-p-Coumaroyl) glucoside and delphinidin-3-O-(6″-O-p-coumaroyl) glucoside being the highest relative content in the RDd. Differential metabolites were significantly enriched, mainly in flavonoid biosynthesis, anthocyanin biosynthesis, and flavone and flavonol biosynthesis pathways. Transcriptomic analysis revealed that high expression levels of structural genes for flavonoid and anthocyanin biosynthesis were the main reasons for color changes in D. devonianum stems. Based on correlation analysis and weighted gene co-expression network analysis (WGCNA) analysis, CHS2 (chalcone synthase) and UGT77B2 (anthocyanidin 3-O-glucosyltransferase) were identified as important candidate genes involved in stem pigmentation. In addition, key transcription factors (TFs), including three bHLH (bHLH3, bHLH4, bHLH5) and two MYB (MYB1, MYB2), which may be involved in the regulation of flavonoid biosynthesis, were identified. This study provides new perspectives on D. devonianum efficacy components and the Dendrobium flavonoids and stem color regulation.
Collapse
Affiliation(s)
- Ran Pu
- College of Landscape Architecture and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Yawen Wu
- College of Landscape Architecture and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Tian Bai
- College of Landscape Architecture and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Yue Li
- College of Landscape Architecture and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Xuejiao Li
- College of Landscape Architecture and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Nengbo Li
- Institute of Caulis Dendrobii of Longling County, Longling 678300, China
| | - Ying Zhou
- Institute of Caulis Dendrobii of Longling County, Longling 678300, China
| | - Jingli Zhang
- College of Landscape Architecture and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
19
|
Zhu T, Du M, Chen H, Li G, Wang M, Meng L. Recent insights into anthocyanin biosynthesis, gene involvement, distribution regulation, and domestication process in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112282. [PMID: 39389316 DOI: 10.1016/j.plantsci.2024.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Anthocyanins are water-soluble natural pigments found broadly in plants. As members of the flavonoid family, they are widely distributed in various tissues and organs, including roots, leaves, and flowers, responsible for purple, red, blue, and orange colors. Beyond pigmentation, anthocyanins play a role in plant propagation, stress response, defense mechanisms, and human health benefits. Anthocyanin biosynthesis involves a series of conserved enzymes encoded by structural genes regulated by various transcription factors. In rice, anthocyanin-mediated pigmentation serves as an important morphological marker for varietal identification and purification, a critical nutrient source, and a key trait in studying rice domestication. Anthocyanin biosynthesis in rice is regulated by a ternary conserved MBW transcriptional complexes comprising MYB transcription factors (TFs), basic-helix-loop-helix (bHLH) TFs, and WD40 repeat protein, which activate the expression of structure genes. Wild rice (Oryza rufipogon) commonly has purple hull, purple stigma, purple apiculus, purple leaf, and red pericarp due to the accumulations of anthocyanin or proanthocyanin. However, most cultivated rice (Oryza sativa) varieties lose the anthocyanin phenotypes due to the function variations of some regulators including OsC1, OsRb, and Rc and the structure gene OsDFR. Over the past decades, significant progress has been made in understanding the molecular and genetic mechanisms of anthocyanin biosynthesis. This review summarizes research progress in rice anthocyanin biosynthetic pathways, genes involvements, distribution regulations, and domestication processes. Furthermore, it discusses future prospects for anthocyanin biosynthesis research in rice, aiming to provide a theoretical foundation for future investigations and applications, and to assist in breeding new rice varieties with organ-targeted anthocyanin deposition.
Collapse
Affiliation(s)
- Taotao Zhu
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China
| | - Mengxue Du
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China
| | - Huilin Chen
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China
| | - Gang Li
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China
| | - Mengping Wang
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China
| | - Lingzhi Meng
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China; Institute of Huanghe Studies, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
20
|
Du L, Ding X, Tian Y, Chen J, Li W. Effect of anthocyanins on metabolic syndrome through interacting with gut microbiota. Pharmacol Res 2024; 210:107511. [PMID: 39577753 DOI: 10.1016/j.phrs.2024.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Metabolic syndrome, as a complex pathological condition, is caused by a series of pathogenic factors and has become a global public health challenge. Anthocyanins, a natural water-soluble flavonoid pigment, have attracted much attention due to their antioxidant, anti-inflammatory, and anticancer biological activities. After ingestion, a majority of anthocyanins is not directly absorbed but rather reaches the colon. Hence, the exertion of their biological benefits is closely intertwined with the role played by gut microbiota. In this review, we introduce the pathogenesis and intervention methods of metabolic syndrome, as well as the interaction between anthocyanins and gut microbiota. We also discuss the therapeutic potential of anthocyanins through gut microbiota in addressing a range of metabolic syndrome conditions, including obesity, type 2 diabetes mellitus, cardiovascular diseases, non-alcoholic fatty liver disease, inflammatory bowel disease, polycystic ovary syndrome, osteoporosis, and cancer.
Collapse
Affiliation(s)
- Lanlan Du
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuwen Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Weilin Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
21
|
Yang L, Yuan QY, Lou CW, Lin JH, Li TT. Recent Advances of Cellulose-Based Hydrogels Combined with Natural Colorants in Smart Food Packaging. Gels 2024; 10:755. [PMID: 39727513 DOI: 10.3390/gels10120755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Due to the frequent occurrence of food safety problems in recent years, healthy diets are gradually receiving worldwide attention. Chemical pigments are used in smart food packaging because of their bright colors and high visibility. However, due to shortcomings such as carcinogenicity, people are gradually looking for natural pigments to be applied in the field of smart food packaging. In traditional smart food packaging, the indicator and the packaging bag substrate have different degrees of toxicity. Smart food packaging that combines natural colorants and cellulose-based hydrogels is becoming more and more popular with consumers for being natural, non-toxic, environmentally friendly, and renewable. This paper reviews the synthesis methods and characteristics of cellulose-based hydrogels, as well as the common types and characteristics of natural pigments, and discusses the application of natural colorants and cellulose-based hydrogels in food packaging, demonstrating their great potential in smart food packaging.
Collapse
Affiliation(s)
- Lan Yang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qian-Yu Yuan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ching-Wen Lou
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| | - Jia-Horng Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
| | - Ting-Ting Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
| |
Collapse
|
22
|
Anum H, Li K, Tabusam J, Saleh SAA, Cheng RF, Tong YX. Regulation of anthocyanin synthesis in red lettuce in plant factory conditions: A review. Food Chem 2024; 458:140111. [PMID: 38968716 DOI: 10.1016/j.foodchem.2024.140111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
Anthocyanins, natural pigments known for their vibrant hues and beneficial properties, undergo intricate genetic control. However, red vegetables grown in plant factories frequently exhibit reduced anthocyanin synthesis compared to those in open fields due to factors like inadequate light, temperature, humidity, and nutrient availability. Comprehending these factors is essential for optimizing plant factory environments to enhance anthocyanin synthesis. This review insights the impact of physiological and genetic factors on the production of anthocyanins in red lettuce grown under controlled conditions. Further, we aim to gain a better understanding of the mechanisms involved in both synthesis and degradation of anthocyanins. Moreover, this review summarizes the identified regulators of anthocyanin synthesis in lettuce, addressing the gap in knowledge on controlling anthocyanin production in plant factories, with potential implications for various crops beyond red lettuce.
Collapse
Affiliation(s)
- Hadiqa Anum
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Kun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Javaria Tabusam
- National Key Laboratory of Cotton Bio-Breeding and Integration Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Said Abdelhalim Abdelaty Saleh
- Horticultural Crops Technology Department, Agricultural & Biological Research Institute, National Research Centre, Giza, Egypt
| | - Rui-Feng Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China.
| | - Yu-Xin Tong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
23
|
Viscusi G, Gorrasi G. Blueberry extract loaded into rice milk/alginate-based hydrogels as pH-sensitive systems to monitor the freshness of minced chicken. Int J Biol Macromol 2024; 282:137210. [PMID: 39491702 DOI: 10.1016/j.ijbiomac.2024.137210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Hydrogel beads from rice milk and blueberry (BB) skins were fabricated as novel bio-based pH-sensitive devices. The encapsulation of BB into rice milk/alginate beads was achieved through a simple methodology. The colourimetric response of beads in different pH media was evaluated along with the proof of reusability, showing appropriate reversibility. The evaluation of the stability of BB-loaded beads in accelerated ageing conditions (4, 25 and 40 °C and under visible/UV light) showed high stability of beads (up to 28 days) even in the presence of harsh conditions. The half-time of cyanidin-3-glucoside decreases at high temperatures and under UV light exposure. The sensitivity to ammonia (NH3) and trimethylamine (TMA), as main spoilage volatiles of protein food products, was evaluated. The detection limits (LOD) for NH3 and TMA were 22.4 ppm and 72.1 ppm, respectively. Finally, the hydrogel beads were applied to monitor the spoilage of minced chicken breast. The colour of the beads, changing from dark reddish to green/yellowish and indicative of a high level of amine, could be detected by the naked eye after 3-5 days. This research proposes a sustainable, low-cost, and simple method to fabricate BB-loaded hydrogel beads as a promising tool for intelligent packaging applications.
Collapse
Affiliation(s)
- Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
24
|
Rajesh R U, Sangeetha D. Therapeutic potentials and targeting strategies of quercetin on cancer cells: Challenges and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155902. [PMID: 39059266 DOI: 10.1016/j.phymed.2024.155902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Every cell in the human body is vital because it maintains equilibrium and carries out a variety of tasks, including growth and development. These activities are carried out by a set of instructions carried by many different genes and organized into DNA. It is well recognized that some lifestyle decisions, like using tobacco, alcohol, UV, or multiple sexual partners, might increase one's risk of developing cancer. The advantages of natural products for any health issue are well known, and researchers are making attempts to separate flavonoid-containing substances from plants. Various parts of plants contain a phenolic compound called flavonoid. Quercetin, which belongs to the class of compounds known as flavones with chromone skeletal structure, has anti-cancer activity. PURPOSE The study was aimed at investigating the therapeutic action of the flavonoid quercetin on various cancer cells. METHODS The phrases quercetin, anti-cancer, nanoparticles, and cell line were used to search the data using online resources such as PubMed, and Google Scholar. Several critical previous studies have been included. RESULTS Quercetin inhibits various dysregulated signaling pathways that cause cancer cells to undergo apoptosis to exercise its anticancer effects. Numerous signaling pathways are impacted by quercetin, such as the Hedgehog system, Akt, NF-κB pathway, downregulated mutant p53, JAK/STAT, G1 phase arrest, Wnt/β-Catenin, and MAPK. There are downsides to quercetin, like hydrophobicity, first-pass effect, instability in the gastrointestinal tract, etc., because of which it is not well-established in the pharmaceutical industry. The solution to these drawbacks in the future is using bio-nanomaterials like chitosan, PLGA, liposomes, and silk fibroin as carriers, which can enhance the target specificity of quercetin. The first section of this review covers the specifics of flavonoids and quercetin; the second section covers the anti-cancer activity of quercetin; and the third section explains the drawbacks and conjugation of quercetin with nanoparticles for drug delivery by overcoming quercetin's drawback. CONCLUSIONS Overall, this review presented details about quercetin, which is a plant derivative with a promising molecular mechanism of action. They inhibit cancer by various mechanisms with little or no side effects. It is anticipated that plant-based materials will become increasingly relevant in the treatment of cancer.
Collapse
Affiliation(s)
- Udaya Rajesh R
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India
| | - Dhanaraj Sangeetha
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India.
| |
Collapse
|
25
|
Yang C, Zhang S, John Martin JJ, Fu X, Li X, Cheng S, Cao H, Liu X. An in-depth study of anthocyanin synthesis in the exocarp of virescens and nigrescens oil palm: metabolomic and transcriptomic analysis. BMC PLANT BIOLOGY 2024; 24:910. [PMID: 39349997 PMCID: PMC11441260 DOI: 10.1186/s12870-024-05607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Oil palm (Elaeis guineensis Jacq.) is a very important tropical woody oil plant with high commercial and ornamental value. The exocarp of the oil palm fruit is rich in anthocyanosides and proanthocyanidins, which not only give it a bright colour, but also mark the maturity of the fruit. The study of the dynamic change pattern of anthocyanoside content and important anthocyanoside metabolism-related regulatory genes during oil palm ripening is conducive to the improvement of the ornamental value of oil palm and the determination of the optimal harvesting period of the fruits. METHODS We analyzed the virescens oil palm (AS) and nigrescens oil palm (AT) at 95 days (AS1, AT1), 125 days (AS2, AT2) and 185 days (AS3, AT3) after pollination were used as experimental materials for determining the changes in the total amount of anthocyanins as well as their metabolomics and transcriptomics studies by using the LC-MS/MS technique and RNA-Seq technique. RESULT The results showed that the total anthocyanin content decreased significantly from AS1 (119 µg/g) to AS3 (23 µg/g), and from AT1 (1302 µg/g) to AT3 (170 µg/g), indicating a clear decreasing trend during fruit development. Among them, the higher flavonoids in AS and AT included anthocyanins such as peonidin-3-O-rutinoside (H35), pelargonidin-3-O-rutinoside (H21), and cyanidin-3-O-glucoside (H7), as well as condensed tannins such as procyanidin B2 (H47), procyanidin C1 (H49), and procyanidin B3 (H48). Notably, nine genes involved in the anthocyanin biosynthetic pathway exhibited up-regulated expression during the pre-development stage of oil palm fruits, particularly during the AS1 and AT1 periods. These genes include: Chalcone synthase (CHS; LOC105036364); Flavanone 3-hydroxylase (F3H; LOC105054663); Dihydroflavonol 4-reductase (DFR; LOC105040724, LOC105048473); Anthocyanidin synthase (ANS; LOC105035842), UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT; LOC105039612); Flavonoid 3',5'-hydroxylase (F3'5'H; LOC105036086, LOC105044124, LOC105045493). In contrast, five genes demonstrated up-regulated expression as the fruits developed, specifically during the AS3 and AT3 periods. These genes include: Chalcone synthase (CHS; LOC105036921, LOC105035716); Chalcone isomerase (CHI; LOC105045978); UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT; LOC105046326); Flavonoid 3'-hydroxylase (F3'H; LOC105036086). CONCLUSION Most of differentially expressed genes exhibited up-regulation during the early stages of fruit development, which may contribute to the elevated anthocyanin content observed in oil palm fruits of both types during the pre-developmental period. Furthermore, the expression levels of most genes were found to be higher in the AT fruit type compared to the AS fruit type, suggesting that the differential expression of these genes may be a key factor underlying the differences in anthocyanoside production in the exocarp of oil palm fruits from these two fruit types. The findings of this study provide a theoretical foundation for the identification and characterization of genes involved in anthocyanin synthesis in oil palm fruits, as well as the development of novel variations using molecular biology approaches.
Collapse
Affiliation(s)
- Cheng Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Key Laboratory for Tropical Crop Breeding, Wenchang, 571339, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430000, China
| | - Shuyan Zhang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Key Laboratory for Tropical Crop Breeding, Wenchang, 571339, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430000, China
| | - Jerome Jeyakumar John Martin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Key Laboratory for Tropical Crop Breeding, Wenchang, 571339, China
- National Key Laboratory for Tropical Crop Breeding, Haikou, 571101, China
| | - Xiaopeng Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430000, China
| | - Xinyu Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Key Laboratory for Tropical Crop Breeding, Wenchang, 571339, China
- National Key Laboratory for Tropical Crop Breeding, Haikou, 571101, China
| | - Shuanghong Cheng
- College of Tropical Crops, Yunnan Agricultural University, Pu'er, Kunming, 665000, China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Key Laboratory for Tropical Crop Breeding, Wenchang, 571339, China.
- National Key Laboratory for Tropical Crop Breeding, Haikou, 571101, China.
| | - Xiaoyu Liu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Key Laboratory for Tropical Crop Breeding, Wenchang, 571339, China.
- National Key Laboratory for Tropical Crop Breeding, Haikou, 571101, China.
| |
Collapse
|
26
|
Yang P, Wang W, Hu Y, Wang Y, Xu Z, Liao X. Exploring high hydrostatic pressure effects on anthocyanin binding to serum albumin and food-derived transferrins. Food Chem 2024; 452:139544. [PMID: 38723571 DOI: 10.1016/j.foodchem.2024.139544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
This study investigated the effects of high hydrostatic pressure (HHP) on the binding interactions of cyanindin-3-O-glucoside (C3G) to bovine serum albumin, human serum albumin (HSA), bovine lactoferrin, and ovotransferrin. Fluorescence quenching revealed that HHP reduced C3G-binding affinity to HSA, while having a largely unaffected role for the other proteins. Notably, pretreating HSA at 500 MPa significantly increased its dissociation constant with C3G from 24.7 to 34.3 μM. Spectroscopic techniques suggested that HSA underwent relatively pronounced tertiary structural alterations after HHP treatments. The C3G-HSA binding mechanisms under pressure were further analyzed through molecular dynamics simulation. The localized structural changes in HSA under pressure might weaken its interaction with C3G, particularly polar interactions such as hydrogen bonds and electrostatic forces, consequently leading to a decreased binding affinity. Overall, the importance of pressure-induced structural alterations in proteins influencing their binding with anthocyanins was highlighted, contributing to optimizing HHP processing for anthocyanin-based products.
Collapse
Affiliation(s)
- Peiqing Yang
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Wenxin Wang
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Yongtao Wang
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhenzhen Xu
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaojun Liao
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
27
|
do Rosario V, Lorzadeh E, Brodaty H, Anstey KJ, Chan K, Roodenrys S, Kent K, Bliokas V, Phillipson L, Weston-Green K, Francois ME, Jiang X, George J, Potter J, Batterham MJ, Charlton K. Assessing the effect of anthocyanins through diet and supplementation on cognitive function in older adults at risk for dementia: protocol for a randomised controlled trial. BMJ Open 2024; 14:e086435. [PMID: 39260845 PMCID: PMC11409387 DOI: 10.1136/bmjopen-2024-086435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
INTRODUCTION Promising evidence is emerging for the procognitive, anti-inflammatory and neuroprotective properties of dietary flavonoids, particularly anthocyanins that provide red, purple and blue plant pigments. METHODS AND ANALYSIS The 'Food for Thought' study is a multicentre, 6-month randomised, parallel 3-arm clinical trial. Its primary aim is to investigate whether anthocyanin consumption, either through diet or supplementation, can prevent memory loss progression and improve inflammatory and cardiovascular health in older adults at risk for dementia. Eligible participants will include those aged 60-85 years with a diagnosis of amnestic mild cognitive impairment or with a self-referral of memory concerns and scoring ≤13 on the Memory Index Score within the Telephone Montreal Cognitive Assessment screening test. Participants will be randomised to one of three arms: High anthocyanin ('purple foods') diet (aiming for a target of 250 mg anthocyanins/day); freeze-dried product derived from blackcurrants (250 mg anthocyanins/day); or control (coloured maltose powder). The primary outcome is auditory anterograde memory functioning assessed by the Buschke and Grober Free and Cued Selective Reminding Test-Immediate Recall. Secondary outcomes are additional cognitive functions including processing speed, working memory, aspects of executive functioning (attentional shifting and word generativity) and premorbid estimate as well as subjective memory problems and self-reported depression symptoms. Additional secondary outcomes are blood pressure, inflammatory biomarkers, brain-derived neurotrophic factor, fatty acid profile, apolipoprotein E and polyphenol metabolites, gut microbiota composition and function and vascular and microvascular endothelial function tests. Repeated measures analysis of variance and/or mixed linear modelling will evaluate changes over time, with the inclusion of covariates. ETHICS AND DISSEMINATION Ethics approval has been obtained from the Greater Western Human Research Ethics Committee (2021/ETH12083). A Consumer Advisory Group was established to guide and review the protocol and dissemination strategy. The results of this trial are intended to be published in a peer-reviewed journal. TRIAL SPONSOR National Health and Medical Research Centre Dementia Collaborative Research Centre.Start date of clinical trial: 02 September 2022.Expected end date: 11 October 2024. TRIAL REGISTRATION NUMBER ACTRN12622000065796.
Collapse
Affiliation(s)
- Vinicius do Rosario
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Elnaz Lorzadeh
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Kaarin J Anstey
- Neuroscience Research Australia, University of New South Wales, Sydney, New South Wales, Australia
- UNSW Ageing Futures Institute, Sydney, New South Wales, Australia
| | - Karina Chan
- Centre for Healthy Brain Ageing, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Steven Roodenrys
- School of Psychology, Faculty of Arts and Social Science, University of Wollongong, Wollongong, New South Wales, Australia
| | - Katherine Kent
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
- School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - Vida Bliokas
- School of Psychology, Faculty of Arts and Social Science, University of Wollongong, Wollongong, New South Wales, Australia
| | - Lyn Phillipson
- School of Health and Society, Faculty of Arts and Social Science, University of Wollongong, Wollongong, New South Wales, Australia
| | - Katrina Weston-Green
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
- Molecular Horizons Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Monique E Francois
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Xiaotao Jiang
- Microbiome Research Centre (MRC), University of New South Wales, Sydney, New South Wales, Australia
| | - Jenson George
- Department of Agriculture and Fisheries, Queensland Government, Brisbane, Queensland, Australia
| | - Jan Potter
- Division of Aged Care, Rehabilitation and Palliative Care, Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Marijka J Batterham
- National Institute for Applied Statistical Research Australia and the Statistical Consulting Centre, School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Karen Charlton
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
28
|
Mitharwal S, Saini A, Chauhan K, Taneja NK, Oberoi HS. Unveiling the nutrient-wealth of black soybean: A holistic review of its bioactive compounds and health implications. Compr Rev Food Sci Food Saf 2024; 23:e70001. [PMID: 39267191 DOI: 10.1111/1541-4337.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
Legumes, an essential component of staple diets, hold a prominent place in global cuisines. Soybean stands out as a widely cultivated legume and is valued for its high protein content, dietary fiber, and rich micronutrients. Several varieties of soybean are available, of which black and yellow varieties show dominance in varied countries and cultures. Over time, the cultivation and consumption of black soybeans have markedly reduced compared to the yellow variety. Despite its rich nutritional and therapeutic indices, it has lost its usage over time. Traditionally, it was utilized in oriental medicine for detoxification and anti-inflammatory potential. However, the antinutrients present in black soybean limit its utilization in the food sector due to their interference with overall nutrient absorption. Several studies in the last few decades have focused on reducing the content of antinutritional factors. However, the information on the use of different processing techniques, both singly and in blends, to reduce antinutrients and enhance the bioaccessibility, bioavailability, and bioactivity of bioactive compounds and varied nutrients is limited and fragmented. Furthermore, studies have highlighted black soybeans' protective effects against various degenerative diseases. However, the studies on the effect of processing to enhance its antioxidative properties to make them a sought-after food commodity with nutraceutical potential and therapeutic efficacy are limited and widely scattered. The review aims to consolidate knowledge of diverse processing methods to improve their nutritional and bioactive profile for wider applications in the food and pharmaceutical industries. Further, it has also highlighted its nutraceutical properties for developing varied functional foods against degenerative diseases to have better therapeutic efficacy.
Collapse
Affiliation(s)
- Swati Mitharwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli, India
| | - Ayushi Saini
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli, India
| | - Komal Chauhan
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli, India
| | - Neetu K Taneja
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli, India
| | - Harinder Singh Oberoi
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli, India
| |
Collapse
|
29
|
Li ZY, Ma N, Sun P, Zhang FJ, Li L, Li H, Zhang S, Wang XF, You CX, Zhang Z. Fungal invasion-induced accumulation of salicylic acid promotes anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module in apple fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1859-1879. [PMID: 38923625 DOI: 10.1111/tpj.16890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
In the field, necrosis area induced by pathogens is usually surrounded by a red circle in apple fruits. However, the underlying molecular mechanism of this phenomenon remains unclear. In this study, we demonstrated that accumulated salicylic acid (SA) induced by fungal infection promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module in apple (Malus domestica). Inoculating apple fruits with Valsa mali or Botryosphaeria dothidea induced a red circle surrounding the necrosis area, which mimicked the phenotype observed in the field. The red circle accumulated a high level of anthocyanins, which was positively correlated with SA accumulation stimulated by fungal invasion. Further analysis showed that SA promoted anthocyanin biosynthesis in a dose-dependent manner in both apple calli and fruits. We next demonstrated that MdNPR1, a master regulator of SA signaling, positively regulated anthocyanin biosynthesis in both apple and Arabidopsis. Moreover, MdNPR1 functioned as a co-activator to interact with and enhance the transactivation activity of MdTGA2.2, which could directly bind to the promoters of anthocyanin biosynthetic and regulatory genes to promote their transcription. Suppressing expression of either MdNPR1 or MdTGA2.2 inhibited coloration of apple fruits, while overexpressing either of them significantly promoted fruit coloration. Finally, we revealed that silencing either MdNPR1 or MdTGA2.2 in apple fruits repressed SA-induced fruit coloration. Therefore, our data determined that fungal-induced SA promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module, resulting in a red circle surrounding the necrosis area in apple fruits.
Collapse
Affiliation(s)
- Zhao-Yang Li
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ning Ma
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ping Sun
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Fu-Jun Zhang
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Lianzhen Li
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haojian Li
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shuai Zhang
- College of Chemistry and Material Science, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhenlu Zhang
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
30
|
Liu T, Zheng N, Ma Y, Zhang Y, Lei H, Zhen X, Wang Y, Gou D, Zhao J. Recent advancements in chitosan-based intelligent food freshness indicators: Categorization, advantages, and applications. Int J Biol Macromol 2024; 275:133554. [PMID: 38950804 DOI: 10.1016/j.ijbiomac.2024.133554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
With an increasing emphasis on food safety and public health, there is an ongoing effort to develop reliable, non-invasive methods to assess the freshness of diverse food products. Chitosan-based food freshness indicators, leveraging properties such as biocompatibility, biodegradability, non-toxicity, and high stability, offer an innovative approach for real-time monitoring of food quality during storage and transportation. This review introduces intelligent food freshness indicators, specifically those utilizing pH-sensitive dyes like anthocyanins, curcumin, alizarin, shikonin, and betacyanin. It highlights the benefits of chitosan-based intelligent food freshness indicators, emphasizing improvements in barrier and mechanical properties, antibacterial activity, and composite film solubility. The application of these indicators in the food industry is then explored, alongside a concise overview of chitosan's limitations. The paper concludes by discussing the challenges and potential areas for future research in the development of intelligent food freshness indicators using chitosan. Thus, chitosan-based smart food preservation indicators represent an innovative approach to providing real-time data for monitoring food quality, offering valuable insights to both customers and retailers, and playing a pivotal role in advancing the food industry.
Collapse
Affiliation(s)
- Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| | - Nan Zheng
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yaomei Ma
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China.
| |
Collapse
|
31
|
Masiala A, Vingadassalon A, Aurore G. Polyphenols in edible plant leaves: an overview of their occurrence and health properties. Food Funct 2024; 15:6847-6882. [PMID: 38853513 DOI: 10.1039/d4fo00509k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Edible plant leaves (EPLs) constitute a major renewable functional plant biomass available all year round, providing an essential source of polyphenols in the global diet. Polyphenols form a large family of antioxidant molecules. They protect against the harmful effects of free radicals, strengthen immunity and stimulate the body's natural defenses thanks to their antibacterial and antiviral functions. This study refers to phenolic compounds from 50 edible plant leaves divided into four categories: green leafy vegetables, underutilized leafy vegetables, leafy spices and leafy drinks. It provides data on the identification, occurrence and pharmacological functions of polyphenols contained in EPLs, and provides a better understanding of trends and gaps in their consumption and study. Certain EPLs, such as moringa (Moringa oleifera Lam.), tea (Camellia sinensis L.) and several leafy spices of the Lamiaceae family, reveal important characteristics and therapeutic potential. The polyphenol composition of EPLs makes them functional plants that offer relevant solutions in the fight against obesity, the management of food insecurity and the prevention of chronic diseases.
Collapse
Affiliation(s)
- Anthony Masiala
- Université des Antilles, COVACHIM M2E (EA 3592), UFR SEN, Campus de Fouillole, F-97 110 Pointe-à-Pitre, France.
| | - Audrey Vingadassalon
- Université des Antilles, COVACHIM M2E (EA 3592), UFR SEN, Campus de Fouillole, F-97 110 Pointe-à-Pitre, France.
| | - Guylène Aurore
- Université des Antilles, COVACHIM M2E (EA 3592), UFR SEN, Campus de Fouillole, F-97 110 Pointe-à-Pitre, France.
| |
Collapse
|
32
|
Sharara A, Badran A, Hijazi A, Albahri G, Bechelany M, Mesmar JE, Baydoun E. Comprehensive Review of Cyclamen: Development, Bioactive Properties, and Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:848. [PMID: 39065699 PMCID: PMC11279937 DOI: 10.3390/ph17070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Plants are being researched as potential sources of novel drugs, which has led to a recent acceleration in the discovery of new bioactive compounds. Research on tissue culture technology for the synthesis and processing of plant compounds has skyrocketed, surpassing all expectations. These plants can be bought either raw or as extracts, where some of the chemicals are extracted by mashing the plant in water, alcohol, or another solvent. The use of herbal medicine may open new chances for reducing the onset of infections and treating different diseases including cancer. A perennial plant that blooms in the winter, Cyclamen, is one of the most widely used potted flowers in many nations. Alkaloids, flavonoids, phenols, tannins, saponins, sterols, and glycosides are the main active components of Cyclamen. Analgesic, cytotoxic, antioxidant, antimicrobial, and anti-inflammatory properties have all been demonstrated as potential effects of various extracts of Cyclamen tubers. However, the use of this medicinal plant in official medicine will require further research in the areas of pharmacology. Furthermore, it is necessary to create standard operating procedures for a crude herbal medication. In this regard, this review aims to highlight the key characteristics of the Cyclamen plant, such as its various parts, species, stages of development, and geographic range; pinpoint its intriguing bioactivities, its antioxidant, anti-inflammatory, and its anti-cancerous effects; and ascertain its potential medicinal uses and the main future perspectives.
Collapse
Affiliation(s)
- Aya Sharara
- Plateforme de Recherche et D’Analyse en Sciences de L’Environnement (EDST-PRASE), Beirut P.O. Box 6573/14, Lebanon; (A.S.); (A.H.); (G.A.)
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman P.O. Box 961343, Jordan;
| | - Akram Hijazi
- Plateforme de Recherche et D’Analyse en Sciences de L’Environnement (EDST-PRASE), Beirut P.O. Box 6573/14, Lebanon; (A.S.); (A.H.); (G.A.)
| | - Ghosoon Albahri
- Plateforme de Recherche et D’Analyse en Sciences de L’Environnement (EDST-PRASE), Beirut P.O. Box 6573/14, Lebanon; (A.S.); (A.H.); (G.A.)
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, 34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah 32093, Kuwait
| | - Joelle Edward Mesmar
- Department of Biology, American University of Beirut, Beirut P.O. Box 110236, Lebanon;
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut P.O. Box 110236, Lebanon;
| |
Collapse
|
33
|
Cammareri M, Frary A, Frary A, Grandillo S. Genetic and Biotechnological Approaches to Improve Fruit Bioactive Content: A Focus on Eggplant and Tomato Anthocyanins. Int J Mol Sci 2024; 25:6811. [PMID: 38928516 PMCID: PMC11204163 DOI: 10.3390/ijms25126811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins are a large group of water-soluble flavonoid pigments. These specialized metabolites are ubiquitous in the plant kingdom and play an essential role not only in plant reproduction and dispersal but also in responses to biotic and abiotic stresses. Anthocyanins are recognized as important health-promoting and chronic-disease-preventing components in the human diet. Therefore, interest in developing food crops with improved levels and compositions of these important nutraceuticals is growing. This review focuses on work conducted to elucidate the genetic control of the anthocyanin pathway and modulate anthocyanin content in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.), two solanaceous fruit vegetables of worldwide relevance. While anthocyanin levels in eggplant fruit have always been an important quality trait, anthocyanin-based, purple-fruited tomato cultivars are currently a novelty. As detailed in this review, this difference in the anthocyanin content of the cultivated germplasm has largely influenced genetic studies as well as breeding and transgenic approaches to improve the anthocyanin content/profile of these two important solanaceous crops. The information provided should be of help to researchers and breeders in devising strategies to address the increasing consumer demand for nutraceutical foods.
Collapse
Affiliation(s)
- Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35433, Turkey
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| |
Collapse
|
34
|
Li X, Tian Y, Zuo N, Tang J, Cheng S, Li L, Tan J, Zhang J, Shen W. Cyanidin-3-O-glucoside protects Zearalenone-induced in vitro maturation disorders of porcine oocytes by alleviating NOX4-dependent oxidative stress and endoplasmic reticulum stress in cumulus cells. CHEMOSPHERE 2024; 358:142153. [PMID: 38688352 DOI: 10.1016/j.chemosphere.2024.142153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Zearalenone (ZEN) is widely found in foodstuffs and has serious harmful effects on female fertility, especially in pigs. Cyanidin-3-O-glucoside (C3G), a type of anthocyanin, exists in most dark fruits and vegetables; it has many positive dietary effects including as an antioxidant, anti-inflammatory, or anti-apoptotic agent. However, the beneficial effects of C3G alongside ZEN-induced damage in porcine oocytes and the underlying molecular mechanism have not been investigated. In this work, porcine cumulus-oocyte complexes (COCs) were divided into Control (Ctrl), ZEN, ZEN + C3G (Z + C), and C3G, and treated for 44-46 h in vitro. The results showed that C3G could alleviate ZEN-induced disorders of first polar body (PBI) extrusion, abnormalities of spindle assembly, cortical granule distribution, and mitochondrial distribution; these results were produced via restoring transzonal projections (TZPs), and inhibiting nicotinamide adenine dinucleotide phosphate oxidase (NOX4)-dependent oxidative stress and 'glucose regulatory protein 78/protein kinase-like endoplasmic reticulum kinase/α subunit of eukaryotic initiation factor 2α/activating transcription factor 4/C/EBP-homologous protein' (GRP78/PERK/eIF2α/ATF4/CHOP)-mediated endoplasmic reticulum stress (ERS) during oocyte maturation. Moreover, the over-expression of NOX4 in cumulus cells could result in a significant increase in ROS levels and ER fluorescence intensity in oocytes. In conclusion, C3G promoted in vitro maturation of porcine oocytes exposed to ZEN via mitigating NOX4-dependent oxidative stress and ERS in cumulus cells. These results contribute to our comprehension of the molecular mechanisms underlying the protective effects of C3G against ZEN toxicity in porcine oocytes, and they provide a novel theoretical foundation and strategy for future applications of C3G in the improvement of female reproduction.
Collapse
Affiliation(s)
- Xiuxiu Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China; College of Fisheries, Henan Normal University, Xinxiang, 453007, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Yu Tian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ning Zuo
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiatian Tang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shunfeng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinghe Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Jianxin Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
35
|
Divya KP, Kanwar N, Anuranjana PV, Kumar G, Beegum F, George KT, Kumar N, Nandakumar K, Kanwal A. SIRT6 in Regulation of Mitochondrial Damage and Associated Cardiac Dysfunctions: A Possible Therapeutic Target for CVDs. Cardiovasc Toxicol 2024; 24:598-621. [PMID: 38689163 DOI: 10.1007/s12012-024-09858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular diseases (CVDs) can be described as a global health emergency imploring possible prevention strategies. Although the pathogenesis of CVDs has been extensively studied, the role of mitochondrial dysfunction in CVD development has yet to be investigated. Diabetic cardiomyopathy, ischemic-reperfusion injury, and heart failure are some of the CVDs resulting from mitochondrial dysfunction Recent evidence from the research states that any dysfunction of mitochondria has an impact on metabolic alteration, eventually causes the death of a healthy cell and therefore, progressively directing to the predisposition of disease. Cardiovascular research investigating the targets that both protect and treat mitochondrial damage will help reduce the risk and increase the quality of life of patients suffering from various CVDs. One such target, i.e., nuclear sirtuin SIRT6 is strongly associated with cardiac function. However, the link between mitochondrial dysfunction and SIRT6 concerning cardiovascular pathologies remains poorly understood. Although the Role of SIRT6 in skeletal muscles and cardiomyocytes through mitochondrial regulation has been well understood, its specific role in mitochondrial maintenance in cardiomyocytes is poorly determined. The review aims to explore the domain-specific function of SIRT6 in cardiomyocytes and is an effort to know how SIRT6, mitochondria, and CVDs are related.
Collapse
Affiliation(s)
- K P Divya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Navjot Kanwar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab, Technical University, Bathinda, Punjab, 151005, India
| | - P V Anuranjana
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Gautam Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- School of Pharmacy, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology, National Institute of Pharmaceutical Educations and Research, Hajipur, Bihar, 844102, India
| | - K Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab, 151005, India.
| |
Collapse
|
36
|
Rodríguez-Aguilar F, Ortega-Regules AE, Ramírez-Rodrigues MM. Influence of time-temperature in the antioxidant activity, anthocyanin and polyphenols profile, and color of Ardisia compressa K. extracts, with the addition of sucrose or citric acid. Food Chem 2024; 440:138181. [PMID: 38118319 DOI: 10.1016/j.foodchem.2023.138181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
The objective of this study was to analyze and optimize the influence of heating time and citric acid (CA) or sucrose addition of Ardisia compressa K. extracts on phenolic compounds (TPC), monomeric anthocyanins (MAA), antioxidant activity (TAC), color density (CD), and hue tint (HT), using a full factorial design. Extractions were performed: temperature (25, 50, or 70 °C), time (15, 30, 60, or 90 min), CA (0.0 or 0.02 g), and sucrose (0.0 or 5.0 g). HPLC-DAD-ESI-MS was conducted in extracts without additives and with the addition of CA (0.02 g) or sucrose (5.0 g), at 25, 50, or 70 °C for 15 min. CA-added extracts showed maximum TPC, MAA, TAC (DDPH and ABTS assays), and CD values, with the lowest HT values. Malvidin 3-O-galactoside and myricetin-O-hexoside were the predominant anthocyanin and non-anthocyanin polyphenols. Time, temperature, and solute influenced the optimized extraction of TPC, MAA, anthocyanins, TAC, CD, and HT.
Collapse
Affiliation(s)
- Fernanda Rodríguez-Aguilar
- Department of Chemical, Food and Environmental Engineering, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico.
| | - Ana Eugenia Ortega-Regules
- Department of Chemical, Food and Environmental Engineering, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico.
| | - Milena M Ramírez-Rodrigues
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
37
|
Mandal B, Das R, Mondal S. Anthocyanins: Potential phytochemical candidates for the amelioration of non-alcoholic fatty liver disease. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:373-391. [PMID: 38354975 DOI: 10.1016/j.pharma.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is described by too much hepatic fat deposition causing steatosis, which further develops into nonalcoholic steatohepatitis (NASH), defined by necroinflammation and fibrosis, progressing further to hepatic cirrhosis, hepatocellular carcinoma, and liver failure. NAFLD is linked to different aspects of the metabolic syndrome like obesity, insulin resistance, hypertension, and dyslipidemia, and its pathogenesis involves several elements including diet, obesity, disruption of lipid homeostasis, and a high buildup of triglycerides and other lipids in liver cells. It is therefore linked to an increase in the susceptibility to developing diabetes mellitus and cardiovascular diseases. Several interventions exist regarding its management, but the availability of natural sources through diet will be a benefit in dealing with the disorder due to the immensely growing dependence of the population worldwide on natural sources owing to their ability to treat the root cause of the disease. Anthocyanins (ACNs) are naturally occurring polyphenolic pigments that exist in the form of glycosides, which are the glucosides of anthocyanidins and are produced from flavonoids via the phenyl propanoid pathway. To understand their mode of action in NAFLD and their therapeutic potential, the literature on in vitro, in vivo, and clinical trials on naturally occurring ACN-rich sources was exhaustively reviewed. It was concluded that ACNs show their potential in the treatment of NAFLD through their antioxidant properties and their efficacy to control lipid metabolism, glucose homeostasis, transcription factors, and inflammation. This led to the conclusion that ACNs possess efficacy in the amelioration of NAFLD and the various features associated with it. However, additional clinical trials are required to justify the potential of ACNs in NAFLD.
Collapse
Affiliation(s)
- Bitasta Mandal
- School of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata 700126, India.
| | - Rakesh Das
- School of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata 700126, India.
| | - Sandip Mondal
- School of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata 700126, India.
| |
Collapse
|
38
|
Wu X, Yang M, Liu C, Kuang R, He H, Zhou C, Wei Y. Transcriptome, Plant Hormone, and Metabolome Analysis Reveals the Mechanism of Purple Pericarp Formation in 'Zihui' Papaya ( Carica papaya L.). Molecules 2024; 29:1485. [PMID: 38611765 PMCID: PMC11013584 DOI: 10.3390/molecules29071485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
The color of the pericarp is a crucial characteristic that influences the marketability of papaya fruit. Prior to ripening, normal papaya exhibits a green pericarp, whereas the cultivar 'Zihui' displays purple ring spots on the fruit tip, which significantly affects the fruit's visual appeal. To understand the mechanism behind the formation of purple pericarp, this study performed a thorough examination of the transcriptome, plant hormone, and metabolome. Based on the UPLC-ESI-MS/MS system, a total of 35 anthocyanins and 11 plant hormones were identified, with 27 anthocyanins and two plant hormones exhibiting higher levels of abundance in the purple pericarp. In the purple pericarp, 14 anthocyanin synthesis genes were up-regulated, including CHS, CHI, F3H, F3'5'H, F3'H, ANS, OMT, and CYP73A. Additionally, through co-expression network analysis, three MYBs were identified as potential key regulators of anthocyanin synthesis by controlling genes encoding anthocyanin biosynthesis. As a result, we have identified numerous key genes involved in anthocyanin synthesis and developed new insights into how the purple pericarp of papaya is formed.
Collapse
Affiliation(s)
| | | | | | | | | | - Chenping Zhou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China; (X.W.)
| | - Yuerong Wei
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China; (X.W.)
| |
Collapse
|
39
|
Ramezan Y, Kamkari A, Lashkari A, Moradi D, Tabrizi AN. A review on mechanisms and impacts of cold plasma treatment as a non-thermal technology on food pigments. Food Sci Nutr 2024; 12:1502-1527. [PMID: 38455202 PMCID: PMC10916563 DOI: 10.1002/fsn3.3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 03/09/2024] Open
Abstract
Food characteristics like appearance and color, which are delicate parameters during food processing, are important determinants of product acceptance because of the growing trend toward more diverse and healthier diets worldwide, as well as the increase in population and its effects on food consumption. Cold plasma (CP), as a novel technology, has marked a new trend in agriculture and food processing due to the various advantages of meeting both the physicochemical and nutritional characteristics of food products with minimal changes in physical, chemical, nutritional, and sensorial properties. CP processing has a positive impact on food quality, including the preservation of natural food pigments. This article describes the influence of CP on natural food pigments and color changes in vegetables and fruits. Attributes of natural pigments, such as carotenoids, chlorophyll, anthocyanin, betalain, and myoglobin, are presented. In addition, the characteristics and mechanisms of CP processes were studied, and the effect of CP on mentioned pigments was investigated in recent literature, showing that the use of CP technology led to better preservation of pigments, improving their preservation and extraction yield. While certain modest and undesirable changes in color are documented, overall, the exposure of most food items to CP resulted in minor loss and even beneficial influence on color. More study is needed since not all elements of CP treatment are currently understood. The negative and positive effects of CP on natural food pigments in various products are discussed in this review.
Collapse
Affiliation(s)
- Yousef Ramezan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition & Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Amir Kamkari
- Department of Food Engineering, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Armita Lashkari
- Department of Food Science and TechnologyIslamic Azad University, Tehran North BranchTehranIran
| | - Donya Moradi
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition & Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abbas Najafi Tabrizi
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
40
|
Zhao S, Fu S, Cao Z, Liu H, Huang S, Li C, Zhang Z, Yang H, Wang S, Luo J, Long T. OsUGT88C3 Encodes a UDP-Glycosyltransferase Responsible for Biosynthesis of Malvidin 3- O-Galactoside in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:697. [PMID: 38475543 DOI: 10.3390/plants13050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The diversity of anthocyanins is largely due to the action of glycosyltransferases, which add sugar moieties to anthocyanidins. Although a number of glycosyltransferases have been identified to glycosylate anthocyanidin in plants, the enzyme that catalyzes malvidin galactosylation remains unclear. In this study, we identified three rice varieties with different leaf color patterns, different anthocyanin accumulation patterns, and different expression patterns of anthocyanin biosynthesis genes (ABGs) to explore uridine diphosphate (UDP)-glycosyltransferases (UGTs) responsible for biosynthesis of galactosylated malvidin. Based on correlation analysis of transcriptome data, nine candidate UGT genes coexpressed with 12 ABGs were identified (r values range from 0.27 to 1.00). Further analysis showed that the expression levels of one candidate gene, OsUGT88C3, were highly correlated with the contents of malvidin 3-O-galactoside, and recombinant OsUGT88C3 catalyzed production of malvidin 3-O-galactoside using UDP-galactose and malvidin as substrates. OsUGT88C3 was closely related to UGTs with flavone and flavonol glycosylation activities in phylogeny. Its plant secondary product glycosyltransferase (PSPG) motif ended with glutamine. Haplotype analysis suggested that the malvidin galactosylation function of OsUGT88C3 was conserved among most of the rice germplasms. OsUGT88C3 was highly expressed in the leaf, pistil, and embryo, and its protein was located in the endoplasmic reticulum and nucleus. Our findings indicate that OsUGT88C3 is responsible for the biosynthesis of malvidin 3-O-galactoside in rice and provide insight into the biosynthesis of anthocyanin in plants.
Collapse
Affiliation(s)
- Sihan Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Shuying Fu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Zhenfeng Cao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Hao Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Sishu Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Chun Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Zhonghui Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Hongbo Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Shouchuang Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Tuan Long
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| |
Collapse
|
41
|
Prada-Muñoz J, Coy-Barrera E. Targeted Anthocyanin Profiling of Fruits from Three Southern Highbush Blueberry Cultivars Propagated in Colombia. Molecules 2024; 29:691. [PMID: 38338435 PMCID: PMC10855998 DOI: 10.3390/molecules29030691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The blueberry, a deciduous shrub in the Ericaceae family, is celebrated for its delightful flavor, sweetness, and abundance of anthocyanins and antioxidants, qualities that have garnered significant attention for their potential health benefits. Blueberries grown in diverse environments and exhibit varied anthocyanin profiles, often influenced by factors such as altitude and climate. Varietal groups worldwide have been bred and categorized based on their growth habits and specific cold requirements, particularly with southern highbush cultivars thriving in temperate climates, demonstrating tolerance to higher altitudes or cooler climates-a result of hybridizations involving various Vaccinium species. In the Colombian Andes, southern highbush blueberries thrive in unique high-altitude conditions, leading to exceptional quality due to the region's cool climate and specific soil characteristics. In this context, this study aimed to chemically characterize and differentiate three southern highbush blueberry cultivars (i.e., 'Biloxi,' 'Legacy' and 'Sharpblue') cultivated in a Colombian Andean plateau and compare them to three commercially available highbush blueberries. This comprehensive evaluation involved examining total phenols, flavonoids, anthocyanin content, and DPPH· free-radical scavenging capacity, as well as conducting anthocyanin-targeted profiling via HPLC-DAD-HRMS. Through supervised multivariate analyses such as sPLS-DA, this study delved into the pattern recognition of those anthocyanins that could potentially serve as markers for quality and cultivar-related chemical trait determination. These findings locate blueberry-derived anthocyanins in a metabolic context and afford some insights into southern highbush blueberry cultivar differentiation to be used for further purposes.
Collapse
Affiliation(s)
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| |
Collapse
|
42
|
Kumar GA, Kumar S, Bhardwaj R, Swapnil P, Meena M, Seth CS, Yadav A. Recent advancements in multifaceted roles of flavonoids in plant-rhizomicrobiome interactions. FRONTIERS IN PLANT SCIENCE 2024; 14:1297706. [PMID: 38250451 PMCID: PMC10796613 DOI: 10.3389/fpls.2023.1297706] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
The rhizosphere consists of a plethora of microbes, interacting with each other as well as with the plants present in proximity. The root exudates consist of a variety of secondary metabolites such as strigolactones and other phenolic compounds such as coumarin that helps in facilitating communication and forming associations with beneficial microbes in the rhizosphere. Among different secondary metabolites flavonoids (natural polyphenolic compounds) continuously increasing attention in scientific fields for showing several slews of biological activities. Flavonoids possess a benzo-γ-pyrone skeleton and several classes of flavonoids have been reported on the basis of their basic structure such as flavanones, flavonols, anthocyanins, etc. The mutualistic association between plant growth-promoting rhizobacteria (PGPR) and plants have been reported to help the host plants in surviving various biotic and abiotic stresses such as low nitrogen and phosphorus, drought and salinity stress, pathogen attack, and herbivory. This review sheds light upon one such component of root exudate known as flavonoids, which is well known for nodulation in legume plants. Apart from the well-known role in inducing nodulation in legumes, this group of compounds has anti-microbial and antifungal properties helping in establishing defensive mechanisms and playing a major role in forming mycorrhizal associations for the enhanced acquisition of nutrients such as iron and phosphorus. Further, this review highlights the role of flavonoids in plants for recruiting non-mutualistic microbes under stress and other important aspects regarding recent findings on the functions of this secondary metabolite in guiding the plant-microbe interaction and how organic matter affects its functionality in soil.
Collapse
Affiliation(s)
- Gokul Anil Kumar
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, India
| | - Rupesh Bhardwaj
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| | - Prashant Swapnil
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | | | - Ankush Yadav
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| |
Collapse
|
43
|
Rosales-Murillo S, Sánchez-Bodón J, Hernández Olmos S, Ibarra-Vázquez M, Guerrero-Ramírez L, Pérez-Álvarez L, Vilas-Vilela J. Anthocyanin-Loaded Polymers as Promising Nature-Based, Responsive, and Bioactive Materials. Polymers (Basel) 2024; 16:163. [PMID: 38201828 PMCID: PMC10781030 DOI: 10.3390/polym16010163] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Anthocyanins are a specific group of molecules found in nature that have recently received increasing attention due to their interesting biological and colorimetric properties that have been successfully applied in several fields such as food preservation and biomedicine. Consequently, reviews devoted to a general overview of these flavonoids have proliferated in recent years. Meanwhile, the incorporation of anthocyanins into polymeric systems has become an interesting strategy to widen the applicability of these molecules and develop new smart and functional polymers in the above cited areas. However, anthocyanin-based polymers have been scarcely reviewed in the literature. Accordingly, this review aims to be a systematic summary of the most recent approaches for the incorporation of anthocyanins into macro-, micro-, or nanostructured polymers. Moreover, this work describes the fundamentals of the applicability of smart anthocyanin-based polymers and offers an updated review of their most interesting applications as sensors, biological regulators, and active materials.
Collapse
Affiliation(s)
- S.S. Rosales-Murillo
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - Julia Sánchez-Bodón
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
| | - S.L. Hernández Olmos
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - M.F. Ibarra-Vázquez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
- Technological University of Jalisco, Guadalajara 44970, Mexico
| | - L.G. Guerrero-Ramírez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - L. Pérez-Álvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - J.L. Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
44
|
Chen Y, Zhan C, Li X, Pan T, Yao Y, Tan Y, Wei G. Five similar anthocyanidin molecules display distinct disruptive effects and mechanisms of action on Aβ 1-42 protofibril: A molecular dynamic simulation study. Int J Biol Macromol 2024; 256:128467. [PMID: 38035959 DOI: 10.1016/j.ijbiomac.2023.128467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Alzheimer's disease (AD) is associated with the deposition of amyloid-β (Aβ) fibrillary aggregates. Disaggregation of Aβ fibrils is considered as one of the promising AD treatments. Recent experimental studies showed that anthocyanidins, one type of flavonoids abundant in fruits/vegetables, can disaggregate Aβ fibrillary aggregates. However, their relative disruptive capacities and underlying mechanisms are largely unknown. Herein, we investigated the detailed interactions between five most common anthocyanidins (cyanidin, aurantinidin, peonidin, delphinidin, and pelargonidin) and Aβ protofibril (an intermediate of Aβ fibrillization) by performing microsecond molecular dynamic simulations. We found that all five anthocyanidins can destroy F4-L34-V36 hydrophobic core and K28-A42 salt bridge, leading to Aβ protofibril destabilization. Aurantinidin exhibits the strongest damage to Aβ protofibril (with the most severe disruption on K28-A42 salt bridges), followed by cyanidin (with the most destructive effect on F4-L34-V36 core). Detailed analyses reveal that the protofibril-destruction capacities of anthocyanidins are subtly modulated by the interplay of anthocyanidin-protofibril hydrogen bonding, hydrophobic, aromatic stacking interactions, which are dictated by the number or location of hydroxyl/methyl groups of anthocyanidins. These findings provide important mechanistic insights into Aβ protofibril disaggregation by anthocyanidins, and suggest that aurantinidin/cyanidin may serve as promising starting-points for the development of new drug candidates against AD.
Collapse
Affiliation(s)
- Yujie Chen
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Chendi Zhan
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tong Pan
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yifei Yao
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yuan Tan
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
45
|
Wang J, Zhao Y, Sun B, Yang Y, Wang S, Feng Z, Li J. The structure of anthocyanins and the copigmentation by common micromolecular copigments: A review. Food Res Int 2024; 176:113837. [PMID: 38163689 DOI: 10.1016/j.foodres.2023.113837] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Under natural physiological conditions, anthocyanins can keep bright and stable color for a long time due to the relatively stable acid-base environment of plant vacuoles and the copigmentation from various copigment substances, such as polyphenols, nucleotides, metallic ions and other substances. Therefore, the copigmentation caused by copigments is considered an effective way to stabilize anthocyanins against adverse environmental conditions. This is attributed to the covalent and noncovalent interactions between colored forms of anthocyanins (flavylium ions and quinoidal bases) and colorless or pale yellow organic molecules (copigments). These interactions are usually manifested in both hyperchromic effect and bathochromic shifts. In addition to making anthocyanins more stable, the copigmentation also could make an important contribution to the diversification of their tone. Based on the molecular structure of anthocyanins, this review focuses on the interaction mode of auxochrome groups or copigments with anthocyanins and their effects on the chemical and color stability of anthocyanins.
Collapse
Affiliation(s)
- Jiadong Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tian Jin 300134, China
| | - Yanqiao Zhao
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tian Jin 300134, China.
| | - Bing Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tian Jin 300134, China
| | - Yutong Yang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tian Jin 300134, China
| | - Shaoping Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tian Jin 300134, China
| | - Zirui Feng
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tian Jin 300134, China
| | - Jianying Li
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tian Jin 300134, China
| |
Collapse
|
46
|
Bhattacharjee B, Chakrovorty A, Biswas M, Samadder A, Nandi S. To Explore the Putative Molecular Targets of Diabetic Nephropathy and their Inhibition Utilizing Potential Phytocompounds. Curr Med Chem 2024; 31:3752-3790. [PMID: 37211853 DOI: 10.2174/0929867330666230519112312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND This review critically addresses the putative molecular targets of Diabetic Nephropathy (DN) and screens effective phytocompounds that can be therapeutically beneficial, and highlights their mechanistic modalities of action. INTRODUCTION DN has become one of the most prevalent complications of clinical hyperglycemia, with individual-specific variations in the disease spectrum that leads to fatal consequences. Diverse etiologies involving oxidative and nitrosative stress, activation of polyol pathway, inflammasome formation, Extracellular Matrix (ECM) modifications, fibrosis, and change in dynamics of podocyte functional and mesangial cell proliferation adds up to the clinical complexity of DN. Current synthetic therapeutics lacks target-specific approach, and is associated with the development of inevitable residual toxicity and drug resistance. Phytocompounds provides a vast diversity of novel compounds that can become an alternative therapeutic approach to combat the DN. METHODS Relevant publications were searched and screened from research databases like GOOGLE SCHOLAR, PUBMED and SCISEARCH. Out of 4895 publications, the most relevant publications were selected and included in this article. RESULT This study critically reviews over 60 most promising phytochemical and provides with their molecular targets, that can be of pharmacological significance in context to current treatment and concomitant research in DN. CONCLUSION This review highlights those most promising phytocompounds that have the potential of becoming new safer naturally-sourced therapeutic candidates and demands further attention at clinical level.
Collapse
Affiliation(s)
- Banani Bhattacharjee
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arnob Chakrovorty
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Maharaj Biswas
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
47
|
Jiang Y, Li X, Zhang Y, Wu B, Li Y, Tian L, Sun J, Bai W. Mechanism of action of anthocyanin on the detoxification of foodborne contaminants-A review of recent literature. Compr Rev Food Sci Food Saf 2024; 23:e13259. [PMID: 38284614 DOI: 10.1111/1541-4337.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024]
Abstract
Foodborne contaminants refer to substances that are present in food and threaten food safety. Due to the progress in detection technology and the rising concerns regarding public health, there has been a surge in research focusing on the dangers posed by foodborne contaminants. These studies aim to explore and implement strategies that are both safe and efficient in mitigating the associated risks. Anthocyanins, a class of flavonoids, are abundantly present in various plant species, such as blueberries, grapes, purple sweet potatoes, cherries, mulberries, and others. Numerous epidemiological and nutritional intervention studies have provided evidence indicating that the consumption of anthocyanins through dietary intake offers a range of protective effects against the detrimental impact of foodborne contaminants. The present study aims to differentiate between two distinct subclasses of foodborne contaminants: those that are generated during the processing of food and those that originate from the surrounding environment. Furthermore, the impact of anthocyanins on foodborne contaminants was also summarized based on a review of articles published within the last 10 years. However, further investigation is warranted regarding the mechanism by which anthocyanins target foodborne contaminants, as well as the potential impact of individual variations in response. Additionally, it is important to note that there is currently a dearth of clinical research examining the efficacy of anthocyanins as an intervention for mitigating the effects of foodborne pollutants. Thus, by exploring the detoxification effect and mechanism of anthocyanins on foodborne pollutants, this review thereby provides evidence, supporting the utilization of anthocyanin-rich diets as a means to mitigate the detrimental effects of foodborne contaminants.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- The Sixth Affiliated Hospital, Jinan University, Dongguan, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Biyu Wu
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yuxi Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
48
|
Yuan D, Guo Y, Pu F, Yang C, Xiao X, Du H, He J, Lu S. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chem 2024; 430:137115. [PMID: 37566979 DOI: 10.1016/j.foodchem.2023.137115] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Flavonoids have multiple favorable bioactivities including antioxidant, anti-inflammatory, and antitumor. Currently, flavonoid-containing dietary supplements are widely tested in clinical trials for the prevention and/or treatment of multiple diseases. However, the clinical application of flavonoids is largely compromised by their low bioavailability and bioactivity, probably due to their poor aqueous solubility, intensive metabolism, and low systemic absorption. Therefore, formulating flavonoids into novel delivery systems is a promising approach for overcoming these drawbacks. In this review, we highlight the opportunities and challenges in the clinical use of dietary flavonoids from the perspective of novel delivery systems. First, the classification, sources, and bioactivity of dietary flavonoids are described. Second, the progress of clinical research on flavonoid-based dietary supplements is systematically summarized. Finally, novel delivery systems developed to improve the bioavailability and bioactivity of flavonoids are discussed in detail to broaden the clinical application of dietary flavonoids.
Collapse
Affiliation(s)
- Dan Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yujie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Feiyan Pu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Can Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Xuecheng Xiao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Jianhua He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
49
|
Xiang N, Chang X, Qin L, Li K, Wang S, Guo X. Insights into tissue-specific anthocyanin accumulation in Japanese plum ( Prunus salicina L.) fruits: A comparative study of three cultivars. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 7:100178. [PMID: 37554520 PMCID: PMC10404606 DOI: 10.1016/j.fochms.2023.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/22/2023] [Indexed: 08/10/2023]
Abstract
In the present study, three matured Japanese plum cultivars with different colored peel and flesh were selected to mine the key transcription factors regulating anthocyanin formation in tissues. Results showed that PsMYB10 was correlated with structural genes C4H, F3H, and ANS. PsMYB6 could positively regulate C4H (r = 0.732) and accumulated anthocyanins in Sanhua plum's flesh. Sanhua plum has the highest phenolic and anthocyanin contents (10.24 ± 0.37 gallic acid equivalent mg g-1 dry weight (DW) and 68.95 ± 1.03 μg g-1 DW), resulting itself superior biological activity as 367.1 ± 42.9 Trolox equivalent mg g-1 DW in oxygen radical absorbance capacity value and 72.79 ± 4.34 quercetin equivalent mg g-1 DW in cellular antioxidant activity value. The present work provides new insights into the regulatory mechanism of tissue-specific anthocyanin biosynthesis, confirming the pivotal role of anthocyanins in the biological activity of plums, providing essential support for the development of horticultural products enriched with anthocyanins.
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China
- Department of Food, Nutrition, and Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xiaoxiao Chang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Liuwei Qin
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China
| | - Kun Li
- Crop Research Institute, Key Laboratory of Crops Genetics Improvement of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Siyun Wang
- Department of Food, Nutrition, and Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xinbo Guo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
50
|
Eghbaljoo H, Alizadeh Sani M, Sani IK, Maragheh SM, Sain DK, Jawhar ZH, Pirsa S, Kadi A, Dadkhodayi R, Zhang F, Jafari SM. Development of smart packaging halochromic films embedded with anthocyanin pigments; recent advances. Crit Rev Food Sci Nutr 2023; 65:770-786. [PMID: 39760237 DOI: 10.1080/10408398.2023.2280769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Nowadays, innovative biodegradable packaging based on pH-sensitive natural dyes is being developed. These smart systems quickly inform the food quality to the consumer and monitor fresh foods in real-time. Smart packaging protects food against ambiance risks and simultaneously sends information to users for variations and alterations in the packaging settings. Anthocyanin (ACY), among the natural dyes used as indicators serves as water-soluble flavonoid pigments which made reflection in light in the red-blue range and can detect chemical and microbial alterations in foods based on their pH-susceptible conditions; on the other hand, they have considerable antimicrobial and antioxidant functions that result in the longer shelf life of food products. They also have beneficial properties including anti-cancer and anti-inflammatory functions, avoidance of heart diseases, overweight, and diabetes. Hence, this paper deals with the characteristics of smart packaging films based on anthocyanins, as well as their application in various food industries.
Collapse
Affiliation(s)
- Hadi Eghbaljoo
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Karimi Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Salar Momen Maragheh
- Biotechnology Research Center (BRC), Pateur Institute of Iran, Tehran, Iran
- Department of Biotechnology, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Dinesh Kumar Sain
- Assistant Professor, Department of Chemistry, Faculty of Science, S.P. college sirohi City- sirohi (Rajasthan), India
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, kurdistan Region, Iraq
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Ammar Kadi
- Department of food and biotechnology, South Ural State University, Chelyabinsk, Russia
| | - Rasool Dadkhodayi
- Department of Food Science and Technology, Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran
| |
Collapse
|