1
|
Frezza C, De Vita D, Giampaoli O, Beccaccioli M, Verni M, Conti FV, Fonti L, Franceschin M, Sciubba F, Scintu C, Corsetti L, Di Sotto A, Rizzello CG, Reverberi M, Attorre F. Phytochemical Analysis and Biological Activities of Wollemia nobilis W.G.Jones, K.D.Hill & J.M.Allen Leaves Collected in the Botanical Garden of Rome. PLANTS (BASEL, SWITZERLAND) 2025; 14:1244. [PMID: 40284133 PMCID: PMC12030752 DOI: 10.3390/plants14081244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
In this work, a preliminary screening of the bioactivities of an ethanolic extract obtained from the leaves of Wollemia nobilis W.G.Jones, K.D.Hill & J.M.Allen was carried out to explore its potential pharmaceutical applications. In particular, the radical scavenging, chelating, reducing antiglycative, antimicrobial and antifungal activities as well as the inhibitory effects on the production of aflatoxin B1 in Aspergillus flavus Link were evaluated. The extract demonstrated promising biological activities, although generally with lower potency compared to the positive control. To identify the metabolites potentially responsible for these effects, the extract was subjected to phytochemical analysis evidencing the presence of eight known compounds. Among them, 15-agathic acid methyl ester (1) and ladanein (5) were reported for the first time in this species. Furthermore methyl-(E)-communate (2), 7,4',7″,4‴-tetra-O-methyl-robustaflavone (6), agathisflavone (7) and quinic acid (8) were detected for the first time in the leaf tissue of W. nobilis. Their presence and the presence of isocupressic acid (3) and acetyl-isocupressic acid (4) in this species highlights the taxonomic correlations within the Araucariaceae family and suggests a possible contribution of these compounds in the bioactivities of the extract. However, further studies are required to confirm these contributions and to elucidate their mechanisms of action.
Collapse
Affiliation(s)
- Claudio Frezza
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi Link Campus, Via del Casale di San Pio V, 44, 00165 Rome, Italy
| | - Daniela De Vita
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (O.G.); (M.B.); (M.V.); (F.V.C.); (L.F.); (F.S.); (C.S.); (C.G.R.); (M.R.); (F.A.)
| | - Ottavia Giampaoli
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (O.G.); (M.B.); (M.V.); (F.V.C.); (L.F.); (F.S.); (C.S.); (C.G.R.); (M.R.); (F.A.)
| | - Marzia Beccaccioli
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (O.G.); (M.B.); (M.V.); (F.V.C.); (L.F.); (F.S.); (C.S.); (C.G.R.); (M.R.); (F.A.)
| | - Michela Verni
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (O.G.); (M.B.); (M.V.); (F.V.C.); (L.F.); (F.S.); (C.S.); (C.G.R.); (M.R.); (F.A.)
| | - Federica Violetta Conti
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (O.G.); (M.B.); (M.V.); (F.V.C.); (L.F.); (F.S.); (C.S.); (C.G.R.); (M.R.); (F.A.)
| | - Laura Fonti
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (O.G.); (M.B.); (M.V.); (F.V.C.); (L.F.); (F.S.); (C.S.); (C.G.R.); (M.R.); (F.A.)
| | - Marco Franceschin
- Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Fabio Sciubba
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (O.G.); (M.B.); (M.V.); (F.V.C.); (L.F.); (F.S.); (C.S.); (C.G.R.); (M.R.); (F.A.)
- NMR-Based Metabolomics Laboratory (NMLab), Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Claudio Scintu
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (O.G.); (M.B.); (M.V.); (F.V.C.); (L.F.); (F.S.); (C.S.); (C.G.R.); (M.R.); (F.A.)
| | - Letizia Corsetti
- Dipartimento di Fisiologia e Farmacologia “V. Erspamer”, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.C.); (A.D.S.)
| | - Antonella Di Sotto
- Dipartimento di Fisiologia e Farmacologia “V. Erspamer”, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.C.); (A.D.S.)
| | - Carlo Giuseppe Rizzello
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (O.G.); (M.B.); (M.V.); (F.V.C.); (L.F.); (F.S.); (C.S.); (C.G.R.); (M.R.); (F.A.)
| | - Massimo Reverberi
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (O.G.); (M.B.); (M.V.); (F.V.C.); (L.F.); (F.S.); (C.S.); (C.G.R.); (M.R.); (F.A.)
| | - Fabio Attorre
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (O.G.); (M.B.); (M.V.); (F.V.C.); (L.F.); (F.S.); (C.S.); (C.G.R.); (M.R.); (F.A.)
| |
Collapse
|
2
|
Ribeiro da Silva Júnior R, Oliveira Rodrigues VI, Fernandes Maia de Carvalho C, Barros Moura MM, Feitosa DDM, Feitosa Lima EK, Moraes de Andrade A, Arrais JFDA, de Souza LN, Knackfuss MI, Cavalcanti JRLDP, Fernandes TAADM, dos Santos MAP, Fonseca IAT, da Costa AV, Cardoso GA. Unveiling the Impacts of Cashew Nuts on Oxidative Stress in Rats: A Systematic Review. Antioxidants (Basel) 2025; 14:441. [PMID: 40298810 PMCID: PMC12024215 DOI: 10.3390/antiox14040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
INTRODUCTION The fruit of the cashew tree, known as cashew, is accompanied by the fleshy extension of its stem, referred to as the cashew nut. Rich in phenolic compounds, such as phenolic acids, anthocyanins, flavonoids, carotenoids, polyphenols, as well as vitamins C and E, the cashew nut exhibits antioxidant properties. OBJECTIVE This systematic review investigated the effects of cashew nuts on oxidative stress in rats. METHODOLOGY The study followed PRISMA guidelines and was registered in PROSPERO. Searches were conducted in the Medline (PubMed), EMBASE, BVS, MedRxiv, Science Direct, Scopus, and Web of Science databases. Experimental studies with rats as the target population, evaluating the effects of cashew nut supplementation on oxidative stress, antioxidant enzymatic activities, and inflammatory markers, were included. Exclusion criteria comprised dissertations, reviews, expert opinions, duplicates, and preprints. RESULTS Five studies published between 2018 and 2022 were included, all utilizing cashew nut supplementation as the intervention. The results demonstrated a significant reduction in oxidative stress, an increase in the activity of antioxidant enzymes, such as SOD and catalase, and a decrease in inflammatory markers, including TNF-α and IL-1β. The most effective dose was 100 mg/kg/day, yielding consistent results across studies. CONCLUSION Cashew nuts show potential for reducing oxidative stress, mitigating inflammation, and enhancing antioxidant defenses in rats. However, further clinical studies are required to better explore their benefits in humans, a field that remains less studied compared to other types of nuts.
Collapse
Affiliation(s)
- Roque Ribeiro da Silva Júnior
- Postgraduate Program in Health and Society, State University of Rio Grande do Norte, Mossoró 59607-360, Brazil; (V.I.O.R.); (C.F.M.d.C.); (A.M.d.A.); (J.F.d.A.A.); (L.N.d.S.); (M.I.K.); (J.R.L.d.P.C.); (T.A.A.D.M.F.); (I.A.T.F.); (A.V.d.C.)
- Multicenter Postgraduate Program in Physiological Sciences, State University of Rio Grande do Norte, Mossoró 59607-360, Brazil
| | - Vinicius Ilei Oliveira Rodrigues
- Postgraduate Program in Health and Society, State University of Rio Grande do Norte, Mossoró 59607-360, Brazil; (V.I.O.R.); (C.F.M.d.C.); (A.M.d.A.); (J.F.d.A.A.); (L.N.d.S.); (M.I.K.); (J.R.L.d.P.C.); (T.A.A.D.M.F.); (I.A.T.F.); (A.V.d.C.)
| | - Camila Fernandes Maia de Carvalho
- Postgraduate Program in Health and Society, State University of Rio Grande do Norte, Mossoró 59607-360, Brazil; (V.I.O.R.); (C.F.M.d.C.); (A.M.d.A.); (J.F.d.A.A.); (L.N.d.S.); (M.I.K.); (J.R.L.d.P.C.); (T.A.A.D.M.F.); (I.A.T.F.); (A.V.d.C.)
| | | | - Deymisson Damitene Martins Feitosa
- Multicenter Postgraduate Program in Biochemistry and Molecular Biology (PMBqBM), Rio Grande do Norte State University, Mossoró 59607-360, Brazil; (D.D.M.F.); (E.K.F.L.)
| | - Emanuel Kennedy Feitosa Lima
- Multicenter Postgraduate Program in Biochemistry and Molecular Biology (PMBqBM), Rio Grande do Norte State University, Mossoró 59607-360, Brazil; (D.D.M.F.); (E.K.F.L.)
| | - Ariel Moraes de Andrade
- Postgraduate Program in Health and Society, State University of Rio Grande do Norte, Mossoró 59607-360, Brazil; (V.I.O.R.); (C.F.M.d.C.); (A.M.d.A.); (J.F.d.A.A.); (L.N.d.S.); (M.I.K.); (J.R.L.d.P.C.); (T.A.A.D.M.F.); (I.A.T.F.); (A.V.d.C.)
| | - Joel Freires de Alencar Arrais
- Postgraduate Program in Health and Society, State University of Rio Grande do Norte, Mossoró 59607-360, Brazil; (V.I.O.R.); (C.F.M.d.C.); (A.M.d.A.); (J.F.d.A.A.); (L.N.d.S.); (M.I.K.); (J.R.L.d.P.C.); (T.A.A.D.M.F.); (I.A.T.F.); (A.V.d.C.)
| | - Larissa Nayara de Souza
- Postgraduate Program in Health and Society, State University of Rio Grande do Norte, Mossoró 59607-360, Brazil; (V.I.O.R.); (C.F.M.d.C.); (A.M.d.A.); (J.F.d.A.A.); (L.N.d.S.); (M.I.K.); (J.R.L.d.P.C.); (T.A.A.D.M.F.); (I.A.T.F.); (A.V.d.C.)
| | - Maria Irany Knackfuss
- Postgraduate Program in Health and Society, State University of Rio Grande do Norte, Mossoró 59607-360, Brazil; (V.I.O.R.); (C.F.M.d.C.); (A.M.d.A.); (J.F.d.A.A.); (L.N.d.S.); (M.I.K.); (J.R.L.d.P.C.); (T.A.A.D.M.F.); (I.A.T.F.); (A.V.d.C.)
| | - José Rodolfo Lopes de Paiva Cavalcanti
- Postgraduate Program in Health and Society, State University of Rio Grande do Norte, Mossoró 59607-360, Brazil; (V.I.O.R.); (C.F.M.d.C.); (A.M.d.A.); (J.F.d.A.A.); (L.N.d.S.); (M.I.K.); (J.R.L.d.P.C.); (T.A.A.D.M.F.); (I.A.T.F.); (A.V.d.C.)
- Multicenter Postgraduate Program in Physiological Sciences, State University of Rio Grande do Norte, Mossoró 59607-360, Brazil
| | - Thales Allyrio Araújo De Medeiros Fernandes
- Postgraduate Program in Health and Society, State University of Rio Grande do Norte, Mossoró 59607-360, Brazil; (V.I.O.R.); (C.F.M.d.C.); (A.M.d.A.); (J.F.d.A.A.); (L.N.d.S.); (M.I.K.); (J.R.L.d.P.C.); (T.A.A.D.M.F.); (I.A.T.F.); (A.V.d.C.)
- Multicenter Postgraduate Program in Physiological Sciences, State University of Rio Grande do Norte, Mossoró 59607-360, Brazil
| | | | - Ivana Alice Teixeira Fonseca
- Postgraduate Program in Health and Society, State University of Rio Grande do Norte, Mossoró 59607-360, Brazil; (V.I.O.R.); (C.F.M.d.C.); (A.M.d.A.); (J.F.d.A.A.); (L.N.d.S.); (M.I.K.); (J.R.L.d.P.C.); (T.A.A.D.M.F.); (I.A.T.F.); (A.V.d.C.)
| | - Adalberto Veronese da Costa
- Postgraduate Program in Health and Society, State University of Rio Grande do Norte, Mossoró 59607-360, Brazil; (V.I.O.R.); (C.F.M.d.C.); (A.M.d.A.); (J.F.d.A.A.); (L.N.d.S.); (M.I.K.); (J.R.L.d.P.C.); (T.A.A.D.M.F.); (I.A.T.F.); (A.V.d.C.)
| | - Glêbia Alexa Cardoso
- Postgraduate Program in Health and Society, State University of Rio Grande do Norte, Mossoró 59607-360, Brazil; (V.I.O.R.); (C.F.M.d.C.); (A.M.d.A.); (J.F.d.A.A.); (L.N.d.S.); (M.I.K.); (J.R.L.d.P.C.); (T.A.A.D.M.F.); (I.A.T.F.); (A.V.d.C.)
- Department of Physical Education, Federal University of Piauí, Teresina 64049-550, Brazil;
| |
Collapse
|
3
|
Lima Bezerra JJ, Lucena RB. Poisonings in ruminants by Cenostigma pyramidale (Tul.) Gagnon & G.P.Lewis (Fabaceae): A mini-review of teratogenic potential and phytochemical evidence. Toxicon 2024; 246:107794. [PMID: 38851021 DOI: 10.1016/j.toxicon.2024.107794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Teratogenic plants can be found in pastures in different parts of the world and represent a threat to the reproduction of ruminants. In the northeast region of Brazil, several studies have indicated that Cenostigma pyramidale (Tul.) Gagnon & G.P.Lewis is one of the main poisonous plants that causes reproductive problems in sheep and goats. In this context, the present study reviewed spontaneous and experimental poisonings reports by C. pyramidale in sheep and goats, as well as analyzing the phytochemical evidence related to this species. The scientific documents were retrieved from different databases and, after applying the selection criteria, a total of 16 articles published between 2000 and 2024 were included in this review. Cenostigma pyramidale causes embryonic loss, abortion, and congenital malformations in pregnant sheep and goats in the Brazilian semi-arid region. The main malformations observed in newborn animals are arthrogryposis, scoliosis, micrognathia, multiple skull deformities, cleft palate, and brachygnathism. Many secondary metabolites have already been isolated from C. pyramidale, however, to date, no evidence has been found regarding the possible teratogenic compounds that occur in this plant. From this perspective, new phytochemical studies are necessary to help unravel the mechanisms of action of embryotoxic agents from C. pyramidale.
Collapse
Affiliation(s)
- José Jailson Lima Bezerra
- Universidade Federal de Pernambuco, Departamento de Botânica, Av. da Engenharia, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Ricardo Barbosa Lucena
- Universidade Federal da Paraíba, Centro de Ciências Agrárias, Rodovia PB 079 - Km 12, 58397-000, Areia, PB, Brazil.
| |
Collapse
|
4
|
Gong G, Ganesan K, Wan Y, Liu Y, Huang Y, Luo Y, Wang X, Zhang Z, Zheng Y. Unveiling the neuroprotective properties of isoflavones: current evidence, molecular mechanisms and future perspectives. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 38794836 DOI: 10.1080/10408398.2024.2357701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Neurodegenerative diseases encompass a wide range of debilitating and incurable brain disorders characterized by the progressive deterioration of the nervous system's structure and function. Isoflavones, which are naturally occurring polyphenolic phytochemicals, have been found to regulate various cellular signaling pathways associated with the nervous system. The main objective of this comprehensive review is to explore the neuroprotective effects of isoflavones, elucidate the underlying mechanisms, and assess their potential for treating neurodegenerative disorders. Relevant data regarding isoflavones and their impact on neurodegenerative diseases were gathered from multiple library databases and electronic sources, including PubMed, Google Scholar, Web of Science, and Science Direct. Numerous isoflavones, including genistein, daidzein, biochanin A, and formononetin, have exhibited potent neuroprotective properties against various neurodegenerative diseases. These compounds have been found to modulate neurotransmitters, which in turn contributes to their ability to protect against neurodegeneration. Both in vitro and in vivo experimental studies have provided evidence of their neuroprotection mechanisms, which involve interactions with estrogenic receptors, antioxidant effects, anti-inflammatory properties, anti-apoptotic activity, and modulation of neural plasticity. This review aims to provide current insights into the neuroprotective characteristics of isoflavones and shed light on their potential therapeutic applications in future clinical scenarios.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, Hong Kong SAR, China
| | - Yukai Wan
- Second Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yongping Huang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuting Luo
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Xuexu Wang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
- Guangdong East Drug and Food and Health Branch, Chaozhou, China
| |
Collapse
|
5
|
Roko G, Porada R, Gdula-Argasińska J, Piekoszewski W, Chabi-Sika K, Krakowska-Sieprawska A, Buszewski B, Librowski T, Baba-Moussa L. Comparison of supercritical CO 2 extraction and pressurized fluid extraction for isolation of alkaloids from Anacardium occidentale with the study of its anti-inflammatory activity. J Pharm Biomed Anal 2024; 241:115982. [PMID: 38237542 DOI: 10.1016/j.jpba.2024.115982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 02/21/2024]
Abstract
In recent years, there has been a growing interest in the therapeutic potential of natural compounds, particularly of plant origin, owing to their demonstrated anti-inflammatory properties. Among these, Anacardium occidentale, commonly known as cashew, has garnered significant attention due to its reputed health benefits. This study aim to establish a correlation between the bioactive compounds contained in the extracts of Anacardium occidentale and its anti-inflammatory activity. Dried Anacardium occidentale leaves powder was used as the extraction matrix. Extraction techniques are maceration, pressurized fluid extraction (PFE), and supercritical fluid extraction (SFE). The preliminary analysis of extracts was made by LC-MS/MS. The Response Surface Methodology (RSM), Principal Component Analysis (PCA), and heat maps were employed to model the influence of experimental conditions on extraction yield and peak area of specific compounds from the plant. To evaluate anti-inflammatory activity, RAW 264.7 cells were cultured, activated with LPS, and treated with varying concentrations of the plant extracts. Cell proliferation was assessed using the XTT assay. Indeed, Anacardium occidentale extracts contain anacardic acids, cardanols, and cardol, with distinct profiles yielded by SFE and ethanol-based methods. RSM shows that temperature and ethanol, as additives to CO2, significantly affect extraction efficiency in both PFE and SFE. Moreover, this composition with SFE demonstrate higher selectivity for specific group of compounds. The extracts exhibit anti-inflammatory properties without cytotoxicity in macrophages, reducing levels of pro-inflammatory proteins COX-2, COX-1, and TLR4 in activated cells. This suggests their potential as anti-inflammatory agents without adverse effects on cell viability or pro-inflammatory protein levels in non-activated cells. Overall, these findings underscore the promising therapeutic potential of Anacardium occidentale extracts in mitigating inflammation, while also providing crucial insights into optimizing the extraction process for targeted compound isolation. Thus, this makes a good prospect for the development of anti-inflammatory drugs from this plant.
Collapse
Affiliation(s)
- Gautier Roko
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Benin
| | - Radosław Porada
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Medical College, Jagiellonian University in Krakow, Medyczna Street 9, 30-688 Kraków, Poland
| | - Wojciech Piekoszewski
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| | - Kamirou Chabi-Sika
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Benin
| | - Aneta Krakowska-Sieprawska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1A, 10-719 Olsztyn, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland; Prof. Jan Czochralski Kuyavian-Pomeranian Research & Development Centre, Krasińskiego 4, 87-100 Toruń, Poland
| | - Tadeusz Librowski
- Department of Radioligands, Faculty of Pharmacy, Medical College, Jagiellonian University in Krakow, Medyczna Street 9, 30-688 Kraków, Poland
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Benin
| |
Collapse
|
6
|
Dos Santos BL, Dos Santos CC, Soares JRP, da Silva KC, de Oliveira JVR, Pereira GS, de Araújo FM, Costa MDFD, David JM, da Silva VDA, Butt AM, Costa SL. The Flavonoid Agathisflavone Directs Brain Microglia/Macrophages to a Neuroprotective Anti-Inflammatory and Antioxidant State via Regulation of NLRP3 Inflammasome. Pharmaceutics 2023; 15:pharmaceutics15051410. [PMID: 37242652 DOI: 10.3390/pharmaceutics15051410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Agathisflavone, purified from Cenostigma pyramidale (Tul.) has been shown to be neuroprotective in in vitro models of glutamate-induced excitotoxicity and inflammatory damage. However, the potential role of microglial regulation by agathisflavone in these neuroprotective effects is unclear. Here we investigated the effects of agathisflavone in microglia submitted to inflammatory stimulus in view of elucidating mechanisms of neuroprotection. Microglia isolated from cortices of newborn Wistar rats were exposed to Escherichia coli lipopolysaccharide (LPS, 1 µg/mL) and treated or not with agathisflavone (1 µM). Neuronal PC12 cells were exposed to a conditioned medium from microglia (MCM) treated or not with agathisflavone. We observed that LPS induced microglia to assume an activated inflammatory state (increased CD68, more rounded/amoeboid phenotype). However, most microglia exposed to LPS and agathisflavone, presented an anti-inflammatory profile (increased CD206 and branched-phenotype), associated with the reduction in NO, GSH mRNA for NRLP3 inflammasome, IL1-β, IL-6, IL-18, TNF, CCL5, and CCL2. Molecular docking also showed that agathisflavone bound at the NLRP3 NACTH inhibitory domain. Moreover, in PC12 cell cultures exposed to the MCM previously treated with the flavonoid most cells preserved neurites and increased expression of β-tubulin III. Thus, these data reinforce the anti-inflammatory activity and the neuroprotective effect of agathisflavone, effects associated with the control of NLRP3 inflammasome, standing out it as a promising molecule for the treatment or prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Balbino Lino Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
- College of Nursing, Federal University of Vale do São Francisco, Petrolina 56304-917, Pernambuco, Brazil
| | - Cleonice Creusa Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Janaina R P Soares
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Karina C da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Juciele Valeria R de Oliveira
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Gabriele S Pereira
- Group of Studies and Research for Health Development, University Salvador, Salvador 40140-110, Bahia, Brazil
| | - Fillipe M de Araújo
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
- Group of Studies and Research for Health Development, University Salvador, Salvador 40140-110, Bahia, Brazil
| | - Maria de Fátima D Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Jorge Mauricio David
- Department of General and Inorganic Chemistry, Institute of Chemistry, University Federal da Bahia, Salvador 40170-110, Bahia, Brazil
| | - Victor Diogenes A da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| |
Collapse
|
7
|
Oyagbemi AA, Adebayo AK, Adebiyi OE, Adigun KO, Folarin OR, Esan OO, Ajibade TO, Ogunpolu BS, Falayi OO, Ogunmiluyi IO, Olutayo Omobowale T, Ola-Davies OE, Olopade JO, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Yakubu MA, Nwulia E, Oguntibeju OO. Leaf extract of Anacardium occidentale ameliorates biomarkers of neuroinflammation, memory loss, and neurobehavioral deficit in N(ω)-nitro-L-arginine methyl ester (L-NAME) treated rats. Biomarkers 2023; 28:263-272. [PMID: 36632742 DOI: 10.1080/1354750x.2022.2164354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Anacardium occidentale commonly known as Cashew is a plant that is widely used in African traditional medicine. It is endowed with phytochemical constituents that are responsible for its medicinal properties. METHODS Twenty-five male Wistar rats were grouped as follows: Control (Group A), Group B (L-NAME 40 mg/kg), Group C (100 mg/kg Anacardium occidentale extract plus 40 mg/kg L-NAME), Group D (200 mg/kg extract plus 40 mg/kg L-NAME) and Group E (10 mg/kg of Lisinopril plus 40 mg/kg L-NAME). The animals were treated with oral administration of either the extracts or Lisnopril daily for 4 weeks. Neuro-behavioural tests such as the Morris Water Maze and Hanging Wire Grip tests were carried out to evaluate memory/spatial learning and muscular strength, respectively. Makers of oxidative stress, antioxidant enzymes and immunohistochemical staining of Glial Fibrillary Acidic Protein and Ionised Calcium Binding Adaptor molecule 1 were assessed. RESULTS L-NAME administration caused significant increases in biomarkers of oxidative stress, decreased antioxidant status, acetylcholinesterase activity, altered neuro-behavioural changes, astrocytosis, and microgliosis. However, Anacardium occidentale reversed exaggerated oxidative stress biomarkers and improved neuro-behavioural changes. CONCLUSIONS Combining all, Anacardium occidentale enhanced brain antioxidant defence status, improved memory and muscular strength, thus, suggesting the neuroprotective properties of Anacardium occidentale.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedeji Kolawole Adebayo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olamide Elizabeth Adebiyi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kabirat Oluwaseun Adigun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwabusayo Racheal Folarin
- Department of Biomedical Laboratory Sciences, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Iyanuoluwa Omolola Ogunmiluyi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa Florida Campus, University of South Africa, Roodepoort, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria, Faculty of Veterinary Science, Pretoria, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, Texas, USA
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Howard University Hospital, Howard University, Washington, District of Columbia, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
8
|
Rodrigues-Costa M, Fernandes MSDS, Jurema-Santos GC, Gonçalves LVDP, Andrade-da-Costa BLDS. Nutrigenomics in Parkinson's disease: diversity of modulatory actions of polyphenols on epigenetic effects induced by toxins. Nutr Neurosci 2023; 26:72-84. [PMID: 36625764 DOI: 10.1080/1028415x.2021.2017662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the pathogenesis of Parkinson's Disease (PD) is not completely understood, there is a consensus that it can be caused by multifactorial mechanisms involving genetic susceptibility, epigenetic modifications induced by toxins and mitochondrial dysfunction. In the past 20 years, great efforts have been made in order to clarify molecular mechanisms that are risk factors for this disease, as well as to identify bioactive agents for prevention and slowing down of its progression. Nutraceutical products have received substantial interest due to their nutritional, safe and therapeutic effects on several chronic diseases. The aim of this review was to gather the main evidence of the epigenetic mechanisms involved in the neuroprotective effects of phenolic compounds currently under investigation for the treatment of toxin-induced PD. These studies confirm that the neuroprotective actions of polyphenols involve complex epigenetic modulations, demonstrating that the intake of these natural compounds can be a promising, low-cost, pharmacogenomic strategy against the development of PD.
Collapse
Affiliation(s)
- Moara Rodrigues-Costa
- Programa de Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Matheus Santos de Sousa Fernandes
- Programa de Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Educação Física, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | - Belmira Lara da Silveira Andrade-da-Costa
- Programa de Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
9
|
Chaves OA, Lima CR, Fintelman-Rodrigues N, Sacramento CQ, de Freitas CS, Vazquez L, Temerozo JR, Rocha ME, Dias SS, Carels N, Bozza PT, Castro-Faria-Neto HC, Souza TML. Agathisflavone, a natural biflavonoid that inhibits SARS-CoV-2 replication by targeting its proteases. Int J Biol Macromol 2022; 222:1015-1026. [PMID: 36183752 PMCID: PMC9525951 DOI: 10.1016/j.ijbiomac.2022.09.204] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
Abstract
Despite the fast development of vaccines, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still circulates through variants of concern (VoC) and escape the humoral immune response. SARS-CoV-2 has provoked over 200,000 deaths/months since its emergence and only a few antiviral drugs showed clinical benefit up to this moment. Thus, chemical structures endowed with anti-SARS-CoV-2 activity are important for continuous antiviral development and natural products represent a fruitful source of substances with biological activity. In the present study, agathisflavone (AGT), a biflavonoid from Anacardium occidentale was investigated as a candidate anti-SARS-CoV-2 compound. In silico and enzymatic analysis indicated that AGT may target mainly the viral main protease (Mpro) and not the papain-like protease (PLpro) in a non-competitive way. Cell-based assays in type II pneumocytes cell lineage (Calu-3) showed that SARS-CoV-2 is more susceptible to AGT than to apigenin (APG, monomer of AGT), in a dose-dependent manner, with an EC50 of 4.23 ± 0.21 μM and CC50 of 61.3 ± 0.1 μM and with a capacity to inhibit the level of pro-inflammatory mediator tumor necrosis factor-alpha (TNF-α). These results configure AGT as an interesting chemical scaffold for the development of novel semisynthetic antivirals against SARS-CoV-2.
Collapse
|
10
|
Yang TX, Zhu YF, Wang CC, Yang JY, Xue CH, Huang QR, Wang YM, Zhang TT. EPA-enriched plasmalogen attenuates the cytotoxic effects of LPS-stimulated microglia on the SH-SY5Y neuronal cell line. Brain Res Bull 2022; 186:143-152. [PMID: 35728742 DOI: 10.1016/j.brainresbull.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/29/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022]
Abstract
Microglia plays an important role in the production of inflammation in the central nervous system. Excessive nerve inflammation can cause neuronal damage and neurodegenerative disease. It has been shown that EPA-enriched ethanolamine plasmalogen (EPA-PlsEtn) significantly inhibited the expressions of inflammatory factors and suppressed neuronal loss in a rat model of Alzheimer's disease. However, whether EPA-PlsEtn protects against neuronal loss by inhibiting the activation of microglia is still not clear. Therefore, we examined the effect of PlsEtn on SH-SY5Y cells incubated by conditioned medium from LPS-induced BV2 cells as a neuroinflammation model. Results showed that pre-incubation of LPS-induced BV2 cells with PlsEtn significantly improved the viability of SH-SY5Y cells by reducing the early apoptosis. The increasing production of NO and TNF-α in BV2 cells was reversed by PlsEtn treatment, while the decreasing level of IL-10 was raised. Polarization toward M1 phenotype and activation of NLRP3 inflammasome pathways are attenuated significantly by pre-treatment of PlsEtn in LPS-induced BV2 cells. The study provides evidence for a positive effect of PlsEtn on neuroprotection and the inhibition of neuroinflammation, and PlsEtn may be explored as a potential functional ingredient with neuroprotection effects.
Collapse
Affiliation(s)
- Tian-Xin Yang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China
| | - Yun-Fang Zhu
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, PR China
| | - Qing-Rong Huang
- Rutgers State Univ, Dept Food Sci, 65 Dudley Rd, New Brunswick, NJ 08901, USA
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, PR China.
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
11
|
Medrano-Jiménez E, Meza-Sosa KF, Urbán-Aragón JA, Secundino I, Pedraza-Alva G, Pérez-Martínez L. Microglial activation in Alzheimer's disease: The role of flavonoids and microRNAs. J Leukoc Biol 2022; 112:47-77. [PMID: 35293018 DOI: 10.1002/jlb.3mr1021-531r] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of senile dementia and is characterized by progressive cognitive impairment and neuronal degeneration. Microglial activation is an important pathologic hallmark of AD. During disease progression, microglial cells switch from an alternative or anti-inflammatory and neuroprotective profile (M2) to a classic or proinflammatory and neurotoxic profile (M1). Phenotypically, M1 microglia is characterized by the activation of inflammatory signaling pathways that cause increased expression of proinflammatory genes, including those coding for cytokines and chemokines. This microglia-mediated neuroinflammation contributes to neuronal cell death. Recent studies in microglial cells have shown that a group of plant-derived compounds, known as flavonoids, possess anti-inflammatory properties and therefore exert a neuroprotective effect through regulating microglia activation. Here, we discuss how flavonoids can promote the switch from an inflammatory M1 phenotype to an anti-inflammatory M2 phenotype in microglia and how this represents a valuable opportunity for the development of novel therapeutic strategies to blunt neuroinflammation and boost neuronal recovery in AD. We also review how certain flavonoids can inhibit neuroinflammation through their action on the expression of microglia-specific microRNAs (miRNAs), which also constitute a key therapeutic approach in different neuropathologies involving an inflammatory component, including AD. Finally, we propose novel targets of microglia-specific miRNAs that may be considered for AD treatment.
Collapse
Affiliation(s)
- Elisa Medrano-Jiménez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Karla F Meza-Sosa
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - José A Urbán-Aragón
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Ismael Secundino
- Universidad De La Salle Bajío, Facultad de Odontología y Escuela de Veterinaria, León-Guanajuato, México
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| |
Collapse
|
12
|
Zeng L, Jiang H, Ashraf GM, Liu J, Wang L, Zhao K, Liu M, Li Z, Liu R. Implications of miR-148a-3p/p35/PTEN signaling in tau hyperphosphorylation and autoregulatory feedforward of Akt/CREB in Alzheimer's disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:256-275. [PMID: 35024240 PMCID: PMC8714918 DOI: 10.1016/j.omtn.2021.11.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/28/2021] [Indexed: 11/21/2022]
Abstract
Existing studies have revealed that microRNAs (miRNAs) have a role in cognitive deficits in Alzheimer's disease (AD). However, the function and pathophysiological mechanism of deregulated miRNAs underlying AD pathology remain to be investigated. The present study aimed to clarify the role and mechanism of miR-148a-3p in AD. RNA sequencing, qRT-PCR, and western blot analysis were used to identify the aberrant expression and signaling of miR-148a-3p within cells, mice, and patients with AD. Molecular biology techniques involving luciferase reporter assays, gene overexpression and silencing, chromatin immunoprecipitation, and adeno-associated virus-based miRNA overexpression were used to explore the biological function and mechanisms of miR-148a-3p. Downregulation of miR-148a-3p was identified in AD. Upregulation of miR-148a-3p was found to protect neuronal cells against Aβ-associated tau hyperphosphorylation by directly targeting p35/CDK5 and PTEN/p38 mitogen-activated protein kinase (MAPK) pathways. A mutual regulatory link between miR-148a-3p and PTEN using a feedforward arrangement was confirmed via promotion of transcription and expression of miR-148a-3p by way of the PTEN/Akt/CREB pathway. Significantly, in vivo targeting of miR-148a-3p signaling ameliorated cognitive deficits by decreasing p35/PTEN-elicited tau hyperphosphorylation, accompanied by feedforward transduction of the PTEN/Akt/CREB pathway. In conclusion, the present study implicated the miR-148a-3p/p35/PTEN pathway as an essential contributor to tau hyperphosphorylation and feedforward regulation in AD.
Collapse
Affiliation(s)
- Li Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Hailun Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jianghong Liu
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Linlin Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Kaiyue Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Mimin Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| |
Collapse
|
13
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
14
|
Chen X, Drew J, Berney W, Lei W. Neuroprotective Natural Products for Alzheimer's Disease. Cells 2021; 10:1309. [PMID: 34070275 PMCID: PMC8225186 DOI: 10.3390/cells10061309] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the number one neurovegetative disease, but its treatment options are relatively few and ineffective. In efforts to discover new strategies for AD therapy, natural products have aroused interest in the research community and in the pharmaceutical industry for their neuroprotective activity, targeting different pathological mechanisms associated with AD. A wide variety of natural products from different origins have been evaluated preclinically and clinically for their neuroprotective mechanisms in preventing and attenuating the multifactorial pathologies of AD. This review mainly focuses on the possible neuroprotective mechanisms from natural products that may be beneficial in AD treatment and the natural product mixtures or extracts from different sources that have demonstrated neuroprotective activity in preclinical and/or clinical studies. It is believed that natural product mixtures or extracts containing multiple bioactive compounds that can work additively or synergistically to exhibit multiple neuroprotective mechanisms might be an effective approach in AD drug discovery.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Joshua Drew
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wren Berney
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Presbyterian College, Clinton, SC 29325, USA
| |
Collapse
|
15
|
Xu Y, Yu L, Liu Y, Tang X, Wang X. Lipopolysaccharide-Induced Microglial Neuroinflammation: Attenuation by FK866. Neurochem Res 2021; 46:1291-1304. [PMID: 33713324 DOI: 10.1007/s11064-021-03267-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Alleviating microglia-mediated neuroinflammation bears great promise to reduce neurodegeneration. Nicotinamide phosphoribosyltransferase (NAMPT) may exert cytokine-like effect in the brain. However, it remains unclear about role of NAMPT in microglial inflammation. Also, it remains unknown about effect of NAMPT inhibition on microglial inflammation. In the present study, we observed that FK866 (a specific noncompetitive NAMPT inhibitor) dose-dependently inhibited lipopolysaccharide (LPS)-induced proinflammatory mediator (interleukin (IL)-6, IL-1β, inducible nitric oxide synthase, nitric oxide and reactive species) level increase in BV2 microglia cultures. FK866 also significantly inhibited LPS-induced polarization change in microglia. Furthermore, LPS significantly increased NAMPT expression and nuclear factor kappa B (NF-κB) phosphorylation in microglia. FK866 significantly decreased NAMPT expression and NF-κB phosphorylation in LPS-treated microglia. Finally, conditioned medium from microglia cultures co-treated with FK866 and LPS significantly increased SH-SY5Y and PC12 cell viability compared with conditioned medium from microglia cultures treated with LPS alone. Our study strongly indicates that NAMPT may be a promising target for microglia modulation and NAMPT inhibition may attenuate microglial inflammation.
Collapse
Affiliation(s)
- Yaling Xu
- Department of Neurology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Lijia Yu
- Department of Neurology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Ying Liu
- Department of Neurology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Xiaohui Tang
- Department of Neurology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Xijin Wang
- Department of Neurology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
16
|
Nascimento RP, Dos Santos BL, da Silva KC, Amaral da Silva VD, de Fátima Costa M, David JM, David JP, Moura-Neto V, Oliveira MDN, Ulrich H, de Faria Lopes GP, Costa SL. Reverted effect of mesenchymal stem cells in glioblastoma treated with agathisflavone and its selective antitumoral effect on cell viability, migration, and differentiation via STAT3. J Cell Physiol 2020; 236:5022-5035. [PMID: 33368262 DOI: 10.1002/jcp.30209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022]
Abstract
Glioblastoma is the most lethal tumor of the central nervous system, presenting a very poor prognostic, with a survival around 16 months. The interaction of mesenchymal stem cells and tumor cells has been studied, showing a bias in their role favoring or going against aggressiveness. Natural products such as flavonoids have showed their anticancer properties and the synergic potential with the activation of microenvironment cells to inhibit tumor progression. Agathisflavone is a flavonoid studied in neurodegenerative diseases and cancer. The present study investigated the effect of flavonoid in the viability of heterogeneous glioblastoma (GBM) cells considering a coculture or conditioned medium of mesenchymal stem cells (MSCs) effect, as well as the dose-dependent effect of this flavonoid in tumor migration and differentiation via STAT3. Agathisflavone (3-10 μM) induced dose-dependent toxicity to GL-15 and U373 human GBM cells, since 24 h after treatments. It was not toxic to human MSC but modified the pattern of interaction with GBM cells. Agathisflavone also inhibited migration and increased differentiation of human GBM cells, associated with the reduction on the expression of STAT3. These results demonstrate that the flavonoid agathisflavone had a direct anti-glioma effect. However, could be observed its effect in MSCs response that may have an impact in controlling GBM growth and aggressiveness, an important factor to consider for new therapies.
Collapse
Affiliation(s)
- Ravena P Nascimento
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Federal University of Bahia, Salvador, Bahia, Brazil.,Post-graduate Program in Biotechnology, State University of de Feira de Santana - UEFS, Feira de Santana, Bahia, Brazil
| | - Balbino L Dos Santos
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Federal University of Bahia, Salvador, Bahia, Brazil.,Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Karina C da Silva
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Victor D Amaral da Silva
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Federal University of Bahia, Salvador, Bahia, Brazil.,INCT/CNPq-Neurociência Translacional (INNT), Rio de Janeiro, Brazil
| | - Maria de Fátima Costa
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Federal University of Bahia, Salvador, Bahia, Brazil.,INCT/CNPq-Neurociência Translacional (INNT), Rio de Janeiro, Brazil
| | - Jorge M David
- Department of General and Inorganic Chemistry, Federal University of Bahia, Bahia, Brazil
| | - Juceni P David
- Department of Medication, Faculty of Pharmacy, Federal University of Bahia, Brazil
| | - Vivaldo Moura-Neto
- INCT/CNPq-Neurociência Translacional (INNT), Rio de Janeiro, Brazil.,State Institute of the Brain Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Mona das N Oliveira
- Department Of Biochemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department Of Biochemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Giselle P de Faria Lopes
- Department of Marine Biotechnology, Institute of Sea Studies Admiral Paulo Moreira (IEAPM), Rio de Janeiro and Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Silvia L Costa
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Federal University of Bahia, Salvador, Bahia, Brazil.,INCT/CNPq-Neurociência Translacional (INNT), Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Song W, Liu ML, Zhao ZJ, Huang CQ, Xu JW, Wang AQ, Li P, Fan YB. SIRT1 Inhibits High Shear Stress-Induced Apoptosis in Rat Cortical Neurons. Cell Mol Bioeng 2020; 13:621-631. [PMID: 33281991 PMCID: PMC7704980 DOI: 10.1007/s12195-020-00623-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/03/2020] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Sirtuin1 (SIRT1), one of NAD+-dependent protein deacetylases, is proved to be neuroprotective in aging diseases, but its effect on neuronal apoptosis has not been clarified. To investigate the role of SIRT1 in inhibiting neuronal apoptosis, SIRT1 was interfered or overexpressed in cortical neurons. METHODS We exerted overloading laminar shear stress with 10 dyn/cm2 for 4, 8, and 12 h on neurons to cause cortical neuronal apoptosis, and the apoptosis percentage was tested by TUNEL assay. The adenovirus plasmids containing SIRT1 RNA interference or SIRT1 wild type gene were transfected into neurons before shear stress loading. SIRT1 mRNA and protein level were tested by Real-time PCR, immunofluorescence and western blots assay. RESULTS SIRT1 was primarily expressed in nucleus of cortical neurons, and its mRNA level was significantly increased after 4 h stimulation. SIRT1 RNAi cortical neurons had higher TUNEL positive cells, while SIRT1 overexpression significantly decreased the percentage of died cells induced by shear stress compared to control group. CONCLUSIONS SIRT1 plays a neuroprotective role in shear stress induced apoptosis and could be as potential pharmacological targets against neuronal degeneration in future.
Collapse
Affiliation(s)
- Wei Song
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191 China
| | - Mei-Li Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191 China
| | - Zhi-Jun Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191 China
| | - Chong-Quan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191 China
| | - Jun-Wei Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191 China
| | - An-Qing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191 China
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191 China
| | - Yu-Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191 China
- National Research Center for Rehabilitation Technical Aids, Beijing, 100176 China
| |
Collapse
|
18
|
Boriero D, Carcereri de Prati A, Antonini L, Ragno R, Sohji K, Mariotto S, Butturini E. The anti-STAT1 polyphenol myricetin inhibits M1 microglia activation and counteracts neuronal death. FEBS J 2020; 288:2347-2359. [PMID: 32981207 DOI: 10.1111/febs.15577] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/05/2020] [Accepted: 09/22/2020] [Indexed: 11/26/2022]
Abstract
Microglia activation toward M1 pro-inflammatory phenotype represents one of the earliest events of neurological disorders. Therefore, reducing microglia activation should inhibit neuroinflammation, thereby delaying the progression of neurodegeneration. Recently, we pointed out the role of STAT1 signaling in hypoxia-induced M1 activation and proposed STAT1 as a suitable molecular target for the prevention and treatment of neurodegeneration. Myricetin (MYR) is a natural flavonoid that exhibits a specific anti-STAT1 activity correlated with its direct interaction with STAT1 protein itself. Herein, we investigated the anti-inflammatory effect of MYR and its ability to protect neurons from death in an in vitro model of neurotoxicity using the neuroblast-like SH-SY5Y cells that were exposed to conditioned media from hypoxia-activated microglia BV2 cells. We demonstrate that MYR pretreatment is able to switch off hypoxia-induced M1 microglia polarization through the inhibition of STAT1 signaling. The analysis of the molecular mechanism suggests that the direct interaction of MYR with STAT1 impairs its S-glutathionylation and phosphorylation. Moreover, treatment of SH-SY5Y cells with conditioned medium from hypoxia-activated microglia pretreated with MYR produced a significant reduction in neuronal viability. Our data indicate that MYR may represent a promising candidate for prevention and treatment of neuroinflammation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Diana Boriero
- Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | | | - Lorenzo Antonini
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - Kazuo Sohji
- University of Human Arts and Sciences, Saitama, Japan
| | - Sofia Mariotto
- Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Elena Butturini
- Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| |
Collapse
|
19
|
Olajide OA, Sarker SD. Alzheimer's disease: natural products as inhibitors of neuroinflammation. Inflammopharmacology 2020; 28:1439-1455. [PMID: 32930914 PMCID: PMC7572326 DOI: 10.1007/s10787-020-00751-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer’s disease (AD) is the most common form of dementia and affects 44 million people worldwide. New emerging evidence from pre-clinical and clinical investigations shows that neuroinflammation is a major pathological component of AD suggesting that anti-inflammatory strategies are important in delaying the onset or slowing the progression of the disease. However, efforts to employ current anti-inflammatory agents in AD clinical trials have produced limited success. Consequently, there is a need to explore anti-inflammatory natural products, which target neuroinflammatory pathways relevant to AD pathogenesis. This review summarises important druggable molecular targets of neuroinflammation and presents classes of anti-neuroinflammatory natural products with potentials for preventing and reducing symptoms of AD.
Collapse
Affiliation(s)
- Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
20
|
de Amorim VCM, Júnior MSO, da Silva AB, David JM, David JPL, de Fátima Dias Costa M, Butt AM, da Silva VDA, Costa SL. Agathisflavone modulates astrocytic responses and increases the population of neurons in an in vitro model of traumatic brain injury. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1921-1930. [PMID: 32444988 DOI: 10.1007/s00210-020-01905-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/10/2020] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a critical health problem worldwide, with a high incidence rate and potentially severe long-term consequences. Depending on the level of mechanical stress, astrocytes react with complex morphological and functional changes known as reactive astrogliosis. In cases of severe tissue injury, astrocytes proliferate in the area immediately adjacent to the lesion to form the glial scar, which is a major barrier to neuronal regeneration in the central nervous system. The flavonoid agathisflavone has been shown to have neuroprotective, neurogenic, and immunomodulatory effects and could have beneficial effects in situations of TBI. In this study, we investigated the effects of agathisflavone on modulating the responses of astrocytes and neurons to injury, using the in vitro scratch wound model of TBI in primary cultures of rat cerebral cortex. In control conditions, the scratch wound induced an astroglial injury response, characterized by upregulation of glial fibrillary acidic protein (GFAP) and hypertrophy, together with the reduction in proportion of neurons within the lesion site. Treatment with agathisflavone (1 μM) decreased astroglial GFAP expression and hypertrophy and induced an increase in the number of neurons and neurite outgrowth into the lesion site. Agathisflavone also induced increased expression of the neurotrophic factors NGF and GDNF, which are associated with the neuroprotective profile of glial cells. These results demonstrate that in an in vitro model of TBI, the flavonoid agathisflavone modulates the astrocytic injury response and glial scar formation, stimulating neural recomposition.
Collapse
Affiliation(s)
- Vanessa Cristina Meira de Amorim
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil
| | - Markley Silva Oliveira Júnior
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil
| | - Alessandra Bispo da Silva
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil
| | - Jorge M David
- Department of General and Inorganic Chemistry, Institute of Chemistry, Federal University of Bahia, R. Barão de Jeremoabo, Salvador, BA, 40170-115, Brazil
| | - Juceni Pereira Lima David
- Department of Medication, Faculty of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, Salvador, BA, 40170-115, Brazil
| | - Maria de Fátima Dias Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, Winston Churchill Avenue, Portsmouth, PO1 2UP, UK
| | - Victor Diogenes Amaral da Silva
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil
| | - Silvia Lima Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil.
| |
Collapse
|
21
|
de Freitas CS, Rocha MEN, Sacramento CQ, Marttorelli A, Ferreira AC, Rocha N, de Oliveira AC, de Oliveira Gomes AM, Dos Santos PS, da Silva EO, da Costa JP, de Lima Moreira D, Bozza PT, Silva JL, Barroso SPC, Souza TML. Agathisflavone, a Biflavonoid from Anacardium occidentale L., Inhibits Influenza Virus Neuraminidase. Curr Top Med Chem 2020; 20:111-120. [PMID: 31854280 DOI: 10.2174/1568026620666191219150738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuraminidase inhibitors (NAIs) are the only class of antivirals in clinical use against influenza virus approved worldwide. However, approximately 1-3% of circulating strains present resistance mutations to oseltamivir (OST), the most used NAI. Therefore, it is important to catalogue new molecules to inhibit influenza virus, especially OST-resistant strains. Natural products from tropical plants used for human consumption represent a worthy class of substances. Their use could be stimulated in resource-limited setting where the access to expensive antiviral therapies is restricted. METHODS We evaluated the anti-influenza virus activity of agathisflavone derived from Anacardium occidentale L. RESULTS The neuraminidase (NA) activity of wild-type and OST-resistant influenza virus was inhibited by agathisflavone, with IC50 values ranging from 20 to 2.0 µM, respectively. Agathisflavone inhibited influenza virus replication with EC50 of 1.3 µM. Sequential passages of the virus in the presence of agathisflavone revealed the emergence of mutation R249S, A250S and R253Q in the NA gene. These changes are outside the OST binding region, meaning that agathisflavone targets this viral enzyme at a region different than conventional NAIs. CONCLUSION Altogether our data suggest that agathisflavone has a promising chemical structure for the development of anti-influenza drugs.
Collapse
Affiliation(s)
- Caroline S de Freitas
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Marco E N Rocha
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Química de Produtos Naturais 5, Farmanguinhos, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Q Sacramento
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andressa Marttorelli
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - André C Ferreira
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Natasha Rocha
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andrea Cheble de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Andre Marco de Oliveira Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Patrícia Souza Dos Santos
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Edilene Oliveira da Silva
- Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Biologia Estrutural, Belém, Pará, Brazil
| | - Josineide Pantoja da Costa
- Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Biologia Estrutural, Belém, Pará, Brazil
| | - Davyson de Lima Moreira
- Laboratório de Química de Produtos Naturais 5, Farmanguinhos, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Shana Priscila Coutinho Barroso
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Instituto de Pesquisas Biomédicas, Hospital Naval Marcílio Dias, Marinha do Brasil, Brazil
| | - Thiago Moreno L Souza
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
22
|
Phytoestrogen Agathisflavone Ameliorates Neuroinflammation-Induced by LPS and IL-1β and Protects Neurons in Cocultures of Glia/Neurons. Biomolecules 2020; 10:biom10040562. [PMID: 32272581 PMCID: PMC7225953 DOI: 10.3390/biom10040562] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022] Open
Abstract
Inflammation and oxidative stress are common aspects of most neurodegenerative diseases in the central nervous system. In this context, microglia and astrocytes are central to mediating the balance between neuroprotective and neurodestructive mechanisms. Flavonoids have potent anti-inflammatory and antioxidant properties. Here, we have examined the anti-inflammatory and neuroprotective potential of the flavonoid agathisflavone (FAB), which is derived from the Brazilian plant Poincianella pyramidalis, in in vitro models of neuroinflammation. Cocultures of neurons/glial cells were exposed to lipopolysaccharide (LPS, 1 µg/mL) or interleukin (IL)-1β (10 ng/mL) for 24 h and treated with FAB (0.1 and 1 µM, 24 h). FAB displayed a significant neuroprotective effect, as measured by nitric oxide (NO) production, Fluoro-Jade B (FJ-B) staining, and immunocytochemistry (ICC) for the neuronal marker β-tubulin and the cell death marker caspase-3, preserving neuronal soma and increasing neurite outgrowth. FAB significantly decreased the LPS-induced microglial proliferation, identified by ICC for Iba-1/bromodeoxyuridine (BrdU) and CD68 (microglia M1 profile marker). In contrast, FAB had no apparent effect on astrocytes, as determined by ICC for glial fibrillary acidic protein (GFAP). Furthermore, FAB protected against the cytodestructive and proinflammatory effects of IL-1β, a key cytokine that is released by activated microglia and astrocytes, and ICC showed that combined treatment of FAB with α and β estrogen receptor antagonists did not affect NF-κB expression. In addition, qPCR analysis demonstrated that FAB decreased the expression of proinflammatory molecules TNF-α, IL-1β, and connexins CCL5 and CCL2, as well as increased the expression of the regulatory molecule IL-10. Together, these findings indicate that FAB has a significant neuroprotective and anti-inflammatory effect in vitro, which may be considered as an adjuvant for the treatment of neurodegenerative diseases.
Collapse
|
23
|
Salehi B, Gültekin-Özgüven M, Kırkın C, Özçelik B, Morais-Braga MFB, Carneiro JNP, Bezerra CF, Silva TGD, Coutinho HDM, Amina B, Armstrong L, Selamoglu Z, Sevindik M, Yousaf Z, Sharifi-Rad J, Muddathir AM, Devkota HP, Martorell M, Jugran AK, Martins N, Cho WC. Anacardium Plants: Chemical,Nutritional Composition and Biotechnological Applications. Biomolecules 2019; 9:465. [PMID: 31505888 PMCID: PMC6769990 DOI: 10.3390/biom9090465] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Anacardium plants are native to the American tropical regions, and Anacardium occidentale L. (cashew tree) is the most recognized species of the genus. These species contain rich secondary metabolites in their leaf and shoot powder, fruits and other parts that have shown diverse applications. This review describes the habitat and cultivation of Anacardium species, phytochemical and nutritional composition, and their industrial food applications. Besides, we also discuss the secondary metabolites present in Anacardium plants which display great antioxidant and antimicrobial effects. These make the use of Anacardium species in the food industry an interesting approach to the development of green foods.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Mine Gültekin-Özgüven
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Celale Kırkın
- Department of Gastronomy and Culinary Arts, School of Applied Sciences, Özyeğin University, Çekmeköy, 34794 Istanbul, Turkey
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
- Bioactive Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer, 34467, Istanbul, Turkey
| | | | - Joara Nalyda Pereira Carneiro
- Laboratory of Applied Mycology of Cariri, Department of Biological Sciences, Cariri Regional University, Crato, Ceará-Brazil
| | - Camila Fonseca Bezerra
- Laboratory of Planning and Synthesis of Drugs, Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Teresinha Gonçalves da Silva
- Laboratory of Planning and Synthesis of Drugs, Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato, Brazil
| | - Benabdallah Amina
- Department of Agronomy, SAPVESA Laboratory, Nature and Life Sciences Faculty, University Chadli BENDJEDID, El-Tarf 36000, Algeria
| | - Lorene Armstrong
- State University of Ponta Grossa, Departament of Pharmaceutical Sciences, Ponta Grossa, Paraná, Brazil
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus, Nigde, Turkey
| | - Mustafa Sevindik
- Department of Food Processing, Bahçe Vocational School, Osmaniye Korkut Ata University, 80500 Osmaniye, Turkey
| | - Zubaida Yousaf
- Department of Botany, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Ali Mahmoud Muddathir
- Department of Horticulture, Faculty of Agriculture, University of Khartoum, Shambat 13314, Khartoum North, Sudan
| | - Hari Prasad Devkota
- School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto 860-8555, Japan
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepcion, Chile.
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion 4070386, Chile.
| | - Arun Kumar Jugran
- Govind Ballabh Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre, Srinagar-246 174, Uttarakhand, India.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| |
Collapse
|
24
|
Islam MT, Zihad SMNK, Rahman MS, Sifat N, Khan MR, Uddin SJ, Rouf R. Agathisflavone: Botanical sources, therapeutic promises, and molecular docking study. IUBMB Life 2019; 71:1192-1200. [DOI: 10.1002/iub.2053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/04/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Muhammad Torequl Islam
- Department for Management of Science and Technology DevelopmentTon Duc Thang University Ho Chi Minh City Vietnam
- Faculty of PharmacyTon Duc Thang University Ho Chi Minh City Vietnam
| | - S. M. Neamul Kabir Zihad
- Pharmacy Discipline, Life Science SchoolKhulna University Khulna Bangladesh
- Department of PharmacyAtish Dipankar University of Science & Technology Dhaka Bangladesh
| | - Md. Shamim Rahman
- Biotechnology & Genetic Engineering Discipline, Life Science SchoolKhulna University Khulna Bangladesh
| | - Nazifa Sifat
- Pharmacy Discipline, Life Science SchoolKhulna University Khulna Bangladesh
| | - Md. Roich Khan
- Department of Pharmacy, Life Science FacultyBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science SchoolKhulna University Khulna Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Life Science FacultyBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| |
Collapse
|
25
|
Velagapudi R, Lepiarz I, El-Bakoush A, Katola FO, Bhatia H, Fiebich BL, Olajide OA. Induction of Autophagy and Activation of SIRT-1 Deacetylation Mechanisms Mediate Neuroprotection by the Pomegranate Metabolite Urolithin A in BV2 Microglia and Differentiated 3D Human Neural Progenitor Cells. Mol Nutr Food Res 2019; 63:e1801237. [PMID: 30811877 DOI: 10.1002/mnfr.201801237] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/12/2019] [Indexed: 12/19/2022]
Abstract
SCOPE Urolithin A is an anti-inflammatory and neuroprotective gut-derived metabolite from ellagitannins and ellagic acid in pomegranate, berries, and nuts. The roles of SIRT-1 and autophagy in the neuroprotective activity of urolithin A are investigated. METHODS AND RESULTS Analyses of culture supernatants from lipopolysaccharide-stimulated BV2 microglia show that urolithin A (2.5-10 µm) produced significant reduction in the production of nitrite, tumor necrosis factor (TNF)-α and IL-6. The anti-inflammatory effect of the compound is reversed in the presence of sirtuin (SIRT)-1 and the autophagy inhibitors EX527 and chloroquine, respectively. Protein analyses reveal reduction in p65 and acetyl-p65 protein. Treatment of BV2 microglia with urolithin A results in increased SIRT-1 activity and nuclear protein, while induction of autophagy by the compound is demonstrated using autophagy fluorescent and autophagy LC3 HiBiT reporter assays. Viability assays reveal that urolithin A produces a neuroprotective effect in APPSwe-transfected ReNcell VM human neural cells, which is reversed in the presence of EX527 and chloroquine. Increase in both SIRT-1 and autophagic activities are also detected in these cells following treatment with urolithin A. CONCLUSIONS It has been proposed that SIRT-1 activation and induction of autophagy are involved in the neuroprotective activity of urolithin A in brain cells.
Collapse
Affiliation(s)
- Ravikanth Velagapudi
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Izabela Lepiarz
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Abdelmeneim El-Bakoush
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Folashade O Katola
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Harsharan Bhatia
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| |
Collapse
|
26
|
Lopes Andrade AW, Dias Ribeiro Figueiredo D, Torequl Islam M, Viana Nunes AM, da Conceição Machado K, da Conceição Machado K, Uddin SJ, Ahmed Shilpi J, Rouf R, de Carvalho Melo-Cavalcante AA, David JM, Mubarak MS, Pereira Costa J. Toxicological evaluation of the biflavonoid, agathisflavone in albino Swiss mice. Biomed Pharmacother 2019; 110:68-73. [DOI: 10.1016/j.biopha.2018.11.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/02/2018] [Accepted: 11/10/2018] [Indexed: 12/27/2022] Open
|
27
|
Gulumian M, Yahaya ES, Steenkamp V. African Herbal Remedies with Antioxidant Activity: A Potential Resource Base for Wound Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4089541. [PMID: 30595712 PMCID: PMC6282146 DOI: 10.1155/2018/4089541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/23/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022]
Abstract
The use of traditional herbal remedies as alternative medicine plays an important role in Africa since it forms part of primary health care for treatment of various medical conditions, including wounds. Although physiological levels of free radicals are essential to the healing process, they are known to partly contribute to wound chronicity when in excess. Consequently, antioxidant therapy has been shown to facilitate healing of such wounds. Also, a growing body of evidence suggests that, at least, part of the therapeutic value of herbals may be explained by their antioxidant activity. This paper reviews African herbal remedies with antioxidant activity with the aim of indicating potential resources for wound treatment. Firstly, herbals with identified antioxidant compounds and, secondly, herbals with proven antioxidant activity, but where the compound(s) responsible for the activity has not yet been identified, are listed. In the latter case it has been attempted to ascribe the activity to a compound known to be present in the plant family and/or species, where related activity has previously been documented for another genus of the species. Also, the tests employed to assess antioxidant activity and the potential caveats thereof during assessment are briefly commented on.
Collapse
Affiliation(s)
- Mary Gulumian
- National Institute for Occupational Health, Johannesburg, South Africa
- Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Ewura Seidu Yahaya
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Pharmacology, University of Cape Coast, Cape Coast, Ghana
| | - Vanessa Steenkamp
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|