1
|
Essa HA, Hashim AF, Abdel-Aziz NN, Mohamed FEZS, Ali AM. Olive and Linseed Oil Blend-Based Nanoemulsions Fortified With Ginger Extract Nutraceutical: Mitigating Liver Fibrosis Induced by Carbon Tetrachloride by Regulating Oxidative Stress and TGF-β/MMP9 Signaling Pathway in Rats. Mol Nutr Food Res 2024:e202400497. [PMID: 39723735 DOI: 10.1002/mnfr.202400497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/02/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Liver fibrosis is a significant contributor to global morbidity and mortality, making the identification of non-toxic natural therapies to slow its progression essential. This study evaluated the anti-fibrotic potential of a nutraceutical blend comprising extra virgin olive oil, linseed oil, and ginger extract, formulated in both emulsion and nanoemulsion forms, using a rat model of liver fibrosis. Nanoemulsions were prepared using the ultrasonication technique, and their particle size and stability were analyzed via the DLS method. Twenty-four male albino rats were divided into four groups: normal control, CCl4-treated, oil emulsion-treated, and nanoemulsion-treated. Liver fibrosis was induced by oral administration of carbon tetrachloride (CCl4), while the emulsions were administered daily alongside CCl4 for four weeks. Liver function indices, oxidative stress biomarkers, and gene expressions were assessed, along with histopathological and immunohistochemical analyses. The results revealed that both emulsions significantly improved liver function, enhanced antioxidant capacity, and reduced lipid peroxidation. They downregulated pro-fibrogenic markers (TGF-β1, TIMP-1) and upregulated anti-fibrogenic markers (MMP9, HGF), leading to a reduction in liver fibrosis. The nanoemulsion exhibited superior efficacy compared to the emulsion. These findings demonstrate that the nutraceutical blend, particularly in nanoemulsion form, effectively attenuated liver fibrosis and improved hepatic health markers. This underscores its potential as a natural therapy for liver fibrosis and related conditions, emphasizing its nutritional value in supporting liver health.
Collapse
Affiliation(s)
- Hend A Essa
- Nutrition and Food Sciences Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ayat F Hashim
- Fats and Oils Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Nahla N Abdel-Aziz
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Fatma El-Zahraa Sayed Mohamed
- Nutrition and Food Sciences Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Alaa M Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Mitra D, Paul M, Thatoi H, Das Mohapatra PK. Potentiality of bioactive compounds as inhibitor of M protein and F protein function of human respiratory syncytial virus. In Silico Pharmacol 2023; 12:5. [PMID: 38148755 PMCID: PMC10749291 DOI: 10.1007/s40203-023-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 12/28/2023] Open
Abstract
The human respiratory syncytial virus (RSV) creates a pandemic every year in several countries in the world. Lack of target therapeutics and absence of vaccines have prompted scientists to create novel vaccines or small chemical treatments against RSV's numerous targets. The matrix (M) protein and fusion (F) glycoprotein of RSV are well characterized and attractive drug targets. Five bioactive compounds from Alnus japonica (Thunb.) Steud. were taken into consideration as lead compounds. Drug-likeness characters of them showed the drugs are non-toxic and non-mutagenic and mostly lipophobic. Molecular docking reveals that all bioactive compounds have better binding and better inhibitory effect than ribavirin which is currently used against RSV. Praecoxin A appeared as the best lead compound between them. It creates 7 different types of bonds with amino acids of M protein and 5 different types of bonds with amino acids of F protein. Van der Waals interactions highly influenced the binding energies. Molecular dynamic simulations represent the non-deviated and less fluctuating nature of praecoxin A. Principal Component Analysis showed praecoxin A complex with RSV matrix protein is more stable than ribavirin complex. This study will help to develop a new drug to inhibit RSV. All ligands were minimized through semi-empirical PM3 process with MOPAC. Toxicity was tested by ProTox-II server. Molecular docking studies were carried out using AutoDock 4.2. Molecular dynamics simulations for 100 ns were carried out through GROMACS 5.12 MD and GROMOS96 43a1 force field. The graphs were produced by GROMACS's XMGrace program. Graphical abstract
Collapse
Affiliation(s)
- Debanjan Mitra
- Department of Microbiology, Raiganj University, Raiganj, West Bengal 733134 India
| | - Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha 757003 India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha 757003 India
| | | |
Collapse
|
3
|
Zhang Y, Huang J, Gan L, Wu R, Jin J, Wang T, Sun S, Zhang Z, Li L, Zheng X, Zhang K, Sun L, Ma H, Li D. Hepatoprotective effects of Niudali ( Callerya speciosa) root aqueous extracts against tetrachloromethane-induced acute liver injury and inflammation. Food Sci Nutr 2023; 11:7026-7038. [PMID: 37970412 PMCID: PMC10630805 DOI: 10.1002/fsn3.3626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 11/17/2023] Open
Abstract
Niudali (Callerya speciosa) is commonly grown in southeastern regions of China and consumed as a food ingredient. Although Niudali root extracts showed various biological activities, the hepatoprotective effects of Niudali root phytochemicals are not fully studied. Herein, we prepared two Niudali root aqueous extracts, namely, c and Niudali polysaccharides-enriched extract (NPE), and identified an alkaloid, (hypaphorine) in NEW. The hepatoprotective effects of NWE, NPE, and hypaphorine were evaluated in an acute liver injury model induced by carbon tetrachloride (CCl4) in mice. Pathohistological examination and blood chemistry assays showed that treatment of NWE, NPE, and hypaphorine alleviated CCl4-induced liver damage by lowering the liver injury score (by 75.51%, 80.01%, and 41.22%) and serum aspartate and alanine transaminases level (by 63.24%, 85.22%, and 49.74% and by 78.73%, 80.08%, and 81.70%), respectively. NWE, NPE, and hypaphorine also reduced CCl4-induced hepatic oxidative stresses in the liver tissue by decreasing the levels of malondialdehyde (by 40.00%, 51.25%, and 28.75%) and reactive oxygen species (by 30.22%, 36.14%, and 33.54%) while increasing the levels of antioxidant enzymes including superoxide dismutase (by 21.36%, 21.64%, and 8.90%), catalase (by 22.13%, 33.33%, and 5.39%), and glutathione (by 84.87%, 90.65%, and 80.53%), respectively. Mechanistic assays showed that NWE, NPE, and hypaphorine alleviated liver damage by mediating inflammatory biomarkers (e.g., pro-inflammatory cytokines) via the signaling pathways of mitogen-activated protein kinases and nuclear factor-κB. Findings from our study extend the understanding of Niudali's hepatoprotective effects, which is useful for its development as a dietary intervention for liver inflammation.
Collapse
Affiliation(s)
- Yizi Zhang
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
| | - Jinwen Huang
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
| | - Lishe Gan
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
- International Healthcare Innovation Institute (Jiangmen)JiangmenChina
| | - Rihui Wu
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
- International Healthcare Innovation Institute (Jiangmen)JiangmenChina
| | - Jingwei Jin
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
- International Healthcare Innovation Institute (Jiangmen)JiangmenChina
| | - Tinghan Wang
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of PharmacyUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & UtilizationGuangzhouChina
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & UtilizationGuangzhouChina
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Xi Zheng
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
| | - Kun Zhang
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & UtilizationGuangzhouChina
| | - Hang Ma
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
- International Healthcare Innovation Institute (Jiangmen)JiangmenChina
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of PharmacyUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Dongli Li
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
- International Healthcare Innovation Institute (Jiangmen)JiangmenChina
| |
Collapse
|
4
|
Didamoony MA, Atwa AM, Abd El-Haleim EA, Ahmed LA. Bromelain ameliorates D-galactosamine-induced acute liver injury: role of SIRT1/LKB1/AMPK, GSK3β/Nrf2 and NF-κB p65/TNF-α/caspase-8, -9 signalling pathways. J Pharm Pharmacol 2022; 74:1765-1775. [PMID: 36227279 DOI: 10.1093/jpp/rgac071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/14/2022]
Abstract
OBJECTIVES The present research focused on estimating, for the first time, the potential protective effects of bromelain against D-galactosamine-induced acute liver injury in rats as well as identifying the possible underlying mechanisms. METHODS Silymarin (100 mg/kg/day, p.o.) as a reference drug or bromelain (20 and 40 mg/kg/day, p.o.) were administered for 10 days, and on the 8th day of the experiment, a single dose of galactosamine (400 mg/kg/i.p.) induced acute liver injury. KEY FINDINGS Pretreatment with bromelain improved liver functions and histopathological alterations induced by galactosamine. Bromelain ameliorated oxidative stress by inducing SIRT1 protein expression and increasing LKB1 content. This resulted in phosphorylating the AMPK/GSK3β axis, which stimulated Nrf2 activation in hepatic cells and thus increased the activity of its downstream antioxidant enzymes [HO-1 and NQO1]. Besides, bromelain exerted significant anti-apoptotic and anti-inflammatory effects by suppressing hepatic contents of TNF-α, NF-κB p65, as well as caspase-8 and caspase-9. The protective effects of bromelain40 were proved to be better than silymarin and bromelain20 in most of the assessed parameters. CONCLUSIONS Our results highlight the significant hepatoprotective effects of bromelain against acute liver injury through modulation of SIRT1/LKB1/AMPK, GSK3β/Nrf2 signalling in addition to NF-κB p65/TNF-α/ caspase-8 and -9 pathway.
Collapse
Affiliation(s)
- Manar A Didamoony
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Egypt
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Egypt
| | - Enas A Abd El-Haleim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
5
|
Ebrahem EMM, Sayed GH, Gad GNA, Anwer KE, Selim AA. Histopathology, pharmacokinetics and estimation of interleukin-6 levels of Moringa oleifera leaves extract-functionalized selenium nanoparticles against rats induced hepatocellular carcinoma. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00123-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) is one of the most dangerous cancers in all the world. This study focused on prevention and therapy of hepatocellular carcinoma (HCC) using Moringa oleifera extract combined with vitamin C and selenium in a nanoplatform (MO/asc.-Se-NPs).
Results
Full characterization of MO/asc.-Se-NPs was performed by using different analytical techniques (TEM, DLS, zeta-sizer), and its antioxidant capacity was measured by DPPH assay. Biodistribution study was performed with the aid of radiolabeling technique using technetium-99m in normal albino mice. HCC was induced in Wister albino rats to evaluate the efficiency of MO/asc.-Se-NPs in the treatment of HCC. The biomarker analysis (ALT, AST and ALB) shows improvement in its values in prevention and treated groups by using MO/asc.-Se NP. The levels of inflammatory marker interleukin 6 (IL6 tissue homogenate) was improved by decreasing its values in these two groups also. Histology section of tissue liver showed alleviation in treated and prevention groups.
Conclusions
In conclusion, MO/asc.-Se-NPs can be used as a potential agent for prevention and treatment of HCC after further preclinical studies.
Collapse
|
6
|
D-Carvone Attenuates CCl 4-Induced Liver Fibrosis in Rats by Inhibiting Oxidative Stress and TGF-ß 1/SMAD3 Signaling Pathway. BIOLOGY 2022; 11:biology11050739. [PMID: 35625467 PMCID: PMC9138456 DOI: 10.3390/biology11050739] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/29/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
D-carvone is a natural monoterpene found in abundance in the essential oil of aromatic medicinal plants with a wide range of pharmacological values. However, the impact of D-carvone on liver fibrosis remains unclear. This study aimed to evaluate the anti-fibrotic potential of D-carvone in a rat model of liver fibrosis and to clarify the possible underlying mechanisms. Liver fibrosis was induced in rats by carbon tetrachloride, CCl4 (2.5 mL/kg, interperitoneally every 72 h for 8 weeks). Oral treatment of rats with D-carvone (50 mg/kg, daily) started on the 3rd week of CCl4 administration. D-carvone significantly enhanced liver functions (ALT, AST), oxidant/antioxidant status (MDA, SOD, GSH, total antioxidant capacity; TAC), as well as histopathological changes. Moreover, D-carvone effectively attenuated the progression of liver fibrosis, evident by the decreased collagen deposition and fibrosis score by Masson trichrome staining (MT) and α-SMA protein expression. Moreover, D-carvone administration resulted in a significant downregulation of the pro-fibrogenic markers TGF-β1 and SMAD3 and upregulation of MMP9. These findings reveal the anti-fibrotic effect of D-carvone and suggest regulation of the TGF-β1/SMAD3 pathway, together with the antioxidant activity as a mechanistic cassette, underlines this effect. Therefore, D-carvone could be a viable candidate for inhibiting liver fibrosis and other oxidative stress-related hepatic diseases. Clinical studies to support our hypothesis are warranted.
Collapse
|
7
|
Abstract
Tannins are an interesting class of polyphenols, characterized, in almost all cases, by a different degree of polymerization, which, inevitably, markedly influences their bioavailability, as well as biochemical and pharmacological activities. They have been used for the process of tanning to transform hides into leather, from which their name derives. For several time, they have not been accurately evaluated, but now researchers have started to unravel their potential, highlighting anti-inflammatory, antimicrobial, antioxidant and anticancer activities, as well as their involvement in cardiovascular, neuroprotective and in general metabolic diseases prevention. The mechanisms underlying their activity are often complex, but the main targets of their action (such as key enzymes modulation, activation of metabolic pathways and changes in the metabolic fluxes) are highlighted in this review, without losing sight of their toxicity. This aspect still needs further and better-designed study to be thoroughly understood and allow a more conscious use of tannins for human health.
Collapse
|
8
|
Pandit K, Kumar A, Kaur S, Kumar V, Jain SK, Bhardwaj R, Kaur S. Amelioration of oxidative stress by trans-Anethole via modulating phase I and phase II enzymes against hepatic damage induced by CCl 4 in male Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6317-6333. [PMID: 34453252 DOI: 10.1007/s11356-021-16070-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The current study was designed to assess the in vivo hepatoprotective properties of trans-Anethole, which is a principal aromatic component of star anise. The hepatoprotective effects of trans-Anethole were evaluated at three doses [40, 80, and 160 mg/kg body weight (b.wt.)] against carbon tetrachloride (CCl4)-induced hepatic damage in male Wistar rats for 4 weeks. Forty-two male Wistar rats were equally divided into seven groups; the control (group I) received only distilled water. Rats of group II received CCl4 (1 ml/kg b.wt.) in a 1:1 ratio of CCl4 and olive oil via intraperitoneal doses, while rats of group III received silymarin (50 mg/kg b.wt.), followed by CCl4 intraperitoneal doses, 3 days in a week. Rats of group IV received trans-anethole (160 mg/kg b.wt.) for 28 days as a negative control. Trans-anethole at the doses of 40, 80, and 160 mg/kg b.wt. was administered to groups V, VI, and VII, respectively, for 28 days, followed by CCl4 (i.p). Results showed that CCl4 treatment (group II) elevated the levels of different serum markers like aspartate aminotransferase (AST) by 4.74 fold, alanine aminotransferase (ALT) by 3.47 fold, aspartate alkaline phosphatase (ALP) by 3.55 fold, direct bilirubin by 3.48 fold, and total bilirubin by 2.38 fold in contrast to control. Furthermore, it was found that the decreased levels of liver antioxidant enzymes viz. catalase (CAT) and glutathione reductase (GR) were significantly modulated by the pre-administration of rats with different doses (40, 80, and 160 mg/kg b.wt.) of trans-anethole. Furthermore, pre-treatment of trans-anethole reduced the level of phase I enzymes and elevated the level of phase II detoxifying enzymes. Histopathological investigations showed that the treatment with trans-anethole was effective in ameliorating CCl4-induced liver injury and restored the normal hepatic architecture. Moreover, trans-anethole restored p53 and cyclin D levels in liver tissue relative to group II. Western blot analysis revealed that the trans-anethole treatment downregulated the expression of Bax and caspase-3 while upregulated the expression of Bcl-xL. Collectively, the findings of the study showed the strong efficacy of trans-anethole in ameliorating the hepatic damage caused by CCl4 through the modulation of antioxidants and xenobiotic-metabolizing enzymes.
Collapse
Affiliation(s)
- Kritika Pandit
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Punjab, 143005, Amritsar, India
| | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Punjab, 143005, Amritsar, India
| | - Sandeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Punjab, 143005, Amritsar, India
| | - Vinod Kumar
- Department of Botany, Government Degree College, Ramban, Jammu and Kashmir, 182144, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Centre for Basic & Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Punjab, 143005, Amritsar, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Punjab, 143005, Amritsar, India.
| |
Collapse
|
9
|
Shouman MM, Abdelsalam RM, Tawfick MM, Kenawy SA, El-Naa MM. Antisense Tissue Factor Oligodeoxynucleotides Protected Diethyl Nitrosamine/Carbon Tetrachloride-Induced Liver Fibrosis Through Toll Like Receptor4-Tissue Factor-Protease Activated Receptor1 Pathway. Front Pharmacol 2021; 12:676608. [PMID: 34045968 PMCID: PMC8144514 DOI: 10.3389/fphar.2021.676608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tissue factor (TF) is a blood coagulation factor that has several roles in many non-coagulant pathways involved in different pathological conditions such as angiogenesis, inflammation and fibrogenesis. Coagulation and inflammation are crosslinked with liver fibrosis where protease-activated receptor1 (PAR1) and toll-like receptor4 (TLR4) play a key role. Antisense oligodeoxynucleotides are strong modulators of gene expression. In the present study, antisense TF oligodeoxynucleotides (TFAS) was evaluated in treating liver fibrosis via suppression of TF gene expression. Liver fibrosis was induced in rats by a single administration of N-diethyl nitrosamine (DEN, 200 mg/kg; i. p.) followed by carbon tetrachloride (CCl4, 3 ml/kg; s. c.) once weekly for 6 weeks. Following fibrosis induction, liver TF expression was significantly upregulated along with liver enzymes activities and liver histopathological deterioration. Alpha smooth muscle actin (α-SMA) and transforming growth factor-1beta (TGF-1β) expression, tumor necrosis factor-alpha (TNF-α) and hydroxyproline content and collagen deposition were significantly elevated in the liver. Blocking of TF expression by TFAS injection (2.8 mg/kg; s. c.) once weekly for 6 weeks significantly restored liver enzymes activities and improved histopathological features along with decreasing the elevated α-SMA, TGF-1β, TNF-α, hydroxyproline and collagen. Moreover, TFAS decreased the expression of both PAR1 and TLR4 that were induced by liver fibrosis. In conclusion, we reported that blockage of TF expression by TFAS improved inflammatory and fibrotic changes associated with CCl4+DEN intoxication. In addition, we explored the potential crosslink between the TF, PAR1 and TLR4 in liver fibrogenesis. These findings offer a platform on which recovery from liver fibrosis could be mediated through targeting TF expression.
Collapse
Affiliation(s)
- Maha M Shouman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern Sciences and Arts University (MSA), Giza, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Biology, Faculty of Pharmacy, New Giza University, Giza, Egypt
| | - Mahmoud M Tawfick
- Department of Microbiology and Immunology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Sanaa A Kenawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona M El-Naa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
10
|
Al-Sayed E, Korinek M, Esmat A, Chen GY, Cheng YB, Hsieh PW, Chen BH, Hwang TL. Anti-inflammatory, hepatoprotective and antioxidant activity of ellagitannin isolated from Melaleuca styphelioides. PHYTOCHEMISTRY 2020; 177:112429. [PMID: 32559488 DOI: 10.1016/j.phytochem.2020.112429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Ellagitannins have a marked antioxidant effect and can prevent liver injury induced by free radicals. An undescribed ellagitannin named styphelioidin was isolated from Melaleuca styphelioides Sm. The structure of styphelioidin was elucidated by using various spectroscopic methods. The hepatoprotective activity of styphelioidin (25, 50, and 100 μM) was tested using the CCl4-challenged HepG2 cell model by measuring alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in HepG2 cells treated with styphelioidin for 1 h followed by 40 mM CCl4. Glutathione (GSH), superoxide dismutase activity (SOD) and lipid peroxidation (MDA) were evaluated to determine the mechanisms of the hepatoprotective activity. Styphelioidin significantly reduced the levels of ALT, AST, and MDA at all tested concentrations. Moreover, it conferred a marked increase in the GSH levels and the SOD activity compared to the CCl4-treated groups. Styphelioidin also exerted DPPH· radical-scavenging effects with an IC50 value of 3.67 μM. Results indicated the hepatoprotective therapeutic potential of styphelioidin comparable to silymarin. Moreover, anti-inflammatory activity was assessed and styphelioidin inhibited fMLF/CB-induced elastase release in human neutrophils with IC50 2.51 μM. Cell-free experiments with human neutrophil elastase indicated a direct enzymatic inhibitory effect of styphelioidin on the enzyme activity (IC50 2.58 μM). The potential of styphelioidin to interact with human neutrophil elastase binding sites was further confirmed by molecular docking of styphelioidin into human neutrophil elastase crystal structure using AutoDock 4.2. Styphelioidin represents a potent hepatoprotective and antioxidant agent with effects on ALT, AST, MDA, GSH, and SOD comparable to silymarin. The beneficial anti-elastase properties hold the potential for drug development against elastase-related inflammatory diseases. This study highlights a promising natural hepatoprotective and anti-inflammatory candidate derived from M. styphelioides.
Collapse
Affiliation(s)
- Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt.
| | - Michal Korinek
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33302, Taiwan.
| | - Ahmed Esmat
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt.
| | - Guan-Yu Chen
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 40402, Taiwan.
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Center for Natural Product Research and Development, College of Pharmacy, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.
| | - Bing-Hung Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; The Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33302, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| |
Collapse
|
11
|
El-Nabarawy NA, Gouda AS, Khattab MA, Rashed LA. Effects of nitrite graded doses on hepatotoxicity and nephrotoxicity, histopathological alterations, and activation of apoptosis in adult rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14019-14032. [PMID: 32036525 DOI: 10.1007/s11356-020-07901-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Nitrites are found in several forms; they are widely found in water resources and used as additives and preservatives for food and as a color source. We investigated the hazardous effects of exposing rats to different doses of nitrites. Moreover, we examined such impacts, after acute ingestion, on liver and renal tissues in rats and to what extent this affects the organs' functions. Animals were divided into five groups: one control group 1 (group C) and four sodium nitrite (NaNO2)-treated group (8 rats per group). The four NaNO2-treated groups include group 2 (N20), group 3 (N40), group 4 (N60), and group 5 (N75). NaNO2 was dissolved in distilled water, and single acute dose was orally given by gavage at 20, 40, 60, and 75 mg/kg body weight, respectively. Our results revealed significant increase of liver enzymes activity-aspartate transaminase (AST), alanine aminotransferase (ALT), and creatinine between different groups with increasing doses of nitrite ingestion. The results of hepatic and renal oxidative stress showed significant increase in the malondialdehyde (MDA) levels and significant decrease in the antioxidant parameters, such as reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), as the dose of nitrite increases. Further, the methemoglobin percent showed significant increase with increasing nitrite doses. Abnormal morphological alterations in the liver and kidney tissues were obviously proportional to the administered nitrite doses. The expression of caspase 3 and Bax level showed enhanced induction of immunoexpression, especially in the high doses of nitrites. On the other hand, the maximal immunoexpression level of anti-apoptotic marker Bcl2 was found in lower doses of nitrites, whereas marked decrease of Bcl2 levels was observed in the higher doses. In conclusion, administration of sodium nitrite in a dose-dependent manner is capable of inducing cellular and genetic toxicities and causes disturbance in biochemical analysis, oxidative and anti-oxidative balance, and methemoglobinemia. It also makes histopathological alterations and leads to the activation of apoptosis-related Bax, Bcl2, and caspase 3 genes of liver and kidney tissues in rats.
Collapse
Affiliation(s)
- Nagla A El-Nabarawy
- National Egyptian Center of Environmental and Toxicological Research (NECTR), Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Ahmed S Gouda
- National Egyptian Center of Environmental and Toxicological Research (NECTR), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Wang G, Zhang N, Wang Y, Liu J, Wang G, Zhou Z, Lu C, Yang J. The hepatoprotective activities of Kalimeris indica ethanol extract against liver injury in vivo. Food Sci Nutr 2019; 7:3797-3807. [PMID: 31763029 PMCID: PMC6848823 DOI: 10.1002/fsn3.1241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/29/2019] [Accepted: 09/14/2019] [Indexed: 12/14/2022] Open
Abstract
Kalimeris indica (L.) Sch. Bip. is a traditional Chinese medicine (TCM) and a portion of food used for cooking in China. It has been demonstrated that an ethanol extract of K. indica has an anti-inflammatory effect by inhibition of nitric oxide (NO) production on murine macrophage RAW264.7 cells after lipopolysaccharide (LPS) induction. In this study, the hepatoprotective effects of the total phenolics of K. indica (TPK), the total triterpenes of K. indica (TTK), and the total flavones of K. indica (TFK) from ethanol extracts of K. indica were evaluated in Bacille Calmette-Guerin (BCG)/LPS-induced liver injury in vivo. The treatments of TPK, TTK, and TFK improved liver injury in mice. Additionally, all treatments significantly not only reduced the hepatic malondialdehyde (MDA) content and hepatic total nitric oxide synthase (tNOS) but also induced the hepatic superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity. The treatments of TPK and TTK significantly reduced the hepatic inducible nitric oxide synthase (iNOS). The treatments of TPK, TTK, and TFK reduced the serum total bilirubin (T-Bil), and only TFK treatment reduced the serum alanine aminotransferase (ALT). Our results suggest that TPK, TTK, and TFK from ethanol extracts of K. indica might play an essential protective role against BCG/LPS-induced liver injury in vivo.
Collapse
Affiliation(s)
- Guo‐Kai Wang
- School of PharmacyAnhui Key Laboratory of Modern Chinese Materia MedicaAnhui University of Chinese MedicineHefeiChina
| | - Nan Zhang
- School of PharmacyAnhui Key Laboratory of Modern Chinese Materia MedicaAnhui University of Chinese MedicineHefeiChina
| | - Yi Wang
- Bristol‐Myers SquibbLawrenceNJUSA
| | - Jin‐Song Liu
- School of PharmacyAnhui Key Laboratory of Modern Chinese Materia MedicaAnhui University of Chinese MedicineHefeiChina
| | - Gang Wang
- School of PharmacyAnhui Key Laboratory of Modern Chinese Materia MedicaAnhui University of Chinese MedicineHefeiChina
| | - Zhong‐Yu Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Chi‐Cheng Lu
- Department of Sport PerformanceNational Taiwan University of SportTaichungTaiwan
| | - Jai‑Sing Yang
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityTaichungTaiwan
| |
Collapse
|
13
|
Kaur S, Sharma D, Singh AP, Kaur S. Amelioration of hepatic function, oxidative stress, and histopathologic damages by Cassia fistula L. fraction in thioacetamide-induced liver toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29930-29945. [PMID: 31407268 DOI: 10.1007/s11356-019-06158-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Cassia fistula L. (Caesalpinioideae) is a highly admirable medicinal plant and is traditionally recommended for the treatment of rheumatism, liver disorders, jaundice, and other inflammatory diseases. This study was designed to investigate the hepatoprotective properties of ethyl acetate fraction from C. fistula leaves in an animal model. Treatment with thioacetamide significantly elevated the level of serum glutamic-oxaloacetic transaminase (1.75-fold), alkaline phosphatase (4.07-fold), and total bilirubin (2.29-fold) as compared to the control. It was found that pretreatment of fraction followed by consecutive 2 days thioacetamide reduced the conversion of thioacetamide carcinogen to its reactive metabolites by phase I enzymes and increased the level of detoxification phase II along with antioxidative enzymes. The histopathological studies revealed the hepatoprotective nature of the fraction in restoring the normal architecture of thioacetamide-intoxicated damaged liver. The fraction showed downregulation in the expression level of p-PI3K, p-Akt, and p-mTOR pointing towards its chemopreventive potential. The HPLC analysis of the fraction had shown the dominance of three phenolic compounds namely, catechin, epicatechin, and chlorogenic acid. The above studies comprising histopathological, immunohistochemical, and hepatic enzymes are strong indicative of the potential protective ability of ethyl acetate fraction phytoconstituents against thioacetamide-induced toxicity. Graphical abstract.
Collapse
Affiliation(s)
- Sandeep Kaur
- Genetic Toxicology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Dipakshi Sharma
- Genetic Toxicology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Satwinderjeet Kaur
- Genetic Toxicology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
14
|
Pergel A, Tümkaya L, Çolakoğlu MK, Demiral G, Kalcan S, Özdemir A, Mercantepe T, Yilmaz A. Effects of infliximab against carbon tetrachloride-induced intestinal injury via lipid peroxidation and apoptosis. Hum Exp Toxicol 2019; 38:1275-1282. [PMID: 31378095 DOI: 10.1177/0960327119867758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbon tetrachloride (CCL4) is often employed in the production of chlorofluorocarbons, petroleum refining, oil and rubber processing, and laboratory applications. Oral, subcutaneous, and inhalation exposure to CCL4 in animal studies have been shown to be capable of leading to various types of cancer (benign and malignant, liver, breast, and adrenal gland tumors). The present study also evaluated the protective role of infliximab (INF) against the deleterious effects of CCL4 on the intestinal system. Twenty-four male Sprague-Dawley rats were randomly assigned into three groups, control (n = 8), CCL4 (n = 8), and CCL4 + INF (n = 8). The control group received 1 mL isotonic saline solution only via intraperitoneal (i.p.) injection. The CCL4 group received a single i.p. dose of 2 mL/kg CCL4. The CCL4 + INF group received a single i.p. dose of 7 mg/kg INF followed 24 h later by a single dose of 2 mL/kg CCL4. All rats were euthanized 2 days following drug administration. CCL4 group samples also exhibited diffuse loss of enterocytes, vascular congestion, neutrophil infiltration, an extension of the subepithelial space and significant epithelial lifting along the length of the villi with a few denuded villous tips. In addition, CCL4 treatment increased intestinal malondialdehyde (MDA) level and caspase-3 positivity. On the other hand, INF decreased MDA levels, caspase-3 positivity, and loss of villous. Our findings suggest that CCL4 appears to exert a highly deleterious effect on the intestinal mucosa. On the other hand, INF is effective in preventing this CCL4-induced intestinal injury by reducing oxidative stress and apoptosis.
Collapse
Affiliation(s)
- A Pergel
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - L Tümkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - M K Çolakoğlu
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - G Demiral
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - S Kalcan
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - A Özdemir
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - T Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - A Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
15
|
Evaluation of neurotoxicity and hepatotoxicity effects of acute and sub-acute oral administration of unripe ackee ( Blighia sapida) fruit extract. Toxicol Rep 2019; 6:656-665. [PMID: 31338305 PMCID: PMC6626071 DOI: 10.1016/j.toxrep.2019.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Acute oral dose of 2000 mg/kg of unripe B. sapida fruit extract (BSE) was toxic to mice. Repeated treatment with BSE impaired locomotor function, memory performance and shortened seizure latency in mice. Repeated treatment with BSE significantly up-regulate acetylcholinesterase enzyme activity in mice. Repeated treatment with BSE elevates oxidative stress in the brain and liver of mice. Repeated treatment with BSE showed histopathological evidences of toxicity in mice brain and liver.
Ackee (Blighia sapida) is a commonly eaten fruit that is indigenous to West Africa and Jamaica. Ackee poisoning in young children have been reported in parts of Nigeria due to consumption of the unripe fruits. This study was designed to identify potential mechanisms of acute and sub-acute toxicity of unripe B. sapida fruit extract (BSE). Acute toxic effect was investigated in mice of either sex administered BSE 2000 mg/kg. The sub-acute toxicity effects were investigated in mice of either sex that received 28 days repeated administration of BSE (100 and 500 mg/kg, p.o.). Locomotor activity and memory performance were measured as well as seizure vulnerability in PTZ-induced model. Liver enzymes were assessed in the serum. Acetylcholinesterase, oxidative stress parameters and histopathological changes were assessed in the brain and liver tissues. Signs and symptoms of toxicity such as urination, tremor, depressed locomotion and death were observed in acute toxicity test. Sub-acute dosing caused significant impairment in locomotor activity and memory performance in mice. Seizure threshold was shortened in BSE-treated compared to control mice. Brain acetylcholinesterase activity was significantly increased. Alkaline phosphatase (ALP) was significantly elevated in mice that received BSE (500 mg/kg). Furthermore, BSE caused significant increase in oxidative stress expressed in nitrite, malondialdehyde, reduced glutathione and catalase in the brain and liver tissues. Histological staining revealed neuronal damage of brain hippocampus and hepatocellular swelling and necrosis. Blighia sapida unripe fruit extract increased susceptibility to seizure and impaired locomotor and memory function. The biochemical and histopathological findings revealed potential toxicity mechanisms related to neurotoxicity and hepatotoxicity.
Collapse
|