1
|
Guo S, Wang P, Sun Y, Cao C, Gao J, Hong S, Li N, Xu R. Transformation of Natural Resin Resina Draconis to 3D Functionalized Fibrous Scaffolds for Efficient Chronic Wound Healing. Adv Healthc Mater 2024; 13:e2401105. [PMID: 38889446 PMCID: PMC11616260 DOI: 10.1002/adhm.202401105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Chronic wound healing is a major challenge in clinical practice. Secondary dressing damage and antibiotic resistance are the main obstacles for traditional wound dressings. Resina draconis (RD), a natural resin traditionally used in powder form for wound care, is now considered unsuitable due to the lack of gas permeability and moist environment required for wound healing. Here, RD is incorporated in situ by constructing a 3D coiled fibrous scaffold with polycaprolactone/polyethylene oxide. Due to the high porosity of 3D scaffold, the RD-3D dressings have a favorable swelling capacity, providing permeability and moisture for wound repair. Meanwhile, the transformation of RD powder into 3D dressings fully demonstrates capabilities of RD in rapid hemostasis, bactericidal, and inflammation-regulating activities. In vivo evaluations using pressure ulcer and infected wound models confirm the high efficacy of RD-3D dressing in early wound healing, particularly beneficial in the infected wound model compared to recombinant bovine FGF-basic. Further biological analysis shows that resveratrol, loureirin A, and loureirin B, as potentially bioactive components of RD, individually contribute to different aspects of wound healing. Collectively, RD-3D integrated dressings represent a simple, cost-effective, and safe approach to wound healing, providing an alternative therapy for translating medical dressings from bench to bedside.
Collapse
Affiliation(s)
- Shijie Guo
- Department of Biomedical Engineering and TechnologyInstitute of Basic Theory for Chinese MedicineChina Academy of Chinese Medical SciencesBeijing100700China
| | - Pengyu Wang
- Department of Biomedical Engineering and TechnologyInstitute of Basic Theory for Chinese MedicineChina Academy of Chinese Medical SciencesBeijing100700China
- Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijing100053China
| | - Yu Sun
- Department of Biomedical Engineering and TechnologyInstitute of Basic Theory for Chinese MedicineChina Academy of Chinese Medical SciencesBeijing100700China
| | - Can Cao
- Department of Biomedical Engineering and TechnologyInstitute of Basic Theory for Chinese MedicineChina Academy of Chinese Medical SciencesBeijing100700China
| | - Junwei Gao
- Department of Biomedical Engineering and TechnologyInstitute of Basic Theory for Chinese MedicineChina Academy of Chinese Medical SciencesBeijing100700China
| | - Shihao Hong
- Department of Biomedical Engineering and TechnologyInstitute of Basic Theory for Chinese MedicineChina Academy of Chinese Medical SciencesBeijing100700China
| | - Ning Li
- Department of Biomedical Engineering and TechnologyInstitute of Basic Theory for Chinese MedicineChina Academy of Chinese Medical SciencesBeijing100700China
| | - Ruodan Xu
- Department of Biomedical Engineering and TechnologyInstitute of Basic Theory for Chinese MedicineChina Academy of Chinese Medical SciencesBeijing100700China
| |
Collapse
|
2
|
Sura MB, Cheng YX. Medicinal plant resin natural products: structural diversity and biological activities. Nat Prod Rep 2024; 41:1471-1542. [PMID: 38787644 DOI: 10.1039/d4np00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Covering: up to the mid of 2023Plants secrete defense resins rich in small-molecule natural products under abiotic and biotic stresses. This comprehensive review encompasses the literature published up to mid-2023 on medicinal plant resin natural products from six main contributor genera, featuring 275 citations that refer to 1115 structurally diverse compounds. The scope of this review extends to include essential information such as the racemic nature of metabolites found in different species of plant resins, source of resins, and revised structures. Additionally, we carefully analyze the reported biological activities of resins, organizing them based on the their structures. The findings offer important insights into the relationship between their structure and activity. Furthermore, this detailed examination can be valuable for researchers and scientists in the field of medicinal plant resin natural products and will promote continued exploration and progress in this area.
Collapse
Affiliation(s)
- Madhu Babu Sura
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| | - Yong-Xian Cheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Sun X, Huang Q, Wu M, He L, Zhao X, Yang X. Metabolomics and quantitative analysis to determine differences in the geographical origins and species of Chinese dragon's blood. FRONTIERS IN PLANT SCIENCE 2024; 15:1427731. [PMID: 39359632 PMCID: PMC11445005 DOI: 10.3389/fpls.2024.1427731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Objective The aim of this study was to comprehensively analyze the differences in Chinese dragon's blood (CDB), specifically Dracaena cochinchinensis and Dracaena cambodiana, from different geographical origins. Methods Metabolomic analysis of CDB was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A reliable ultrahigh-performance liquid chromatography method with a photodiode array detector (UHPLC-PDA) was developed and applied for the quantitative analysis of 12 phenolic compounds in 51 batches of samples. Results A total of 1394 metabolites were detected, of which 467 were identified as differentially accumulated metabolites. Multivariate analysis revealed that both origin and species had an effect on the composition of CDB, with greater variation between species. 19 phenolic compounds were selected as quality markers to distinguish D. cochinchinensis (Hdsp) from D. cambodiana (Hdca), and oppositin and spinoflavanone a were identified as quality markers to discriminate D. cochinchinensis samples from Hainan (Hdsp) and Guangxi Provinces (Gdc). Quantitative analysis indicated that four phenolic compounds, including loureirin D, 4H-1-benzopyran-4-one,2,3-dihydro-3,5,7-trihydroxy-3-[(4-methoxyphenyl)methyl]-,(R)-, loureirin B, and pterostilbene, showed significant differences between Gdc and Hdsp. Additionally, five phenolic compounds, namely resveratrol, loureirin D, pinostilbene, 4H-1-benzopyran-4-one,2,3-dihydro-3,5,7-trihydroxy-3-[(4-methoxyphenyl)methyl]-, (R)-, and loureirin B, exhibited significant differences between Hdsp and Hdca. Conclusion There are significant differences in the quality of CDB from different geographical origins and species, which lays the foundation for the in-depth development and utilization of different sources of CDB.
Collapse
Affiliation(s)
- Xiuting Sun
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Huang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Mingsong Wu
- College of Life Science, Sichuan University, Chengdu, China
| | - Liu He
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Xinquan Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| |
Collapse
|
4
|
Chen BZ, Li DW, Wang WJ, Xin YX, Wang WB, Li XZ, Hao TT, Dong Y, Yu WB. Chromosome-level and haplotype-resolved genome assembly of Dracaena cambodiana (Asparagaceae). Sci Data 2024; 11:873. [PMID: 39138230 PMCID: PMC11322170 DOI: 10.1038/s41597-024-03670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
Dracaena cambodiana Pierre ex Gagn. (Asparagaceae) is the source plant of Dragon's blood and has high ornamental values in gardening. Currently, this species is classified as the second-class state-protected species in the National Key Protected Wild Plants (NKPWP) of China. However, limited genomic data has hindered a more comprehensive scientific understanding of the processes involved in the production of Dragon's blood and the related conservation genomics research. In this study, we assembled a haplotype-resolved genome of D. cambodiana. The haploid genomes, haplotype A and haplotype B, are 1,015.22 Mb and 1,003.13 Mb in size, respectively. The completeness of haplotype A and haplotype B genomes was 98.60% and 98.20%, respectively, using the "embryophyta_10" dataset. Haplotype A and haplotype B genomes contained 27,361 and 27,066 protein-coding genes, respectively, with nearly all being functionally annotated. These findings provide new insights into the genomic characteristics of D. cambodiana and will offer additional genomic resources for studying the biosynthesis mechanism of Dragon's blood and the horticultural application of Dragon trees.
Collapse
Affiliation(s)
- Bao-Zheng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Da-Wei Li
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Wei-Jia Wang
- Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Ya-Xuan Xin
- Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Wei-Bin Wang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xu-Zhen Li
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Ting-Ting Hao
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yang Dong
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| | - Wen-Bin Yu
- Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
| |
Collapse
|
5
|
Tong Q, Yin C, Hang X, Bai Y, Zhang C, Xu J, Huang Y, Ge Y, Chen T, Zeng L, Jia J, Bi H. Loureirin A is a narrow-spectrum antimicrobial agent against Helicobacter pylori. Antimicrob Agents Chemother 2024; 68:e0031424. [PMID: 38656185 PMCID: PMC11620498 DOI: 10.1128/aac.00314-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/31/2024] [Indexed: 04/26/2024] Open
Abstract
Currently, Helicobacter pylori eradication by antibiotic therapy faces various challenges, including antibiotic resistance, side effects on intestinal commensal bacteria, and patient compliance. In this study, loureirin A (LrA), a traditional Chinese medicine monomer extracted from Sanguis Draconis flavones, was found to possess specific antibacterial activity against H. pylori without the bacteria displaying a tendency to develop resistance in vitro. LrA demonstrated a synergistic or additive effect when combined with omeprazole (a proton pump inhibitor) against H. pylori. The combination of LrA and omeprazole showed promising anti-H. pylori potential, exhibiting notable in vivo efficacy comparable to standard triple therapy in mouse models infected with both drug-sensitive and drug-resistant H. pylori strains. Moreover, the narrow-spectrum antibacterial profile of LrA is reflected in its minimal effect on the diversity and composition of the mouse gut microbiota. The underlying mechanism of action of LrA against H. pylori involves the generation of bactericidal levels of reactive oxygen species, resulting in apoptosis-like cell death. These findings indicate that LrA is a promising lead compound targeting H. pylori without harming the commensal bacteria.
Collapse
Affiliation(s)
- Qian Tong
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Helicobacter pylori Research Center, Nanjing Medical University, Nanjing, China
| | - Chengqiang Yin
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Helicobacter pylori Research Center, Nanjing Medical University, Nanjing, China
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xudong Hang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Helicobacter pylori Research Center, Nanjing Medical University, Nanjing, China
| | - Yuefan Bai
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Helicobacter pylori Research Center, Nanjing Medical University, Nanjing, China
| | - Chongwen Zhang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Helicobacter pylori Research Center, Nanjing Medical University, Nanjing, China
| | - Jingcheng Xu
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Helicobacter pylori Research Center, Nanjing Medical University, Nanjing, China
| | - Yan Huang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Helicobacter pylori Research Center, Nanjing Medical University, Nanjing, China
| | - Yixin Ge
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Helicobacter pylori Research Center, Nanjing Medical University, Nanjing, China
| | - Tianyu Chen
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Helicobacter pylori Research Center, Nanjing Medical University, Nanjing, China
| | - Liping Zeng
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Helicobacter pylori Research Center, Nanjing Medical University, Nanjing, China
| | - Jia Jia
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Helicobacter pylori Research Center, Nanjing Medical University, Nanjing, China
| | - Hongkai Bi
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Helicobacter pylori Research Center, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Zhou M, Ma J, Kang M, Tang W, Xia S, Yin J, Yin Y. Flavonoids, gut microbiota, and host lipid metabolism. Eng Life Sci 2024; 24:2300065. [PMID: 38708419 PMCID: PMC11065335 DOI: 10.1002/elsc.202300065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 05/07/2024] Open
Abstract
Flavonoids are widely distributed in nature and have a variety of beneficial biological effects, including antioxidant, anti-inflammatory, and anti-obesity effects. All of these are related to gut microbiota, and flavonoids also serve as a bridge between the host and gut microbiota. Flavonoids are commonly used to modify the composition of the gut microbiota by promoting or inhibiting specific microbial species within the gut, as well as modifying their metabolites. In turn, the gut microbiota extensively metabolizes flavonoids. Hence, this reciprocal relationship between flavonoids and the gut microbiota may play a crucial role in maintaining the balance and functionality of the metabolism system. In this review, we mainly highlighted the biological effects of antioxidant, anti-inflammatory and antiobesity, and discussed the interaction between flavonoids, gut microbiota and lipid metabolism, and elaborated the potential mechanisms on host lipid metabolism.
Collapse
Affiliation(s)
- Miao Zhou
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Jie Ma
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Meng Kang
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Wenjie Tang
- Sichuan Animal Science AcademyLivestock and Poultry Biological Products Key Laboratory of Sichuan ProvinceSichuan Animtech Feed Co., LtdChengduSichuanChina
| | - Siting Xia
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Jie Yin
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Yulong Yin
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| |
Collapse
|
7
|
Andrei C, Zanfirescu A, Nițulescu GM, Olaru OT, Negreș S. Natural Active Ingredients and TRPV1 Modulation: Focus on Key Chemical Moieties Involved in Ligand-Target Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:339. [PMID: 36679051 PMCID: PMC9860573 DOI: 10.3390/plants12020339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Diseases such as cancer, neurological pathologies and chronic pain represent currently unmet needs. The existing pharmacotherapeutic options available for treating these conditions are limited by lack of efficiency and/or side effects. Transient receptor potential vanilloid 1 ion channel emerged as an attractive therapeutic target for developing new analgesic, anti-cancer and antiepileptic agents. Furthermore, various natural ingredients were shown to have affinity for this receptor. The aim of this narrative review was to summarize the diverse natural scaffolds of TRPV1 modulators based on their agonistic/antagonistic properties and to analyze the structure-activity relationships between the ligands and molecular targets based on the results of the existing molecular docking, mutagenesis and in vitro studies. We present here an exhaustive collection of TRPV1 modulators grouped by relevant chemical features: vanilloids, guaiacols, phenols, alkylbenzenes, monoterpenes, sesquiterpenoids, alkaloids, etc. The information herein is useful for understanding the key structural elements mediating the interaction with TRPV1 and how their structural variation impacts the interaction between the ligand and receptor. We hope this data will contribute to the design of novel effective and safe TRPV1 modulators, to help overcome the lack of effective therapeutic agents against pathologies with high morbidity and mortality.
Collapse
|
8
|
Zou Y, Zhao Q, Zhang X, Yu H, Zhou Y, Li Z, Xiao M, Xiang Q, Zhang L, Shi W, Tao H, Chen L, Han B, Yin S. The immunosuppressive effects and mechanisms of loureirin B on collagen-induced arthritis in rats. Front Immunol 2023; 14:1094649. [PMID: 37168850 PMCID: PMC10165104 DOI: 10.3389/fimmu.2023.1094649] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a common disease mainly affecting joints of the hands and wrists. The discovery of autoantibodies in the serum of patients revealed that RA belonged to the autoimmune diseases and laid a theoretical basis for its immunosuppressive therapy. The pathogenesis of autoimmune diseases mainly involves abnormal activation and proliferation of effector memory T cells, which is closely related to the elevated expression of Kv1.3, a voltage-gated potassium (Kv) channel on the effector memory T cell membrane. Drugs blocking the Kv1.3 channel showed a strong protective effect in RA model animals, suggesting that Kv1.3 is a target for the discovery of specific RA immunosuppressive drugs. Methods In the present study, we synthesized LrB and studied the effects of LrB on collagen- induced arthritis (CIA) in rats. The clinical score, paw volume and joint morphology of CIA model rats were compared. The percentage of CD3+, CD4+ and CD8+ T cells in rat peripheral blood mononuclear and spleen were analyzed with flow cytometry. The concentrations of inflammatory cytokines interleukin (IL)-1b, IL-2, IL-4, IL-6, IL-10 and IL-17 in the serum of CIA rats were analyzed with enzyme-linked immunosorbent assay. The IL-1b and IL-6 expression in joints and the Kv1.3 expression in peripheral blood mononuclear cells (PBMCs) were quantified by qPCR. To further study the mechanisms of immunosuppressive effects of LrB, western blot and immunofluorescence were utilized to study the expression of Kv1.3 and Nuclear Factor of Activated T Cells 1 (NFAT1) in two cell models - Jurkat T cell line and extracted PBMCs. Results LrB effectively reduced the clinical score and relieved joint swelling. LrB could also decrease the percentage of CD4+ T cells, while increase the percentage of CD8+ T cells in peripheral blood mononuclear and spleen of rats with CIA. The concentrations of inflammatory cytokines interleukin (IL)-1b, IL-2, IL-6, IL-10 and IL-17 in the serum of CIA rats were significantly reduced by LrB. The results of qPCR showed that Kv1.3 mRNA in the PBMCs of CIA rats was significantly higher than that of the control and significantly decreased in the LrB treatment groups. In addition, we confirmed in cell models that LrB significantly decreased Kv1.3 protein on the cell membrane and inhibited the activation of Nuclear Factor of Activated T Cells 1 (NFAT1) with immune stimulus. Conclusion In summary, this study revealed that LrB could block NFAT1 activation and reduce Kv1.3 expression in activated T cells, thus inhibiting the proliferation of lymphocytes and the release of inflammatory cytokines, thereby effectively weakening the autoimmune responses in CIA rats. The effects of immunosuppression due to LrB revealed its potential medicinal value in the treatment of RA.
Collapse
Affiliation(s)
- Yan Zou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Qianru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Xu Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Hui Yu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Yongsheng Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Ziyi Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Min Xiao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Qiu Xiang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Lirong Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Wenyi Shi
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Haobo Tao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Lvyi Chen
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Bing Han
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- *Correspondence: Bing Han, ; Shijin Yin,
| | - Shijin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
- *Correspondence: Bing Han, ; Shijin Yin,
| |
Collapse
|
9
|
Ru Y, Zhang Y, Xiang YW, Luo Y, Luo Y, Jiang JS, Song JK, Fei XY, Yang D, Zhang Z, Zhang HP, Liu TY, Yin SY, Li B, Kuai L. Gene set enrichment analysis and ingenuity pathway analysis to identify biomarkers in Sheng-ji Hua-yu formula treated diabetic ulcers. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114845. [PMID: 34800645 DOI: 10.1016/j.jep.2021.114845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sheng-ji Hua-yu (SJHY) formula is a Chinese herbal prescription for diabetic ulcers (DUs) treatment, which can accelerate wound reconstruction and shorten the healing time. However, its mechanism role maintains unclear. AIM OF THE STUDY To elucidate the molecular mechanisms of SJHY application on DUs. MATERIALS AND METHODS To begin with, transcriptome sequencing was adopted to identified differentially expression mRNAs among normal ulcers, DUs, and DUs + SJHY treatment in vivo. Liquid chromatography-tandem mass spectrometry was applied for the quality control of SJHY formula. GO and KEGG enrichment analysis were used to identify the mechanisms underlying the therapeutic effect of SJHY formula, and then gene set enrichment analysis and ingenuity pathway analysis were conducted for functional analysis. Further, qPCR detection was performed in vivo for validation. RESULTS SJHY administration could regulate the glucose metabolic process, AMPK and HIF-1 pathway to accelerate healing processes of DUs. Besides, CRHR1, SHH, and GAL were identified as the critical targets, and SLC6A3, GRP, FGF23, and CYP27B1 were considered as the upstream genes of SJHY treatment. Combined with animal experiments, the prediction results were validated in DUs mice model. CONCLUSIONS This study used modular pharmacology analysis to identify the biomarkers of SJHY formula and provide the potential therapeutic targets for DUs treatment as well.
Collapse
Affiliation(s)
- Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yan-Wei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Jing-Si Jiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Xiao-Ya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Dan Yang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hui-Ping Zhang
- Shanghai Applied Protein Technology Co.Ltd., 58 Yuanmei Road, Shanghai, 200233, China.
| | - Tai-Yi Liu
- Shanghai Applied Protein Technology Co.Ltd., 58 Yuanmei Road, Shanghai, 200233, China.
| | - Shuang-Yi Yin
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China.
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
10
|
Wang L, Gao M, Kang G, Huang H. The Potential Role of Phytonutrients Flavonoids Influencing Gut Microbiota in the Prophylaxis and Treatment of Inflammatory Bowel Disease. Front Nutr 2021; 8:798038. [PMID: 34970585 PMCID: PMC8713745 DOI: 10.3389/fnut.2021.798038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD), characterized by the chronic inflammation of the gastrointestinal tract, is comprised of two idiopathic chronic intestinal inflammatory diseases. As the incidence of IBD increases, so does the need for safe and effective treatments. Trillions of microorganisms are colonized in the mammalian intestine, coevolve with the host in a symbiotic relationship. Gut microbiota has been reported to be involved in the pathophysiology of IBD. In this regard, phytonutrients flavonoids have received increasing attention for their anti-oxidant and anti-inflammatory activities. In this review, we address recent advances in the interactions among flavonoids, gut microbiota, and IBD. Moreover, their possible potential mechanisms of action in IBD have been discussed. We conclude that there is a complex interaction between flavonoids and gut microbiota. It is expected that flavonoids can change or reshape the gut microbiota to provide important considerations for developing treatments for IBD.
Collapse
Affiliation(s)
- Lina Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Mengxue Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Duzhyy DE, Voitenko NV, Belan PV. Peripheral Inflammation Results in Increased Excitability of Capsaicin-Insensitive Nociceptive DRG Neurons Mediated by Upregulation of ASICs and Voltage-Gated Ion Channels. Front Cell Neurosci 2021; 15:723295. [PMID: 34733139 PMCID: PMC8558483 DOI: 10.3389/fncel.2021.723295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Previously, we have characterized the capsaicin-insensitive low pH-sensitive (caps−lpH+) subtype of small-sized nociceptive dorsal root ganglion (DRG) neurons that express acid-sensing ion channels, T-type Ca2+ channels, and have isolectin B4-negative phenotype. These neurons demonstrated increased excitability in a model of long-term diabetes, contributing to chronic pain sensation. Here we studied changes in the excitability of the caps−lpH+ neurons and underlying changes in the functional expression and gating properties of ion channels under complete Freund's adjuvant (CFA)-induced peripheral inflammation. We have found that, under these pathological conditions, the functional expression of the acid-sensing ion channels (ASICs) and voltage-gated Na+ channels, was increased. In addition, T-type Ca2+ current was significantly increased in the neurons at the membrane potentials close to its resting value. Altogether, the observed changes in the channel functioning shifted a pH level evoking an action potential (AP) toward its physiological value and led to an increase of evoked and spontaneous excitability of the caps−lpH+ neurons that may contribute to hyperalgesia and chronic inflammatory pain.
Collapse
Affiliation(s)
- Dmytro E Duzhyy
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Nana V Voitenko
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine.,Department of Molecular Physiology and Biophysics, Kyiv Academic University, Kyiv, Ukraine.,Research Center, Dobrobut Academy, Kyiv, Ukraine
| | - Pavel V Belan
- Research Center, Dobrobut Academy, Kyiv, Ukraine.,Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| |
Collapse
|
12
|
Liu Y, Zhao X, Yao R, Li C, Zhang Z, Xu Y, Wei JH. Dragon's Blood from Dracaena Worldwide: Species, Traditional Uses, Phytochemistry and Pharmacology. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1315-1367. [PMID: 34247562 DOI: 10.1142/s0192415x21500634] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dragon's blood (DB) refers mainly to the crimson resin of many Dracaena spp. DB has been used by different traditional medicine systems worldwide, including Arabic medicine, African medicine, traditional Chinese medicine, Thai medicine, etc. DB are mainly used to heal wounds, kill pain, stop bleeding, and cure various diseases such as diarrhea, dysentery and ulcers for over 1000 years. 11 Dracaena spp. and 3 subspecies are reported to be able to produce red resin. However, the resources are extremely deficient. Several Dracaena spp. are in threatened status. Over 300 compounds have been isolated from Dracaena spp., mainly including flavonoids, steroids, and phenolics. DB exhibits anti-inflammatory, analgesic, antithrombotic, anti-oxidant, antimicrobial, antidiabetic, and anticancer properties, which explain its wound healing effects, preventive effects on cardiovascular and cerebrovascular diseases, dual-directional regulation of blood flow, neuroprotection and radioprotective effects. No apparent side effects or toxicity have been reported. DB are restricted from being exploited due to limited resources and unclear resin formation mechanism. It is necessary to expand the cultivation of Dracaena spp. and fully understand the mechanism underlying the resin formation process to develop an effective induction method for the sustainable utilization of DB.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China
| | - Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State, Administration of Traditional Chinese Medicine for Agarwood, Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Haikou 570311, P. R. China
| | - Ruyu Yao
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China
| | - Chuangjun Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, P. R. China
| | - Zhonglian Zhang
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, P. R. China
| | - Yanhong Xu
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China.,Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State, Administration of Traditional Chinese Medicine for Agarwood, Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Haikou 570311, P. R. China
| |
Collapse
|
13
|
Shi S, Zhao Q, Ke C, Long S, Zhang F, Zhang X, Li Y, Liu X, Hu H, Yin S. Loureirin B Exerts its Immunosuppressive Effects by Inhibiting STIM1/Orai1 and K V1.3 Channels. Front Pharmacol 2021; 12:685092. [PMID: 34248635 PMCID: PMC8268022 DOI: 10.3389/fphar.2021.685092] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
Loureirin B (LrB) is a constituent extracted from traditional Chinese medicine Resina Draconis. It has broad biological functions and an impressive immunosuppressive effect that has been supported by numerous studies. However, the molecular mechanisms underlying Loureirin B-induced immune suppression are not fully understood. We previously reported that Loureirin B inhibited KV1.3 channel, calcium ion (Ca2+) influx, and interleukin-2 (IL-2) secretion in Jurkat T cells. In this study, we applied CRISPR/Cas9 to edit KV1.3 coding gene KCNA3 and successfully generated a KV1.3 knockout (KO) cell model to determine whether KV1.3 KO was sufficient to block the Loureirin B-induced immunosuppressive effect. Surprisingly, we showed that Loureirin B could still inhibit Ca2+ influx and IL-2 secretion in the Jurkat T cells in the absence of KV1.3 although KO KV1.3 reduced about 50% of Ca2+ influx and 90% IL-2 secretion compared with that in the wild type cells. Further experiments showed that Loureirin B directly inhibited STIM1/Orai1 channel in a dose-dependent manner. Our results suggest that Loureirin B inhibits Ca2+ influx and IL-2 secretion in Jurkat T cells by inhibiting both KV1.3 and STIM1/Orai1 channels. These studies also revealed an additional molecular target for Loureirin B-induced immunosuppressive effect, which makes it a promising leading compound for treating autoimmune diseases.
Collapse
Affiliation(s)
- Shujuan Shi
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qianru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Caihua Ke
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Siru Long
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Feng Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xu Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yi Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xinqiao Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hongzhen Hu
- Department of Anesthesiology, the Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Shijin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
14
|
Zheng X, Chen L, Zeng W, Liao W, Wang Z, Tian X, Fang R, Sun Y, Zhou T. Antibacterial and Anti-biofilm Efficacy of Chinese Dragon's Blood Against Staphylococcus aureus Isolated From Infected Wounds. Front Microbiol 2021; 12:672943. [PMID: 34149659 PMCID: PMC8213214 DOI: 10.3389/fmicb.2021.672943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
Chinese dragon’s blood (CDB), a characteristic red resin, is an important traditional Chinese medicine (TCM), and empiric therapy of infected wounds with CDB is performed in clinical settings. For the first time, we herein report the antibacterial and anti-biofilm efficacy of CDB against Staphylococcus aureus (S. aureus). Antimicrobial susceptibility testing, growth curve assay, time-kill curve assay, crystal violet biofilm assay, scanning electron microscope (SEM) analysis, cell membrane tests, and quantitative real-time polymerase chain reaction (qRT-PCR) were used for this purpose. The results suggested that the minimum inhibitory concentration (MIC) values of CDB against S. aureus ranged from 32 to 128 μg/mL. Growth curves and time-kill curves confirmed that CDB could inhibit the growth of S. aureus. The biofilm formation ability and the expression levels of saeR, saeS, and hla of S. aureus in the presence and absence of CDB were statistically significant (P < 0.01). The results of SEM analysis and cell membrane tests revealed that exposure to CDB had some destructive effects on S. aureus cells. In conclusion, CDB exhibits positive antibacterial activity against S. aureus. Moreover, CDB could reduce the biofilm formation and the virulence factors of S. aureus by downregulating the expression levels of saeR, saeS, and hla genes. These findings indicated that CDB has immense potential to serve as a viable alternative for the treatment of infected wounds caused by S. aureus in clinical settings.
Collapse
Affiliation(s)
- Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiliang Zeng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenli Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongyong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuebin Tian
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Renchi Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
A botanical medicine dragon's blood exhibited clinical antithrombosis efficacy similar to low molecular weight heparin. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1691-1701. [PMID: 33521854 DOI: 10.1007/s11427-020-1848-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Deep vein thrombosis (DVT) is a common complication following traumatic fracture with a 0.5%-1% annual incidence. Low molecular weight heparin (LMWH) is the most commonly used anticoagulation drug for DVT prevention, but treatment with LMWH is invasive. Our aim is to compare the antithrombotic effect of dragon's blood, an oral botanical anticoagulant medicine approved by the Chinese FDA, with LMWH in patients undergoing hip fracture surgery and to explore the molecular mechanisms of anticoagulation treatment. Our study recruited patients and divided them into LMWH and dragon's blood treatment group. Coagulation index tests, Doppler ultrasound and mRNA sequencing were performed before and after anticoagulation therapy. There was no significant difference in postoperative DVT incidence between the two groups (23.1% versus 15.4%, P=0.694). D-dimer (D-D) and fibrinogen degradation product (FDP) showed significant reductions in both groups after anticoagulation treatments. We identified SLC4A1, PROS1, PRKAR2B and seven other genes as being differentially expressed during anticoagulation therapy in both groups. Genes correlated with coagulation indexes were also identified. Dragon's blood and LMWH showed similar effects on DVT and produced similar gene expression changes in patients undergoing hip fracture surgery, indicating that dragon's blood is a more convenient antithrombosis medicine (oral) than LMWH (hypodermic injection).
Collapse
|