1
|
Carrillo-Beltrán D, Nahuelpan Y, Cuevas C, Fabres K, Silva P, Zubieta J, Navarro G, Muñoz JP, Gleisner MA, Salazar-Onfray F, Garcia-Romero N, Ayuso-Sacido A, Martin RS, Quezada-Monrás C. Glycosylated Delphinidins Decrease Chemoresistance to Temozolomide by Regulating NF-κB/MGMT Signaling in Glioblastoma. Cells 2025; 14:179. [PMID: 39936970 PMCID: PMC11816850 DOI: 10.3390/cells14030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Glioblastoma (GB) is a highly malignant brain tumor with a poor prognosis, with a median survival of only 14.6 months despite aggressive treatments. Resistance to chemotherapy, particularly temozolomide (TMZ), is a significant challenge. The DNA repair enzyme MGMT and glioblastoma stem cells (GSCs) often mediate this resistance. Recent studies highlight the therapeutic potential of natural compounds, particularly delphinidins, found in deep purple berries. Delphinidins are known for their ability to inhibit NF-κB signaling, a critical pathway for GB progression, chemoresistance, and MGMT expression. Our research demonstrates that glycosylated delphinidins have potential adjuvant use in the treatment of GB, offering a promising natural strategy to combat TMZ resistance. Specifically, we observed that delphinidin 3,5 di-glucoside has potent anticancer effects when used alone. Meanwhile, delphinidin 3 glucoside acted in synergy with temozolomide to decrease cell viability, highlighting its potential as an adjuvant. It also exerted a faster and more sustained inhibition of NF-κB, highlighting its potential for long-lasting therapeutic effects. These findings open new avenues for targeted therapies against glioblastoma, particularly to overcome treatment resistance.
Collapse
Affiliation(s)
- Diego Carrillo-Beltrán
- Laboratorio de Virología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.C.-B.); (Y.N.); (C.C.); (K.F.); (J.Z.)
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.S.); (G.N.)
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (M.A.G.); (F.S.-O.)
| | - Yessica Nahuelpan
- Laboratorio de Virología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.C.-B.); (Y.N.); (C.C.); (K.F.); (J.Z.)
| | - Constanza Cuevas
- Laboratorio de Virología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.C.-B.); (Y.N.); (C.C.); (K.F.); (J.Z.)
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.S.); (G.N.)
| | - Karen Fabres
- Laboratorio de Virología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.C.-B.); (Y.N.); (C.C.); (K.F.); (J.Z.)
| | - Pamela Silva
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.S.); (G.N.)
| | - Jimena Zubieta
- Laboratorio de Virología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.C.-B.); (Y.N.); (C.C.); (K.F.); (J.Z.)
| | - Giovanna Navarro
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.S.); (G.N.)
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile;
| | - María A. Gleisner
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (M.A.G.); (F.S.-O.)
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (M.A.G.); (F.S.-O.)
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Noemi Garcia-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (A.A.-S.)
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (A.A.-S.)
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Rody San Martin
- Laboratorio de Patología Molecular, Instituto de Bioquímica Y Microbiología, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Claudia Quezada-Monrás
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.S.); (G.N.)
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (M.A.G.); (F.S.-O.)
| |
Collapse
|
2
|
Boleti APDA, Jacobowski AC, Monteiro-Alfredo T, Pereira APR, Oliva MLV, Maria DA, Macedo MLR. Cutaneous Melanoma: An Overview of Physiological and Therapeutic Aspects and Biotechnological Use of Serine Protease Inhibitors. Molecules 2024; 29:3891. [PMID: 39202970 PMCID: PMC11357276 DOI: 10.3390/molecules29163891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Metastatic melanoma stands out as the most lethal form of skin cancer because of its high propensity to spread and its remarkable resistance to treatment methods. METHODS In this review article, we address the incidence of melanoma worldwide and its staging phases. We thoroughly investigate the different melanomas and their associated risk factors. In addition, we underscore the principal therapeutic goals and pharmacological methods that are currently used in the treatment of melanoma. RESULTS The implementation of targeted therapies has contributed to improving the approach to patients. However, because of the emergence of resistance early in treatment, overall survival and progression-free periods continue to be limited. CONCLUSIONS We provide new insights into plant serine protease inhibitor therapeutics, supporting high-throughput drug screening soon, and seeking a complementary approach to explain crucial mechanisms associated with melanoma.
Collapse
Affiliation(s)
- Ana Paula De Araújo Boleti
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Cristina Jacobowski
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Tamaeh Monteiro-Alfredo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Paula Ramos Pereira
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil;
| | - Durvanei Augusto Maria
- Divisão de Ciências Fisiológicas e Químicas, Serviço de Bioquímica, Instituto Butantan, São Paulo 05585-000, SP, Brazil;
| | - Maria Lígia Rodrigues Macedo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
- Department of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
3
|
Dell’Albani P, Carbone C, Sposito G, Spatuzza M, Chiacchio MA, Grasso R, Legnani L, Santonocito D, Puglia C, Parenti R, Puglisi G, Campisi A. Effect of Ferulic Acid Loaded in Nanoparticle on Tissue Transglutaminase Expression Levels in Human Glioblastoma Cell Line. Int J Mol Sci 2024; 25:8397. [PMID: 39125966 PMCID: PMC11312511 DOI: 10.3390/ijms25158397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive cancers, characterized by a decrease in antioxidant levels. Evidence has demonstrated that ferulic acid (FA), a natural antioxidant particularly abundant in vegetables and fruits, could be a promising candidate for GBM treatment. Since FA shows a high instability that compromises its therapeutic application, it has been encapsulated into Nanostructured Lipid Carriers (NLCs) to improve its bioavailability in the brain. It has been demonstrated that tissue transglutaminase (TG2) is a multi-functional protein implicated in many physiological and pathological processes, including cancer. TG2 is also involved in GBM correlated with metastasis formation and drug resistance. Therefore, the evaluation of TG2 expression levels and its cellular localization are important to assess the anti-cancer effect of FA against GBM cancer. Our results have demonstrated that treatment with free FA and FA-NLCs in the U87-MG cancer cell line differently modified TG2 localization and expression levels. In the cells treated with free FA, TG2 appeared expressed both in the cytosol and in the nucleus, while the treatment with FA-NLCs showed that the protein is exclusively localized in the cytosol, exerting its pro-apoptotic effect. Therefore, our data suggest that FA loaded in NLCs could represent a promising natural agent for supplementing the current anti-cancer drugs used for the treatment of GBM.
Collapse
Affiliation(s)
- Paola Dell’Albani
- Institute for Biomedical Research and Innovation, CNR, Via P. Gaifami, 18, 95126 Catania, Italy; (P.D.); (M.S.)
| | - Claudia Carbone
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy; (C.C.); (G.S.); (M.A.C.); (D.S.); (C.P.); (G.P.)
- NANOMED, Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Giovanni Sposito
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy; (C.C.); (G.S.); (M.A.C.); (D.S.); (C.P.); (G.P.)
- CERNUT, Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Michela Spatuzza
- Institute for Biomedical Research and Innovation, CNR, Via P. Gaifami, 18, 95126 Catania, Italy; (P.D.); (M.S.)
- Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), 94018 Troina, Italy
| | - Maria Assunta Chiacchio
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy; (C.C.); (G.S.); (M.A.C.); (D.S.); (C.P.); (G.P.)
| | - Rosaria Grasso
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy;
| | - Laura Legnani
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy;
| | - Debora Santonocito
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy; (C.C.); (G.S.); (M.A.C.); (D.S.); (C.P.); (G.P.)
- NANOMED, Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
- CERNUT, Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Carmelo Puglia
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy; (C.C.); (G.S.); (M.A.C.); (D.S.); (C.P.); (G.P.)
- NANOMED, Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
- CERNUT, Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy;
| | - Giovanni Puglisi
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy; (C.C.); (G.S.); (M.A.C.); (D.S.); (C.P.); (G.P.)
| | - Agatina Campisi
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy; (C.C.); (G.S.); (M.A.C.); (D.S.); (C.P.); (G.P.)
- CERNUT, Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| |
Collapse
|
4
|
Rezaie M, Nasehi M, Shimia M, Ebrahimnezhad M, Yousefi B, Majidinia M. Polyphenols Modulate the miRNAs Expression that Involved in Glioblastoma. Mini Rev Med Chem 2024; 24:1953-1969. [PMID: 38639278 DOI: 10.2174/0113895575304605240408105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 04/20/2024]
Abstract
Glioblastoma multiforme (GBM), a solid tumor that develops from astrocytes, is one of the most aggressive types of brain cancer. While there have been improvements in the efficacy of treating GBM, many problems remain, especially with traditional therapy methods. Therefore, recent studies have extensively focused on developing novel therapeutic agents for combating glioblastoma. Natural polyphenols have been studied for their potential as chemopreventive and chemotherapeutic agents due to their wide range of positive qualities, including antioxidant, antiinflammatory, cytotoxic, antineoplastic, and immunomodulatory activities. These natural compounds have been suggested to act via modulated various macromolecules within cells, including microRNAs (miRNAs), which play a crucial role in the molecular milieu. In this article, we focus on how polyphenols may inhibit tumor growth by influencing the expression of key miRNAs that regulate oncogenes and tumor suppressor genes.
Collapse
Affiliation(s)
- Maede Rezaie
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center, Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Shimia
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Ebrahimnezhad
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
de Luna FCF, Ferreira WAS, Casseb SMM, de Oliveira EHC. Anticancer Potential of Flavonoids: An Overview with an Emphasis on Tangeretin. Pharmaceuticals (Basel) 2023; 16:1229. [PMID: 37765037 PMCID: PMC10537037 DOI: 10.3390/ph16091229] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Natural compounds with pharmacological activity, flavonoids have been the subject of an exponential increase in studies in the field of scientific research focused on therapeutic purposes due to their bioactive properties, such as antioxidant, anti-inflammatory, anti-aging, antibacterial, antiviral, neuroprotective, radioprotective, and antitumor activities. The biological potential of flavonoids, added to their bioavailability, cost-effectiveness, and minimal side effects, direct them as promising cytotoxic anticancer compounds in the optimization of therapies and the search for new drugs in the treatment of cancer, since some extensively antineoplastic therapeutic approaches have become less effective due to tumor resistance to drugs commonly used in chemotherapy. In this review, we emphasize the antitumor properties of tangeretin, a flavonoid found in citrus fruits that has shown activity against some hallmarks of cancer in several types of cancerous cell lines, such as antiproliferative, apoptotic, anti-inflammatory, anti-metastatic, anti-angiogenic, antioxidant, regulatory expression of tumor-suppressor genes, and epigenetic modulation.
Collapse
Affiliation(s)
- Francisco Canindé Ferreira de Luna
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
| | - Wallax Augusto Silva Ferreira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
| | | | - Edivaldo Herculano Correa de Oliveira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
- Faculty of Natural Sciences, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Rua Augusto Correa, 01, Belém 66075-990, Brazil
| |
Collapse
|
6
|
Sharma P, Mondal H, Mondal S, Majumder R. Recent updates on the role of phytochemicals in the treatment of glioblastoma multiforme. J Cancer Res Ther 2023; 19:S513-S522. [PMID: 38384013 DOI: 10.4103/jcrt.jcrt_1241_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/07/2022] [Indexed: 02/23/2024]
Abstract
ABSTRACTS Glioblastoma multiforme (GBM) is a malignant type of glioma. This malignant brain tumor is a devastating disease and is often fatal. The spectrum of illness and poor prognosis associated with brain tumors extract a terrible toll on patients and their families. The inoperability of these tumors and resistance to radiation and chemotherapy contribute to the fatal outcome of this disease. Thus, scientists are hunting for the new drug candidate and safer chemoprevention, especially the phytochemicals that possess potent anti-tumor properties. We have summarized the cellular and biochemical impacts of different phytochemicals that can successfully encounter GBM via induction of apoptosis and active interference in different cell and molecular pathways associated with GBM in brain tumors. The in silico predictive model determining the blood-brain barrier permeability of the compound and their potential druggability are discussed in the review.
Collapse
Affiliation(s)
- Pramita Sharma
- Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Himel Mondal
- Department of Physiology, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| | - Shaikat Mondal
- Department of Physiology, Raiganj Government Medical College, Raiganj, West Bengal, India
| | - Rabindranath Majumder
- Centre of Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| |
Collapse
|
7
|
Pedra NS, Bona NP, de Aguiar MSS, Spohr L, Alves FL, Santos FDSD, Saraiva JT, Stefanello FM, Braganhol E, Spanevello RM. Impact of gallic acid on tumor suppression: Modulation of redox homeostasis and purinergic response in in vitro and a preclinical glioblastoma model. J Nutr Biochem 2022; 110:109156. [PMID: 36255060 DOI: 10.1016/j.jnutbio.2022.109156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 01/13/2023]
Abstract
Glioblastoma (GBM) is the deadliest primary brain tumor in adults due to the high rate of relapse with current treatment. Therefore, the search for therapeutic alternatives is urgent. Gallic acid (GA), a potent natural antioxidant, has antitumor and modulatory actions on purinergic signaling. In this study, we investigated the cytotoxic effects of GA on the rat GBM (C6) cell line and on astrocyte culture and analyzed its role in regulating oxidative stress and purinergic enzymes involved in GBM proliferation. Cells were exposed to GA from 50 to 400 µM for 24 and/or 48 h. Next, the effect of GA was evaluated in the preclinical model of GBM. Wistar rats were treated with 50 or 100 mg/kg of GA for 15 days, and cerebral and systemic redox status and degradation of adenine nucleotides and nucleosides in circulating platelets, lymphocytes, and serum were evaluated. Our results demonstrated that GA has selective anti-glioma activity in vitro, without inducing cytotoxicity in astrocyte. Furthermore, GA prevented oxidative stress and changes in the hydrolysis of nucleotides in GBM cells. The anti-glioma effect was also observed in vivo, as GA reduced tumor volume by 90%. Interestingly, GA decreased the oxidative damage induced by a tumor in the brain, serum, and platelets, and, also prevented changes in the degradation of nucleotides and nucleosides in lymphocytes, platelets, and serum. These results indicate, for the first time, the therapeutic potential of GA in a preclinical model of GBM, whose effects may be related to its role in redox and purinergic modulation.
Collapse
Affiliation(s)
- Nathalia Stark Pedra
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Natália Pontes Bona
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luíza Spohr
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fernando Lopez Alves
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli da Silva Dos Santos
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliane Torchelsen Saraiva
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Biociências - Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Roselia Maria Spanevello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
8
|
Cannabis sativa ethanolic extract demonstrated significant anti-tumor effects associated with elevated expression of AXIN1 protein in glioblastoma U87-MG cell line. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Beylerli O, Beilerli A, Shumadalova A, Wang X, Yang M, Sun H, Teng L. Therapeutic effect of natural polyphenols against glioblastoma. Front Cell Dev Biol 2022; 10:1036809. [PMID: 36268515 PMCID: PMC9577362 DOI: 10.3389/fcell.2022.1036809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive tumor of the central nervous system, which has a highly invasive growth pattern, which creates poor prospects for patient survival. Chemotherapy and tumor surgery are limited by anticancer drug resistance and tumor invasion. Evidence suggests that combinations of treatments may be more effective than single drugs alone. Natural polyphenolic compounds have potential as drugs for the treatment of glioblastoma and are considered as potential anticancer drugs. Although these beneficial effects are promising, the efficacy of natural polyphenolic compounds in GBM is limited by their bioavailability and blood-brain barrier permeability. Many of them have a significant effect on reducing the progression of glioblastoma through mechanisms such as reduced migration and cell invasion or chemosensitization. Various chemical formulations have been proposed to improve their pharmacological properties. This review summarizes natural polyphenolic compounds and their physiological effects in glioblastoma models by modulating signaling pathways involved in angiogenesis, apoptosis, chemoresistance, and cell invasion. Polyphenolic compounds are emerging as promising agents for combating the progression of glioblastoma. However, clinical trials are still needed to confirm the properties of these compounds in vitro and in vivo.
Collapse
Affiliation(s)
- Ozal Beylerli
- Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Russia
| | - Xiaoxiong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingchun Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanran Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Teng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lei Teng,
| |
Collapse
|
10
|
Wang M, Liu K, Bu H, Cong H, Dong G, Xu N, Li C, Zhao Y, Jiang F, Zhang Y, Yuan B, Li R, Jiang J. Purple sweet potato delphinidin-3-rutin represses glioma proliferation by inducing miR-20b-5p/Atg7-dependent cytostatic autophagy. Mol Ther Oncolytics 2022; 26:314-329. [PMID: 36090477 PMCID: PMC9420429 DOI: 10.1016/j.omto.2022.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/22/2022] [Indexed: 10/26/2022] Open
|
11
|
SUN J, WANG H, CHENG G, ZHANG L, QU Z, HAN C, ZHENG W, WU L, ZHANG J. Revealing the action mechanisms of scutellarin against glioblastoma based on network pharmacology and experimental validation. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.106121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Junzhao SUN
- First Medical Center of Chinese PLA General Hospital, China
| | - Hongwei WANG
- First Medical Center of Chinese PLA General Hospital, China
| | - Gang CHENG
- First Medical Center of Chinese PLA General Hospital, China
| | - Leiming ZHANG
- Sixth Medical Center of Chinese PLA General Hospital, China
| | - Zhifeng QU
- Sixth Medical Center of Chinese PLA General Hospital, China
| | - Chengchen HAN
- First Medical Center of Chinese PLA General Hospital, China
| | - Wei ZHENG
- Fifth Medical Center of Chinese PLA General Hospital, China
| | - Lin WU
- Sixth Medical Center of Chinese PLA General Hospital, China
| | - Jianning ZHANG
- First Medical Center of Chinese PLA General Hospital, China
| |
Collapse
|
12
|
Jalili-Nik M, Afshari AR, Mahboobnia K, Guest PC, Jamialahmadi T, Sahebkar A. Analysis of Cytotoxic Effects of Zerumbone in Malignant Glioblastoma Cells. Methods Mol Biol 2022; 2343:361-369. [PMID: 34473337 DOI: 10.1007/978-1-0716-1558-4_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive tumor in the central nervous system with a poor prognosis. Currently, the main interventions include surgery, chemotherapy, and radiotherapy. Recently, several natural products have been reported as potentially effective and safer treatment options. Here, we studied the effects of zerumbone, a sesquiterpene compound derived from Zingiber zerumbet Smith rhizomes, on human GBM U-87 MG cells in vitro. To meet this purpose, we used a cytotoxicity assay, as well as a quantitative polymerase chain reaction of apoptosis-related genes and western blot analysis of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a transcription factor that controls the production of cytokines and molecules involved in cell survival.
Collapse
Affiliation(s)
- Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Khadijeh Mahboobnia
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Anticancer effects of veratramine via the phosphatidylinositol-3-kinase/serine-threonine kinase/mechanistic target of rapamycin and its downstream signaling pathways in human glioblastoma cell lines. Life Sci 2022; 288:120170. [PMID: 34826438 DOI: 10.1016/j.lfs.2021.120170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023]
Abstract
AIMS Antitumor effects of veratramine in prostate and liver cancers has been investigated, but it is still unclear whether veratramine can be used as an effective therapeutic agent for glioma. The aim of this study was to evaluate the potential pharmacological mechanism of veratramine in glioma. MAIN METHODS Using four types of human glioblastoma cell lines, including A172, HS-683, T98G, and U-373-MG the dose-dependent antitumor effect of veratramine was evaluated. The cytotoxicity and cell proliferation were examined by CCK-8, and cell proliferation was further confirmed by anchorage-independent colony formation assay. The cell cycle distribution and apoptotic rate was assessed by flow cytometry, and apoptosis was further evaluated by apoptosis assay. The migration and invasiveness capacity were analyzed by using transwell. Protein and mRNA levels of related factors were determined by western blotting and RT-qPCR, respectively. KEY FINDINGS Veratramine markedly induced apoptosis, suppressed the cell proliferation via the cell cycle G0/G1 phase arrest, and reduced the capacity for the migration and invasion in human glioblastoma multiforme cell lines. Moreover, veratramine was sufficient to affect the phosphatidylinositol-3-kinase/serine-threonine kinase/mechanistic target of rapamycin signaling pathway and its downstream Mdm2/p53/p21 pathway in human glioblastoma cell lines. SIGNIFICANCE Antitumor effects of veratramine in suppression of glioma progression was mediated by the regulation of PI3K/Akt/mTOR and Mdm2/p53/p21 signaling pathway.
Collapse
|
14
|
Musthafa SA, Muthu K, Vijayakumar S, George SJ, Murali S, Govindaraj J, Munuswamy-Ramanujam G. Lectin isolated from Abelmoschus esculentus induces caspase mediated apoptosis in human U87 glioblastoma cell lines and modulates the expression of circadian clock genes. Toxicon 2021; 202:98-109. [PMID: 34562497 DOI: 10.1016/j.toxicon.2021.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Lectins are a cluster of proteins which are capable of recognizing and binding to glycoconjugates and are extensively found in plants, animals, fungi and bacteria. Plant-derived lectins have been gaining importance over the years due to their innumerable biological activities and also have the added possibility of being compatible to the human system while simultaneously exhibiting properties like antimicrobial and antitumor activities. Abelmoschus esculentus (AE) commonly known as okra is a vegetable with medicinal properties. AE extracts are used to treat disorders such as constipation, microbial infection, urine retention, hypoglycemia and inflammation in humans. Previous studies showed that lectin isolated from AE exhibited anti inflammatory, anti nociceptive, anticancer, antioxidant and hemagglutinating activities. However, the antitumor effect of the lectin derived from this plant against neural cancer cells still remains unexplored. Glioblastoma is a malignant tumor of the nervous system. Treatment options for patients afflicted by glioblastoma is limited to surgical resection, preceded by radiation therapy and followed by chemotherapy. Hence it would be of interest to identify novel bio molecules with ability to selectively target glioblastoma with minimum side effects. In this aspect, lectins from vegetables that are commonly used as food products could offer a promising lead as anticancer molecules. The present study proves the anti-proliferative effect of lectin isolated from AE on human U87 glioma cells. MTT assay showed significant concentration dependent cytotoxic activity and the IC50 value was calculated as 21 μg/ml. Further, annexin V/FITC staining by FACS, the expression of caspase 3 and 7 and the circadian genes clock and Bmal1 using RT-PCR and the generation of intracellular ROS, cell cycle analysis by FACS revealed the ability of AEL to induce effective apoptosis.
Collapse
Affiliation(s)
- Shazia Anjum Musthafa
- Division of Molecular Biology and Immuno Biology, IIISM, SRM IST, Kattankulathur, 603203, TN, India
| | - Kesavan Muthu
- Division of Molecular Biology and Immuno Biology, IIISM, SRM IST, Kattankulathur, 603203, TN, India
| | - Shubiksha Vijayakumar
- School of Bioengineering, Faculty of Engineering & Technology, SRM IST, Kattankulathur, 603203, TN, India
| | - Sunita Josephine George
- School of Bioengineering, Faculty of Engineering & Technology, SRM IST, Kattankulathur, 603203, TN, India
| | - Svathi Murali
- School of Bioengineering, Faculty of Engineering & Technology, SRM IST, Kattankulathur, 603203, TN, India
| | - Jayanthy Govindaraj
- Faculty of Agricultural Sciences, SRM IST, Kattankulathur, 603203, TN, India
| | - Ganesh Munuswamy-Ramanujam
- Division of Molecular Biology and Immuno Biology, IIISM, SRM IST, Kattankulathur, 603203, TN, India; Department of Chemistry, Faculty of Science & Humanities, SRM IST, Kattankulathur, 603203, TN, India.
| |
Collapse
|
15
|
Ahmed S, Hasan MM, Aschner M, Mirzaei H, Alam W, Mukarram Shah SM, Khan H. Therapeutic potential of marine peptides in glioblastoma: Mechanistic insights. Cell Signal 2021; 87:110142. [PMID: 34487816 DOI: 10.1016/j.cellsig.2021.110142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/14/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in humans. It is characterized by excessive cell growth and accelerated intrusion of normal brain tissue along with a poor prognosis. The current standard of treatment, including surgical removal, radiation therapy, and chemotherapy, is largely ineffective, with high mortality and recurrence rates. As a result, traditional approaches have evolved to include new alternative remedies, such as natural compounds. Aquatic species provide a rich supply of possible drugs. The physiological effects of marine peptides in glioblastoma are mediated by a range of pathways, including apoptosis, microtubule balance disturbances, suppression of angiogenesis, cell migration/invasion, and cell viability; autophagy and metabolic enzymes downregulation. Herein, we address the efficacy of marine peptides as putative safe therapeutic agents for glioblastoma coupled with detail molecular mechanisms.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad Mohtasheemul Hasan
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Waqas Alam
- Department of Pharmacy, University of Swabi, Pakistan
| | | | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan 23200, Pakistan.
| |
Collapse
|
16
|
Cherkasova V, Kovalchuk O, Kovalchuk I. Cannabinoids and Endocannabinoid System Changes in Intestinal Inflammation and Colorectal Cancer. Cancers (Basel) 2021; 13:4353. [PMID: 34503163 PMCID: PMC8430689 DOI: 10.3390/cancers13174353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Despite the multiple preventive measures and treatment options, colorectal cancer holds a significant place in the world's disease and mortality rates. The development of novel therapy is in critical need, and based on recent experimental data, cannabinoids could become excellent candidates. This review covered known experimental studies regarding the effects of cannabinoids on intestinal inflammation and colorectal cancer. In our opinion, because colorectal cancer is a heterogeneous disease with different genomic landscapes, the choice of cannabinoids for tumor prevention and treatment depends on the type of the disease, its etiology, driver mutations, and the expression levels of cannabinoid receptors. In this review, we describe the molecular changes of the endocannabinoid system in the pathologies of the large intestine, focusing on inflammation and cancer.
Collapse
Affiliation(s)
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 7X8, Canada;
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 7X8, Canada;
| |
Collapse
|
17
|
Chelliah SS, Paul EAL, Kamarudin MNA, Parhar I. Challenges and Perspectives of Standard Therapy and Drug Development in High-Grade Gliomas. Molecules 2021; 26:1169. [PMID: 33671796 PMCID: PMC7927069 DOI: 10.3390/molecules26041169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Despite their low incidence rate globally, high-grade gliomas (HGG) remain a fatal primary brain tumor. The recommended therapy often is incapable of resecting the tumor entirely and exclusively targeting the tumor leads to tumor recurrence and dismal prognosis. Additionally, many HGG patients are not well suited for standard therapy and instead, subjected to a palliative approach. HGG tumors are highly infiltrative and the complex tumor microenvironment as well as high tumor heterogeneity often poses the main challenges towards the standard treatment. Therefore, a one-fit-approach may not be suitable for HGG management. Thus, a multimodal approach of standard therapy with immunotherapy, nanomedicine, repurposing of older drugs, use of phytochemicals, and precision medicine may be more advantageous than a single treatment model. This multimodal approach considers the environmental and genetic factors which could affect the patient's response to therapy, thus improving their outcome. This review discusses the current views and advances in potential HGG therapeutic approaches and, aims to bridge the existing knowledge gap that will assist in overcoming challenges in HGG.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Ervin Ashley Lourdes Paul
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| |
Collapse
|
18
|
Huang GD, Chen FF, Ma GX, Li WP, Zheng YY, Meng XB, Li ZY, Chen L. Cassane diterpenoid derivative induces apoptosis in IDH1 mutant glioma cells through the inhibition of glutaminase in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153434. [PMID: 33529962 DOI: 10.1016/j.phymed.2020.153434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most frequent, lethal and aggressive tumour of the central nervous system in adults. The discovery of novel anti-GBM agents based on the isocitrate dehydrogenase (IDH) mutant phenotypes and classifications have attracted comprehensive attention. PURPOSE Diterpenoids are a class of naturally occurring 20-carbon isoprenoid compounds, and have previously been shown to possess high cytotoxicity for a variety of human tumours in many scientific reports. In the present study, 31 cassane diterpenoids of four types, namely, butanolide lactone cassane diterpenoids (I) (1-10), tricyclic cassane diterpenoids (II) (11-15), polyoxybutanolide lactone cassane diterpenoids (III) (16-23), and fused furan ring cassane diterpenoids (IV) (24-31), were tested for their anti-glioblastoma activity and mechanism underlying based on IDH1 mutant phenotypes of primary GBM cell cultures and human oligodendroglioma (HOG) cell lines. RESULTS We confirmed that tricyclic-type (II) and compound 13 (Caesalpin A, CSA) showed the best anti-neoplastic potencies in IDH1 mutant glioma cells compared with the other types and compounds. Furthermore, the structure-relationship analysis indicated that the carbonyl group at C-12 and an α, β-unsaturated ketone unit fundamentally contributed to enhancing the anti-glioma activity. Studies investigating the mechanism demonstrated that CSA induced oxidative stress via causing glutathione reduction and NOS activation by negatively regulating glutaminase (GLS), which proved to be highly dependent on IDH mutant type glioblastoma. Finally, GLS overexpression reversed the CSA-induced anti-glioma effects in vitro and in vivo, which indicated that the reduction of GLS contributed to the CSA-induced proliferation inhibition and apoptosis in HOG-IDH1-mu cells. CONCLUSION Therefore, the present results demonstrated that compared with other diterpenoids, tricyclic-type diterpenoids could be a targeted drug candidate for the treatment of secondary IDH1 mutant type glioblastoma through negatively regulating GLS.
Collapse
Affiliation(s)
- Guo-Dong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Fan-Fan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Guo-Xu Ma
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Wei-Ping Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Yue-Yang Zheng
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Xiang-Bao Meng
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Zong-Yang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China.
| | - Lei Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China.
| |
Collapse
|
19
|
Musthafa SA, Kasinathan T, Bhattacharyya R, Muthu K, Kumar S, Munuswamy-Ramanujam G. Gallic acid synergistically enhances the apoptotic ability of Abutilon indicum Linn. Stem fraction inhuman U87 glioblastoma cells. MATERIALS TODAY: PROCEEDINGS 2021; 40:S216-S223. [DOI: 10.1016/j.matpr.2020.10.285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
20
|
Nascimento RP, Dos Santos BL, da Silva KC, Amaral da Silva VD, de Fátima Costa M, David JM, David JP, Moura-Neto V, Oliveira MDN, Ulrich H, de Faria Lopes GP, Costa SL. Reverted effect of mesenchymal stem cells in glioblastoma treated with agathisflavone and its selective antitumoral effect on cell viability, migration, and differentiation via STAT3. J Cell Physiol 2020; 236:5022-5035. [PMID: 33368262 DOI: 10.1002/jcp.30209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022]
Abstract
Glioblastoma is the most lethal tumor of the central nervous system, presenting a very poor prognostic, with a survival around 16 months. The interaction of mesenchymal stem cells and tumor cells has been studied, showing a bias in their role favoring or going against aggressiveness. Natural products such as flavonoids have showed their anticancer properties and the synergic potential with the activation of microenvironment cells to inhibit tumor progression. Agathisflavone is a flavonoid studied in neurodegenerative diseases and cancer. The present study investigated the effect of flavonoid in the viability of heterogeneous glioblastoma (GBM) cells considering a coculture or conditioned medium of mesenchymal stem cells (MSCs) effect, as well as the dose-dependent effect of this flavonoid in tumor migration and differentiation via STAT3. Agathisflavone (3-10 μM) induced dose-dependent toxicity to GL-15 and U373 human GBM cells, since 24 h after treatments. It was not toxic to human MSC but modified the pattern of interaction with GBM cells. Agathisflavone also inhibited migration and increased differentiation of human GBM cells, associated with the reduction on the expression of STAT3. These results demonstrate that the flavonoid agathisflavone had a direct anti-glioma effect. However, could be observed its effect in MSCs response that may have an impact in controlling GBM growth and aggressiveness, an important factor to consider for new therapies.
Collapse
Affiliation(s)
- Ravena P Nascimento
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Federal University of Bahia, Salvador, Bahia, Brazil.,Post-graduate Program in Biotechnology, State University of de Feira de Santana - UEFS, Feira de Santana, Bahia, Brazil
| | - Balbino L Dos Santos
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Federal University of Bahia, Salvador, Bahia, Brazil.,Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Karina C da Silva
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Victor D Amaral da Silva
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Federal University of Bahia, Salvador, Bahia, Brazil.,INCT/CNPq-Neurociência Translacional (INNT), Rio de Janeiro, Brazil
| | - Maria de Fátima Costa
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Federal University of Bahia, Salvador, Bahia, Brazil.,INCT/CNPq-Neurociência Translacional (INNT), Rio de Janeiro, Brazil
| | - Jorge M David
- Department of General and Inorganic Chemistry, Federal University of Bahia, Bahia, Brazil
| | - Juceni P David
- Department of Medication, Faculty of Pharmacy, Federal University of Bahia, Brazil
| | - Vivaldo Moura-Neto
- INCT/CNPq-Neurociência Translacional (INNT), Rio de Janeiro, Brazil.,State Institute of the Brain Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Mona das N Oliveira
- Department Of Biochemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department Of Biochemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Giselle P de Faria Lopes
- Department of Marine Biotechnology, Institute of Sea Studies Admiral Paulo Moreira (IEAPM), Rio de Janeiro and Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Silvia L Costa
- Department of Biochemistry and Biophysics, Laboratory of Neurochemistry and Cell Biology, Federal University of Bahia, Salvador, Bahia, Brazil.,INCT/CNPq-Neurociência Translacional (INNT), Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Bicker J, Fortuna A, Alves G, Falcão A. Nose-to-brain Delivery of Natural Compounds for the Treatment of Central Nervous System Disorders. Curr Pharm Des 2020; 26:594-619. [PMID: 31939728 DOI: 10.2174/1381612826666200115101544] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Several natural compounds have demonstrated potential for the treatment of central nervous system disorders such as ischemic cerebrovascular disease, glioblastoma, neuropathic pain, neurodegenerative diseases, multiple sclerosis and migraine. This is due to their well-known antioxidant, anti-inflammatory, neuroprotective, anti-tumor, anti-ischemic and analgesic properties. Nevertheless, many of these molecules have poor aqueous solubility, low bioavailability and extensive gastrointestinal and/or hepatic first-pass metabolism, leading to a quick elimination as well as low serum and tissue concentrations. Thus, the intranasal route emerged as a viable alternative to oral or parenteral administration, by enabling a direct transport into the brain through the olfactory and trigeminal nerves. With this approach, the blood-brain barrier is circumvented and peripheral exposure is reduced, thereby minimizing possible adverse effects. OBJECTIVE Herein, brain-targeting strategies for nose-to-brain delivery of natural compounds, including flavonoids, cannabinoids, essential oils and terpenes, will be reviewed and discussed. Brain and plasma pharmacokinetics of these molecules will be analyzed and related to their physicochemical characteristics and formulation properties. CONCLUSION Natural compounds constitute relevant alternatives for the treatment of brain diseases but often require loading into nanocarrier systems to reach the central nervous system in sufficient concentrations. Future challenges lie in a deeper characterization of their therapeutic mechanisms and in the development of effective, safe and brain-targeted delivery systems for their intranasal administration.
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
22
|
Wang WH, Shen CY, Chien YC, Chang WS, Tsai CW, Lin YH, Hwang JJ. Validation of Enhancing Effects of Curcumin on Radiotherapy with F98/ FGT Glioblastoma-Bearing Rat Model. Int J Mol Sci 2020; 21:ijms21124385. [PMID: 32575632 PMCID: PMC7352749 DOI: 10.3390/ijms21124385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma, the most common and aggressive brain tumor with low survival rate, is difficult to be cured by neurosurgery or radiotherapy. Mounting evidence has reported the anti-inflammatory and anticancer effects of curcumin on several types of cancer in preclinical studies and clinical trials. To our knowledge, there is no platform or system that could be used to effectively and real-timely evaluate the therapeutic efficacy of curcumin for glioblastoma multiforme (GBM). In this study, we constructed a lentivirus vector with triple-reporter genes (Fluc/GFP/tk) and transduced into rat F98 glioblastoma cells to establish an orthotopic F98/FGT glioma-bearing rat model. In the model, the therapeutic efficacies for curcumin alone, radiation alone, and their combination were evaluated via noninvasive bioluminescent imaging and overall survival measurements. At the cell level, curcumin is capable of causing a G2/M cell cycle arrest and sensitizing the F98 cells to radiation. In animal model, curcumin synergistically enhances the effects of radiotherapy on suppressing the growth of both transplanted glioma cells and in situ brain tumors, and extending the overall survival periods longer than those of curcumin alone and radiation alone treatments. In conclusion, we have demonstrated that curcumin may serve as a novel radiosensitizer to combine with radiotherapy using the triple-reporter F98/FGT animal model for effective and simultaneous evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Wei-Hsun Wang
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
| | - Chao-Yu Shen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; or
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Chun Chien
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Jiaosu Village, Kaohsiung 824, Taiwan;
- School of Medicine, I-Shou University, Jiaosu Village, Kaohsiung 824, Taiwan
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 402, Taiwan; (W.-S.C.); (C.-W.T.)
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 402, Taiwan; (W.-S.C.); (C.-W.T.)
| | - Yi-Hsien Lin
- Division of Radiotherapy, Cheng Hsin General Hospital, No. 45, Cheng Hsin St, Beitou, Taipei 112, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (Y.-H.L.); (J.-J.H.); Tel.: +88-622-826-4400 (ext. 5750) (Y.-H.L.); +88-642-473-9595 (ext. 32138) (J.-J.H.); Fax: +88-622-826-4524 (Y.-H.L.); +88-642-324-8186 (J.-J.H.)
| | - Jeng-Jong Hwang
- Department of Medical Imaging, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo North Road, Taichung 402, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 112, Taiwan
- Correspondence: (Y.-H.L.); (J.-J.H.); Tel.: +88-622-826-4400 (ext. 5750) (Y.-H.L.); +88-642-473-9595 (ext. 32138) (J.-J.H.); Fax: +88-622-826-4524 (Y.-H.L.); +88-642-324-8186 (J.-J.H.)
| |
Collapse
|
23
|
Farooq M, Abutaha N, Mahboob S, Baabbad A, Almoutiri ND, Wadaan MAAM. Investigating the antiangiogenic potential of Rumex vesicarius (humeidh), anticancer activity in cancer cell lines and assessment of developmental toxicity in zebrafish embryos. Saudi J Biol Sci 2020; 27:611-622. [PMID: 32210679 PMCID: PMC6997907 DOI: 10.1016/j.sjbs.2019.11.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/29/2022] Open
Abstract
Recent trends in anticancer therapy is to use therapeutic agents which not only kill the cancer cell, but are less toxic to surrounding normal cells/tissue. One approach is to cut the nutrient supply to growing tumor cells, by blocking the formation of new blood vessels around the tumor. As the phytochemicals and botanical crude extracts have proven their efficacy as natural antiangiogenic agents with minimum toxicities, there is need to explore varieties of medicinal plants for novel antiangiogenic compounds. Rumex vesicarius L. (Humeidh), is an annual herbal plant with proven medicinal values. The antiangiogenic potential, and developmental toxicity of humeidh in experimental animal models has never been studied before. The crude extracts were prepared from the roots, stems, leaves and flowers of Rumex vesicarius L. in methanol, chloroform, ethyl acetate and n-hexane. The developmental toxicity screening in zebrafish embryos, has revealed that Rumex vesicarius was not toxic to zebrafish embryos. The chloroform stem extract showed significant level of antiangiogenic activity in zebrafish angiogenic assay on a dose dependent manner. Thirty five (35) bioactive compounds were identified by gas chromatography mass spectrophotometry (GC–MS) analysis in the stem extract of Rumex vesicarius. Propanoic acid, 2-[(trimethylsilyl)oxy]-, trimethylsilyl ester, Butane, 1,2,3-tris(trimethylsiloxy), and Butanedioic acid, bis(trimethylsilyl) ester were identified as major compound present in the stem of R. vasicarius. The anticancer activity of roots, stem, leaves and flowers crude extract was evaluated in human breast cancer (MCF7), human colon carcinoma (Lovo, and Caco-2), human hepatocellular carcinoma (HepG2) cell lines. Most of the crude extracts did not show significant level of cytotoxicity in tested cancer cells line, except, chloroform extract of stem which exhibited strong anticancer activity in all tested cancer cells with IC50 values in micro molar range. Based on these results, it is recommended that formulation prepared from R. vesicarius can further be tested in clinical trials in order to explore its therapeutic potential as an effective and safe natural anticancer product.
Collapse
Affiliation(s)
- Muhammad Farooq
- College of Science, Department of Zoology, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Nael Abutaha
- College of Science, Department of Zoology, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Almohannad Baabbad
- College of Science, Department of Zoology, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Nawaf D Almoutiri
- College of Science, Department of Zoology, King Saud University, 11451 Riyadh, Saudi Arabia
| | | |
Collapse
|
24
|
Yool AJ, Ramesh S. Molecular Targets for Combined Therapeutic Strategies to Limit Glioblastoma Cell Migration and Invasion. Front Pharmacol 2020; 11:358. [PMID: 32292341 PMCID: PMC7118801 DOI: 10.3389/fphar.2020.00358] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
The highly invasive nature of glioblastoma imposes poor prospects for patient survival. Molecular evidence indicates glioblastoma cells undergo an intriguing expansion of phenotypic properties to include neuron-like signaling using excitable membrane ion channels and synaptic proteins, augmenting survival and motility. Neurotransmitter receptors, membrane signaling, excitatory receptors, and Ca2+ responses are important candidates for the design of customized treatments for cancers within the heterogeneous central nervous system. Relatively few published studies of glioblastoma multiforme (GBM) have evaluated pharmacological agents targeted to signaling pathways in limiting cancer cell motility. Transcriptomic analyses here identified classes of ion channels, ionotropic receptors, and synaptic proteins that are enriched in human glioblastoma biopsy samples. The pattern of GBM-enriched gene expression points to a major role for glutamate signaling. However, the predominant role of AMPA receptors in fast excitatory signaling throughout the central nervous system raises a challenge on how to target inhibitors selectively to cancer cells while maintaining tolerability. This review critically evaluates a panel of ligand- and voltage-gated ion channels and synaptic proteins upregulated in GBM, and the evidence for their potential roles in the pathological disease progress. Evidence suggests combinations of therapies could be more effective than single agents alone. Natural plant products used in traditional medicines for the treatment of glioblastoma contain flavonoids, terpenoids, polyphenols, epigallocatechin gallate, quinones, and saponins, which might serendipitously include agents that modulate some classes of signaling compounds highlighted in this review. New therapeutic strategies are likely to exploit evidence-based combinations of selected agents, each at a low dose, to create new cancer cell-specific therapeutics.
Collapse
Affiliation(s)
- Andrea J. Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Sunita Ramesh
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
25
|
Cao H, Li X, Wang F, Zhang Y, Xiong Y, Yang Q. Phytochemical-Mediated Glioma Targeted Treatment: Drug Resistance and Novel Delivery Systems. Curr Med Chem 2020; 27:599-629. [PMID: 31400262 DOI: 10.2174/0929867326666190809221332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 03/15/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023]
Abstract
Glioma, especially its most malignant type, Glioblastoma (GBM), is the most common and the most aggressive malignant tumour in the central nervous system. Currently, we have no specific therapies that can significantly improve its dismal prognosis. Recent studies have reported promising in vitro experimental results of several novel glioma-targeting drugs; these studies are encouraging to both researchers and patients. However, clinical trials have revealed that novel compounds that focus on a single, clear glioma genetic alteration may not achieve a satisfactory outcome or have side effects that are unbearable. Based on this consensus, phytochemicals that exhibit multiple bioactivities have recently attracted much attention. Traditional Chinese medicine and traditional Indian medicine (Ayurveda) have shown that phytocompounds inhibit glioma angiogenesis, cancer stem cells and tumour proliferation; these results suggest a novel drug therapeutic strategy. However, single phytocompounds or their direct usage may not reverse comprehensive malignancy due to poor histological penetrability or relatively unsatisfactory in vivo efficiency. Recent research that has employed temozolomide combination treatment and Nanoparticles (NPs) with phytocompounds has revealed a powerful dual-target therapy and a high blood-brain barrier penetrability, which is accompanied by low side effects and strong specific targeting. This review is focused on major phytocompounds that have contributed to glioma-targeting treatment in recent years and their role in drug resistance inhibition, as well as novel drug delivery systems for clinical strategies. Lastly, we summarize a possible research strategy for the future.
Collapse
Affiliation(s)
- Hang Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Feiyifan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yueqi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Luís Â, Marcelino H, Rosa C, Domingues F, Pereira L, Cascalheira JF. The effects of cannabinoids on glioblastoma growth: A systematic review with meta-analysis of animal model studies. Eur J Pharmacol 2020; 876:173055. [PMID: 32145324 DOI: 10.1016/j.ejphar.2020.173055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiforme (GBM) is the most frequent and aggressive malignant brain tumour, with a poor prognosis despite available surgical and radio-chemotherapy, rising the necessity for searching alternative therapies. Several preclinical studies evaluating the efficacy of cannabinoids in animal models of GBM have been described, but the diversity of experimental conditions and of outcomes hindered definitive conclusions about cannabinoids efficacy. A search in different databases (Pubmed, Web of Science, Scopus and SciELO) was conducted during June 2019 to systematically identify publications evaluating the effects of cannabinoids in murine xenografts models of GBM. The tumour volume and number of animals were extracted, and a random effects meta-analysis of these results was performed to estimate the efficacy of cannabinoids. The impact of different experimental factors and publication bias on the efficacy of cannabinoids was also assessed. Nine publications, which satisfied the inclusion criteria, were identified and subdivided in 22 studies involving 301 animals. Overall, cannabinoid therapy reduced the fold of increase in tumour volume in animal models of GBM, when compared with untreated controls. The overall weighted standardized difference in means (WSDM) for the effect of cannabinoids was -1.399 (95% CI: -1.900 to -0.898; P-value<0.0001). Furthermore, treatment efficacy was observed for different types of cannabinoids, alone or in combination, and for different treatment durations. Cannabinoid therapy was still effective after correcting for publication bias. The results indicate that cannabinoids reduce the tumour growth in animal models of GBM, even after accounting for publication bias.
Collapse
Affiliation(s)
- Ângelo Luís
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Grupo de Revisões Sistemáticas da Literatura (GRUBI), Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Helena Marcelino
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Carolina Rosa
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Fernanda Domingues
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Luísa Pereira
- Grupo de Revisões Sistemáticas da Literatura (GRUBI), Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Centro de Matemática e Aplicações (CMA-UBI), Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - José Francisco Cascalheira
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal.
| |
Collapse
|
27
|
Izzo AA. An updated PTR virtual issue on the pharmacology of the nutraceutical curcumin. Phytother Res 2020; 34:671-673. [PMID: 32077178 DOI: 10.1002/ptr.6635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
28
|
Soares JM, Faria BMDE, Ascari LM, Souza JMDE, Soares AG, Cordeiro Y, Romão LF. Diosmin induces caspase-dependent apoptosis in human glioblastoma cells. AN ACAD BRAS CIENC 2019; 91:e20191031. [PMID: 31800712 DOI: 10.1590/0001-3765201920191031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Diosmin is a flavone glycoside clinically used as the main component of Daflon for the treatment of venous diseases. Several studies demonstrated that this natural compound can induce apoptosis in different tumors. However, isolated diosmin has not been studied regarding its effects on glioblastoma so far. Since glioblastoma is a highly lethal and fast-growing brain tumor, new therapeutic strategies are urgently needed. Herein, we evaluated the role of this flavonoid against glioblastoma cells using in vitro assays. Diosmin significantly reduced the viability of GBM95, GBM02, and U87MG glioblastoma cells, but not of healthy human astrocytes, as verified by MTT assay. Vimentin immunostaining showed that diosmin induced morphological changes in GBM95 and GBM02 cells, making them smaller and more polygonal. Diosmin did not inhibit GBM95 and GBM02 cell proliferation, but it caused DNA fragmentation, as verified by the TUNEL assay, and increased cleaved caspase-3 expression in these cells. In summary, diosmin is able to induce caspase-dependent apoptosis specifically in tumor cells and, therefore, could be considered a promising therapeutic compound against glioblastoma.
Collapse
Affiliation(s)
- Juliana M Soares
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bl. F026, 21941-590 Rio de Janeiro, RJ, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS, Bl. Bss17, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Bruna M DE Faria
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bl. F026, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Lucas M Ascari
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS, Bl. Bss17, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Jorge M DE Souza
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco, 255, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Antonio G Soares
- Empresa Brasileira de Pesquisa Agropecuária/EMBRAPA, Centro Nacional de Pesquisa de Tecnologia Agroindustrial de Alimentos, Av. das Américas, 29501, 23020-470 Rio de Janeiro RJ, Brazil
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS, Bl. Bss17, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Luciana F Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bl. F026, 21941-590 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
29
|
Pagano E, Izzo AA. Potential of phytochemicals in breast cancer prevention and therapy. Phytother Res 2019; 33:2795-2797. [DOI: 10.1002/ptr.6480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Ester Pagano
- Department of PharmacyUniversity of Naples Federico II Naples Italy
| | - Angelo A. Izzo
- Department of PharmacyUniversity of Naples Federico II Naples Italy
| |
Collapse
|
30
|
Durazzo A, Lucarini M, Souto EB, Cicala C, Caiazzo E, Izzo AA, Novellino E, Santini A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother Res 2019; 33:2221-2243. [DOI: 10.1002/ptr.6419] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Eliana B. Souto
- Faculty of Pharmacy of University of Coimbra Azinhaga de Santa Comba Coimbra Portugal
- CEB‐Centre of Biological EngineeringUniversity of Minho Braga Portugal
| | - Carla Cicala
- Department of PharmacyUniversity of Napoli Federico II Napoli Italy
| | | | - Angelo A. Izzo
- Department of PharmacyUniversity of Napoli Federico II Napoli Italy
| | - Ettore Novellino
- Department of PharmacyUniversity of Napoli Federico II Napoli Italy
| | | |
Collapse
|
31
|
Dong J, Meng X, Li S, Chen Q, Shi L, Jiang C, Cai J. Risk of Adverse Vascular Events in Patients with Malignant Glioma Treated with Bevacizumab Plus Irinotecan: A Systematic Review and Meta-Analysis. World Neurosurg 2019; 130:e236-e243. [PMID: 31203059 DOI: 10.1016/j.wneu.2019.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Bevacizumab plus irinotecan is a new beneficial chemotherapy strategy for patients with malignant glioma. The purpose of this systematic review and meta-analysis was to comprehensively assess the risk of adverse vascular events in adults with malignant glioma treated with bevacizumab plus irinotecan. METHODS The Cochrane Library, Embase and PubMed were searched, and relevant trials were identified up to June 2018. Two investigators screened all titles and abstracts for possible inclusion and extracted data independently. Six studies were included, and 5 of them in the control group using bevacizumab alone or bevacizumab with temozolomide. Three systems were used to assess the quality of evidence and the level of recommendation. The Oxford Centre for Evidence-Based Medicine Levels of Evidence (2009) system was used to classify the evidence into 5 levels (classes I-V). The star system from the Newcastle-Ottawa Scale was used to assess methodological quality. The GRADE profiler was used to evaluate the overall body of evidence. RESULTS Our data show that bevacizumab plus irinotecan therapy does not significantly affect the risk of systemic adverse events (odds ratio [OR], 1.17; 95% confidence interval [CI], 0.43-3.18). Patients treated with bevacizumab plus irinotecan had a similar risk of hematotoxicity (OR, 1.06; 95% CI, 0.26-4.38), thrombocytopenia (OR, 1.07; 95% CI, 0.25-4.63), and hypertension (OR, 1.34; 95% CI, 0.28-6.36) compared with the control group (those treated without irinotecan). Thrombosis occurred more frequently in patients treated with bevacizumab plus irinotecan compared with the control group (OR, 3.23; 95% CI, 1.47-7.12). CONCLUSIONS The risk of systemic adverse events was not significantly different between patients with malignant glioma treated with bevacizumab plus irinotecan and the control group. The risks of hematotoxicity, thrombocytopenia, and hypertension were similar in the 2 groups. The risk of thrombosis was higher in patients treated with bevacizumab plus irinotecan. Monitoring for thrombosis and administering anticoagulant therapy as necessary merit promotion for patients with malignant glioma receiving treatment with bevacizumab plus irinotecan.
Collapse
Affiliation(s)
- Jiawei Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Siyi Li
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Qun Chen
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Shi
- Department of Health Management, School of Public Health, Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
32
|
Li H, Liang Q, Wang L. Icaritin inhibits glioblastoma cell viability and glycolysis by blocking the IL-6/Stat3 pathway. J Cell Biochem 2019; 120:7257-7264. [PMID: 30390336 DOI: 10.1002/jcb.28000] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
Glioblastoma (GBM) is a common and aggressive brain tumor that is associated with significant increase in glycolysis for energy production. Icaritin is a natural compound and exhibits anticancer activity in GBM. However, the effect of icaritin on glycolysis in GBM cells remains unclear. The aim of the current study was to investigate the effect of icaritin on glycolysis in GBM cells. The human GBM cell lines U87 and T98G were treated with icaritin or the inhibitor of Stat3 (S3I-201) in the presence or absence of recombinant human interleukin (IL)-6. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. The glycolysis was analyzed by detecting the glucose consumption and lactate production. The Western blot analysis was conducted to detect the expressions of hexokinase 2 (HK2), signal transducer and activator of transcription 3 (Stat3), p-Stat3, and B lymphoma Mo-MLV insertion region 1 (Bmi-1). Results showed that icaritin inhibited the viability of U87 and T98G cells in a dose-dependent manner. The decreased glucose consumption and lactate production, accompanied by reduced expressions of HK2, were found in both U87 and T98G cells. Icaritin inhibited the IL-6/Stat3 pathway, which is evidenced by the decreased expressions of p-Stat3 and Bmi-1. IL-6 treatment induced the phosphorylation of Stat3 and Bmi-1 expression, increased cell viability, as well as elevated glucose consumption, lactate production, and HK2 expression; however, the effects of IL-6 were attenuated by icaritin or S3I-201 treatment. In conclusion, icaritin exerted inhibitory effects on cell viability and glycolysis in GBM cells, which was mediated by the IL-6/Stat3 pathway.
Collapse
Affiliation(s)
- Hongchao Li
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qinghua Liang
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lin Wang
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|