1
|
Yu H, Li X, Ning B, Feng L, Ren Y, Li S, Kang Y, Ma J, Zhao M. SIRT1: a potential therapeutic target for coronary heart disease combined with anxiety or depression. J Drug Target 2025; 33:328-340. [PMID: 39470049 DOI: 10.1080/1061186x.2024.2422882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Coronary heart disease (CHD) combined with anxiety or depression is increasingly receiving attention in the clinical field of cardiology, and exploring the comorbidity pathological mechanisms of cardiovascular disease combined with psychological disorders is a hot research topic for scholars in this field. Current research suggests that Silent Information Regulatory Factor 1 (SIRT1) may serve as a potential biomarker for the comorbidity mechanism and treatment of CHD with anxiety or depression. SIRT1 is considered a promising therapeutic target for CHD combined with anxiety or depression, with the ability to regulate inflammatory cytokine levels, alleviate oxidative stress damage, activate multiple signalling pathways, reduce platelet hyperresponsiveness, and exert neuroprotective and cardioprotective effects. In this comprehensive review, we deeply studied the structure, function, and mechanism of SIRT1, and discussed its protective effects in the cardiovascular and nervous system. The latest progress in the mechanism of SIRT1's role in CHD combined with anxiety or depression was emphasised, including its specific mechanisms in regulating inflammatory response, alleviating oxidative stress, and mediating various signalling pathways. In addition, this article also summarises the therapeutic potential of SIRT1 as a potential biomarker in patients with CHD combined with anxiety or depression.
Collapse
Affiliation(s)
- Hubin Yu
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xinping Li
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Bo Ning
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lanshuan Feng
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yaolong Ren
- Department of Cardiology, Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shilin Li
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yalong Kang
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Ma
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Mingjun Zhao
- Department of Cardiology, Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
2
|
Lv N, Wang L, Zeng M, Wang Y, Yu B, Zeng W, Jiang X, Suo Y. Saponins as therapeutic candidates for atherosclerosis. Phytother Res 2024; 38:1651-1680. [PMID: 38299680 DOI: 10.1002/ptr.8128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
Drug development for atherosclerosis, the underlying pathological state of ischemic cardiovascular diseases, has posed a longstanding challenge. Saponins, classified as steroid or triterpenoid glycosides, have shown promising therapeutic potential in the treatment of atherosclerosis. Through an exhaustive examination of scientific literature spanning from May 2013 to May 2023, we identified 82 references evaluating 37 types of saponins in terms of their prospective impacts on atherosclerosis. These studies suggest that saponins have the potential to ameliorate atherosclerosis by regulating lipid metabolism, inhibiting inflammation, suppressing apoptosis, reducing oxidative stress, and modulating smooth muscle cell proliferation and migration, as well as regulating gut microbiota, autophagy, endothelial senescence, and angiogenesis. Notably, ginsenosides exhibit significant potential and manifest essential pharmacological attributes, including lipid-lowering, anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects. This review provides a comprehensive examination of the pharmacological attributes of saponins in atherosclerosis, with particular emphasis on their role in the regulation of lipid metabolism regulation and anti-inflammatory effects. Thus, saponins may warrant further investigation as a potential therapy for atherosclerosis. However, due to various reasons such as low oral bioavailability, the clinical application of saponins in the treatment of atherosclerosis still needs further exploration.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijing Wang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou people's hospital, Ganzhou, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou people's hospital, Ganzhou, China
| |
Collapse
|
3
|
Łanoszka K, Vlčková N. Natural Sirtuin1 Activators and Atherosclerosis: an Overview. Curr Atheroscler Rep 2023; 25:979-994. [PMID: 38038821 PMCID: PMC10770200 DOI: 10.1007/s11883-023-01165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the most recent findings investigating the impact of several natural sirtuin (SIRT) activators, particularly SIRT1, on atherosclerosis. RECENT FINDINGS Sirtuins that belong to a family of class III histone deacetylases are believed to be novel therapeutic targets to treat age-related and chronic diseases. SIRT expression is regulated by small molecules called SIRT-activating compounds that can be found in natural food products. SIRT1 may exert protective effects in atherosclerosis, which is said to be a major cause of cardiovascular diseases. Most of the evidence supporting the beneficial effects of these natural compounds comes from in vitro or animal-based studies, while there have been particularly few or inconsistent human-based studies evaluating their long-term impact in recent years. SIRT1 activation has been demonstrated to mitigate or prevent atherosclerosis through various mechanisms. However, further research is required to determine the optimal SIRT activator dosage and to establish a stronger correlation between health effects and the administration of bioactive compounds. Additionally, conducting more human clinical trials is necessary to ensure the safety of these compounds for preventing atherosclerosis development.
Collapse
Affiliation(s)
- Karolina Łanoszka
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland
| | - Nimasha Vlčková
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland.
| |
Collapse
|
4
|
Zhang A, Li H, Song Q, Cui Y, Zhang Y, Wang X, Li Z, Hou Y. High-fat stimulation induces atrial neural remodeling by reducing NO production via the CRIF1/eNOS/P21 axi. Lipids Health Dis 2023; 22:189. [PMID: 37932729 PMCID: PMC10629039 DOI: 10.1186/s12944-023-01952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Autonomic remodeling of the atria plays a pivotal role in the development of atrial fibrillation (AF) and exerts a substantial influence on the progression of this condition. Hyperlipidemia is a predisposing factor for AF, but its effect on atrial nerve remodeling is unclear. The primary goal of this study was to explore the possible mechanisms through which the consumption of a high-fat diet (HFD) induces remodeling of atrial nerves, and to identify novel targets for clinical intervention. METHODS Cell models were created in vitro by subjecting cells to palmitic acid (PA), while rat models were established by feeding them a high-fat diet. To investigate the interplay between cardiomyocytes and nerve cells in a co-culture system, we utilized Transwell cell culture plates featuring a pore size of 0.4 μm. The CCK-8 assay was employed to determine cell viability, fluorescent probe DCFH-DA and flow cytometry were utilized for measuring ROS levels, JC-1 was used to assess the mitochondrial membrane potential, the Griess method was employed to measure the nitric oxide (NO) level in the supernatant, a fluorescence-based method was used to measure ATP levels, and MitoTracker was utilized for assessing mitochondrial morphology. The expression of pertinent proteins was evaluated using western blotting (WB) and immunohistochemistry techniques. SNAP was used to treat nerve cells in order to replicate a high-NO atmosphere, and the level of nitroso was assessed using the iodoTMT reagent labeling method. RESULTS The study found that cardiomyocytes' mitochondrial morphology and function were impaired under high-fat stimulation, affecting nitric oxide (NO) production through the CRIF1/SIRT1/eNOS axis. In a coculture model, overexpression of eNOS in cardiomyocytes increased NO expression. Moreover, the increased Keap1 nitrosylation within neuronal cells facilitated the entry of Nrf2 into the nucleus, resulting in an augmentation of P21 transcription and a suppression of proliferation. Atrial neural remodeling occurred in the HFD rat model and was ameliorated by increasing myocardial tissue eNOS protein expression with trimetazidine (TMZ). CONCLUSIONS Neural remodeling is triggered by high-fat stimulation, which decreases the production of NO through the CRIF1/eNOS/P21 axis. Additionally, TMZ prevents neural remodeling and reduces the occurrence of AF by enhancing eNOS expression.
Collapse
Affiliation(s)
- An Zhang
- Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Huilin Li
- Department of Emergency Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong, China
| | - Qiyuan Song
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Yansong Cui
- Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yujiao Zhang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Ximin Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Zhan Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University, Shandong, China.
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University, Shandong, China.
- Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| |
Collapse
|
5
|
Huangfu H, Huang Z, Liao W, Zou T, Shang X, Yu H. M1 linear ubiquitination of LKB1 inhibits vascular endothelial cell injury in atherosclerosis through activation of AMPK. Hum Cell 2023; 36:1901-1914. [PMID: 37632629 DOI: 10.1007/s13577-023-00950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/27/2023] [Indexed: 08/28/2023]
Abstract
Endothelial cell injury is confirmed to be the initial step in the atherosclerosis (AS) process. Here, we tried to elucidate the role of liver kinase B1 (LKB1) and adenosine phosphate protein kinase (AMPK) in modulating vascular endothelial cells (VECs) in AS. High-fat feed (HFD)-induced AS rat models were prepared and treated with AMPK activator A-769662 alone or combined with chloroquine. An analysis of VEC injury, inflammation response, and autophagy followed it. The M1 linear ubiquitination of LKB1 was assessed by co-immunoprecipitation. The interaction between LKB1 and AMPK was analyzed. Primary aortic VECs were isolated and induced by LPS to verify the effects of LKB1 and AMPK on VEC injury in AS. Activation of AMPK reduced the VEC injury and inflammatory response of VECs and promoted autophagy caused by AS. LKB1 could regulate the activation of AMPK in AS. M1 linear ubiquitination enhanced LKB1 activity and increased AMPK activation to protect against VEC injury in AS, which was validated by in vitro experiments. Our current study highlighted that M1 linear ubiquitination of LKB1 may induce the activation of LKB1 to activate AMPK, which inhibited VEC injury in AS.
Collapse
Affiliation(s)
- Haiquan Huangfu
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Xiantong Road, Liantang Street, Luohu District, Shenzhen, 518004, Guangdong, People's Republic of China
| | - Zhichao Huang
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Xiantong Road, Liantang Street, Luohu District, Shenzhen, 518004, Guangdong, People's Republic of China
| | - Weiqian Liao
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Xiantong Road, Liantang Street, Luohu District, Shenzhen, 518004, Guangdong, People's Republic of China
| | - Tianyu Zou
- Department of Encephalopathy, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518004, People's Republic of China
| | - Xiaoming Shang
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Xiantong Road, Liantang Street, Luohu District, Shenzhen, 518004, Guangdong, People's Republic of China.
| | - Hairui Yu
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Xiantong Road, Liantang Street, Luohu District, Shenzhen, 518004, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Gao D, Cho CW, Yang Z, Li X, Kang JS. Identification and Quantitation of the Bioactive Components in Wasted Aralia elata Leaves Extract with Endothelial Protective Activity. Molecules 2023; 28:5907. [PMID: 37570877 PMCID: PMC10421206 DOI: 10.3390/molecules28155907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Aralia elata, a renowned medicinal plant with a rich history in traditional medicine, has gained attention for its potential therapeutic applications. However, the leaves of this plant have been largely overlooked and discarded due to limited knowledge of their biological activity and chemical composition. To bridge this gap, a comprehensive study was conducted to explore the therapeutic potential of the 70% ethanol extract derived from Aralia elata leaves (LAE) for the treatment of cardiovascular disease (CVD). Initially, the cytotoxic effects of LAE on human umbilical vein endothelial cells (HUVECs) were assessed, revealing no toxicity within concentrations up to 5 μg/mL. This suggests that LAE could serve as a safe raw material for the development of health supplements and drugs aimed at promoting cardiovascular well-being. Furthermore, the study found that LAE extract demonstrated anti-inflammatory properties in HUVECs by modulating the PI3K/Akt and MAPK signaling pathways. These findings are particularly significant as inflammation plays a crucial role in the progression of CVD. Moreover, LAE extract exhibited the ability to suppress the expression of adhesion molecules VCAM-1 and ICAM-1, which are pivotal in leukocyte migration to inflamed blood vessels observed in various pathological conditions. In conjunction with the investigation on therapeutic potential, the study also established an optimal HPLC-PDA-ESI-MS/MS method to identify and confirm the chemical constituents present in 24 samples collected from distinct regions in South Korea. Tentative identification revealed the presence of 14 saponins and nine phenolic compounds, while further analysis using PCA and PLS-DA allowed for the differentiation of samples based on their geographical origins. Notably, specific compounds such as chlorogenic acid, isochlorogenic acid A, and quercitrin emerged as marker compounds responsible for distinguishing samples from different regions. Overall, by unraveling its endothelial protective activity and identifying key chemical constituents, this research not only offers valuable insights for the development of novel treatments but also underscores the importance of utilizing and preserving natural resources efficiently.
Collapse
Affiliation(s)
- Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (D.G.); (Z.Y.)
| | - Chong-Woon Cho
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Zemin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (D.G.); (Z.Y.)
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (D.G.); (Z.Y.)
| | - Jong-Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
7
|
Li L, Mou J, Han Y, Wang M, Lu S, Ma Q, Wang J, Ye J, Sun G. Calenduloside e modulates macrophage polarization via KLF2-regulated glycolysis, contributing to attenuates atherosclerosis. Int Immunopharmacol 2023; 117:109730. [PMID: 36878047 DOI: 10.1016/j.intimp.2023.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 03/06/2023]
Abstract
Glycolysis-mediated macrophage polarization plays a crucial role in atherosclerosis. Although it is known that calenduloside E (CE) exerts anti-inflammatory and lipid-lowering effects in atherosclerosis, the underlying mechanism of action is not clearly understood. We hypothesized that CE functions by inhibiting M1 macrophage polarization via regulation of glycolysis. To verify this hypothesis, we determined the effects of CE in apolipoprotein E deficient (ApoE-/-) mice and on macrophage polarization in oxidized low-density lipoprotein (ox-LDL)-induced RAW 264.7 macrophages and peritoneal macrophages. We also determined whether these effects are linked to regulation of glycolysis both in vivo and in vitro. The plaque size was reduced, and serum cytokine levels were decreased in the ApoE-/- +CE group compared with that in the model group. CE decreased lipid droplet formation, inflammatory factor levels, and mRNA levels of M1 macrophage markers in ox-ldl-induced macrophages. CE suppressed ox-ldl-induced glycolysis, lactate levels, and glucose uptake. The relationship between glycolysis and M1 macrophage polarization was demonstrated using the glycolysis inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one. CE substantially upregulated ox-ldl-induced Kruppel-like transcription factor (KLF2) expression, and the effects of CE on ox-ldl-induced glycolysis and inflammatory factor levels disappeared after KLF2 knockdown. Together, our findings suggest that CE alleviates atherosclerosis by inhibiting glycolysis-mediated M1 macrophage polarization through upregulation of KLF2 expression, providing a new strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Lanfang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Junyu Mou
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Yanwei Han
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiuxiao Ma
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialu Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Sun L, Lu WX, Li H, Feng DY, Nie JX. Total saponins of Aralia elata (Miq.) Seem. alleviate myocardial ischemia-reperfusion injury by promoting NLRP3-inflammasome inactivation via PI3K/Akt signaling. Kaohsiung J Med Sci 2023; 39:290-301. [PMID: 36408810 DOI: 10.1002/kjm2.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Total saponins of Aralia elata (Miq.) Seem. (TSAE) have been shown to play a significant role in cardiovascular protection, anti-tumor, liver protection, anti-oxidant stress, and anti-inflammation. However, the specific mechanisms of TSAE in myocardial ischemia-reperfusion injury (MIRI) remain largely elusive. Hearts from male Wistar rats were used to establish the isolated heart MIRI model. Using a multichannel physiological recorder, the whole course heart rate (HR), left ventricular development pressure (LVDP), and maximum rise/decrease rate of left ventricular pressure (±dp/dtmax ) were recorded. 2,3,5-triphenyl-2H-tetrazolium chloride staining observed the infarct area, while hematoxylin & eosin staining detected pathological changes in myocardial tissue. Creatine kinase, lactate dehydrogenase, total superoxide dismutase, and malondialdehyde concentrations were determined by enzyme-linked immunosorbent assay. Immunohistochemistry, quantitative PCR, and western blot assay were used to assess the amounts of IL-18 and IL-1β, NLR family protein (NLRP3) inflammasome- and apoptosis-related proteins, respectively. Treatment with TSAE or MCC950 (NLRP3-specific inhibitor) significantly reduced the myocardial infarction area, alleviated pathological changes in myocardial tissues, enhanced LVDP and ±dp/dtmax levels, prevented myocardial oxidative damage, and inhibited NLRP3 inflammasome formation. In addition, TSAE enhanced Akt and GSK3β phosphorylation, and LY29004 co-reperfusion markedly diminished the protective role of TSAE reperfusion on cardiac function, oxidative damage, and inflammatory responses. Collectively, TSAE treatment exhibited a protective effect on I/R-triggered inflammatory responses, cell necrosis, and oxidative stress injury by stimulating PI3K/Akt signaling-mediated NLRP3 inflammasome inhibition.
Collapse
Affiliation(s)
- Li Sun
- Department of General Medicine, Dongfang Hospital Beijing University of Chinese Medicine (Western Section), Beijing, China
| | - Wei-Xing Lu
- Department of Cardiology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Hui Li
- Department of General Medicine, Dongfang Hospital Beijing University of Chinese Medicine (Western Section), Beijing, China
| | - Ding-Ya Feng
- Department of General Medicine, Dongfang Hospital Beijing University of Chinese Medicine (Western Section), Beijing, China
| | - Jing-Xiao Nie
- Department of General Medicine, Dongfang Hospital Beijing University of Chinese Medicine (Western Section), Beijing, China
| |
Collapse
|
9
|
Wang S, Yuan R, Liu M, Zhang Y, Jia B, Ruan J, Shen J, Zhang Y, Liu M, Wang T. Targeting autophagy in atherosclerosis: Advances and therapeutic potential of natural bioactive compounds from herbal medicines and natural products. Biomed Pharmacother 2022; 155:113712. [PMID: 36130420 DOI: 10.1016/j.biopha.2022.113712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Atherosclerosis (AS) is the most common causes of cardiovascular disease characterized by the formation of atherosclerotic plaques in the arterial wall, and it has become a dominant public health problem that seriously threaten people worldwide. Autophagy is a cellular self-catabolism process, which is critical to protect cellular homeostasis against harmful conditions. Emerging evidence suggest that dysregulated autophagy is involved in the development of AS. Therefore, pharmacological interventions have been developed to inhibit the AS via autophagy induction. Among various AS treating methods, herbal medicines and natural products have been applied as effective complementary and alternative medicines to ameliorate AS and its associated cardiovascular disease. Recently, mounting evidence revealed that natural bioactive compounds from herbs and natural products could induce autophagy to suppress the occurrence and development of AS, by promoting cholesterol efflux, reducing plaque inflammation, and inhibiting apoptosis or senescence. In the present review, we highlight recent findings regarding possible effects and molecular mechanism of natural compounds in autophagy-targeted mitigation of atherosclerosis, aiming to provide new potential therapeutic strategies for the atherosclerosis treatment preclinically and clinically.
Collapse
Affiliation(s)
- Sijian Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruolan Yuan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiwen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bona Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingya Ruan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiayan Shen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
10
|
Wang M, Cui B, Gong M, Liu Q, Zhuo X, Lv J, Yang L, Liu X, Wang Z, Dai L. Arctium lappa leaves based on network pharmacology and experimental validation attenuate atherosclerosis by targeting the AMPK-mediated PPARG/LXRα pathway. Biomed Pharmacother 2022; 153:113503. [PMID: 36076592 DOI: 10.1016/j.biopha.2022.113503] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/27/2022] Open
|
11
|
Targeting Reactive Oxygen Species in Atherosclerosis via Chinese Herbal Medicines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1852330. [PMID: 35047104 PMCID: PMC8763505 DOI: 10.1155/2022/1852330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Cardio-cerebrovascular disease (CCVD) has become the leading cause of human mortality with the coming acceleration of global population aging. Atherosclerosis is among the most common pathological changes in CCVDs. It is also a multifactorial disorder; oxidative stress caused by excessive production of reactive oxygen species (ROS) has become an important mechanism of atherosclerosis. Chinese herbal medicine (CHM) is a major type of natural medicine that has made great contributions to human health. CHMs are increasingly used in the auxiliary clinical treatment of atherosclerosis. Although their mechanism of action is unclear, CHMs can exert a variety of antiatherosclerosis effects by regulating intracellular ROS. In this review, we discussed the mechanism of ROS regulation in atherosclerosis and analyzed the role of CHMs in the treatment of atherosclerosis via ROS.
Collapse
|
12
|
Xu Y, Liu J, Zeng Y, Jin S, Liu W, Li Z, Qin X, Bai Y. Traditional uses, phytochemistry, pharmacology, toxicity and quality control of medicinal genus Aralia: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114671. [PMID: 34627983 DOI: 10.1016/j.jep.2021.114671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aralia, which belongs to Araliaceae family, is mainly distributed in Asia, such as China, Japan and South Korea. It has a long medicinal history and is widely used in the treatment of various diseases, such as hepatitis, rheumatoid arthritis, bruises, lumps and carbuncles. AIM OF THE STUDY The purpose of this review is to systematically evaluate the traditional uses, phytochemistry, pharmacology, toxicity and quality control of main medicinal plants of Aralia, discusses the application of ethnic medicine, modern scientific research and the relationship between them, and put forward some suggestions to promote the further development and utilization of Aralia. MATERIALS AND METHODS The relevant information on Aralia was collected through electronic databases (PubMed, Web of Science, Science Direct, Springer, CNKI and Wanfang), Chinese herbal classics, Ph.D. and M.Sc. dissertations, Chinese Pharmacopoeia. Plant names were verified by "The Plant List" (http://www.theplantlist.org). The literature cited in this review can be traced back to 1878 to 2021. RESULTS More than 290 chemical constituents have been isolated from the genus Aralia, including triterpenoid saponins, terpenoids, organic acids, flavonoids, polyacetylenes, phenylpropanoids and other constituents. Pharmacological studies have shown that the extracts and compounds of Aralia have a wide range of pharmacological activities, including anti-inflammation, analgesic, anti-tumor, liver protection, protection of cardiovascular and nervous system, regulating substance metabolism, antibacterial, antiviral and antioxidation. CONCLUSIONS The genus Aralia is not only an excellent traditional herbal medicine, but also a source of bioactive molecules with good application prospects. However, the structure-activity relationship, in vivo activity and action mechanism of its bioactive components need to be further studied. In addition, more toxicological and quality control studies are essential to evaluate the efficacy and safety of Aralia as medicine.
Collapse
Affiliation(s)
- Yi Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junyu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuanlian Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shenrui Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wentao Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, PR China
| | - Zulun Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuhua Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yaolin Bai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
13
|
Wang H, He F, Liang B, Jing Y, Zhang P, Liu W, Zhu B, Dou D. LincRNA-p21 alleviates atherosclerosis progression through regulating the miR-221/SIRT1/Pcsk9 axis. J Cell Mol Med 2021; 25:9141-9153. [PMID: 34541816 PMCID: PMC8500963 DOI: 10.1111/jcmm.16771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis (AS) is the main aetiology of coronary heart disease, cerebral infarction and peripheral vascular disease in humans. Long‐noncoding RNA (LincRNA)‐p21 has been reported to participate in the development of AS. Therefore, this study was designed to investigate the mechanism of LincRNA‐p21 on suppressing the development of AS. We fed ApoE−/− mice with a high‐fat diet to induce an AS mouse model where the lesion area of AS and the extent of lipid deposition were measured. The binding of LincRNA‐p21 and miR‐221 or miR‐221 and SIRT1 was measured using a dual luciferase reporter gene assay and RIP. Following loss‐ and gain‐ function assays, CCK8, EdU, Transwell assay and scratch test were performed to determine the biological processes of human aortic endothelial cells (HAECs). miR‐221 was highly expressed while SIRT1 was poorly expressed in AS. LincRNA‐p21 acted as a sponge for miR‐221. miR‐221 targeted and negatively regulated the expression of SIRT1. LincRNA‐p21 promoted the deacetylation of Pcsk9 by SIRT1 by competitively binding to miR‐221, whereby promoting HAEC proliferation, migration and tube formation. In conclusion, LincRNA‐p21 acted as a molecular sponge for miR‐221 to promote deacetylation of the promoter region of Pcsk9 by SIRT1, therefore preventing the development of AS.
Collapse
Affiliation(s)
- Haojie Wang
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Fei He
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Bing Liang
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yuanhu Jing
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Pei Zhang
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Weichao Liu
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Bowen Zhu
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Dongmei Dou
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| |
Collapse
|
14
|
Jarisarapurin W, Kunchana K, Chularojmontri L, Wattanapitayakul SK. Unripe Carica papaya Protects Methylglyoxal-Invoked Endothelial Cell Inflammation and Apoptosis via the Suppression of Oxidative Stress and Akt/MAPK/NF-κB Signals. Antioxidants (Basel) 2021; 10:antiox10081158. [PMID: 34439407 PMCID: PMC8388906 DOI: 10.3390/antiox10081158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Methylglyoxal (MGO), a highly reactive dicarbonyl compound, causes endothelial oxidative stress and vascular complications in diabetes. Excessive MGO-induced ROS production triggers eNOS uncoupling, inflammatory responses, and cell death signaling cascades. Our previous study reported that unripe Carica papaya (UCP) had antioxidant activities that prevented H2O2-induced endothelial cell death. Therefore, this study investigated the preventive effect of UCP on MGO-induced endothelial cell damage, inflammation, and apoptosis. The human endothelial cell line (EA.hy926) was pretreated with UCP for 24 h, followed by MGO-induced dicarbonyl stress. Treated cells were evaluated for intracellular ROS/O2•− formation, cell viability, apoptosis, NO releases, and cell signaling through eNOS, iNOS, COX-2, NF-κB, Akt, MAPK (JNK and p38), and AMPK/SIRT1 autophagy pathways. UCP reduced oxidative stress and diminished phosphorylation of Akt, stress-activated MAPK, leading to the decreases in NF-kB-activated iNOS and COX-2 expression. However, UCP had no impact on the autophagy pathway (AMPK and SIRT1). Although UCP pretreatment decreased eNOS phosphorylation, the amount of NO production was not altered. The signaling of eNOS and NO production were decreased after MGO incubation, but these effects were unaffected by UCP pretreatment. In summary, UCP protected endothelial cells against carbonyl stress by the mechanisms related to ROS/O2•− scavenging activities, suppression of inflammatory signaling, and inhibition of JNK/p38/apoptosis pathway. Thus, UCP shows considerable promise for developing novel functional food and nutraceutical products to reduce risks of endothelial inflammation and vascular complications in diabetes.
Collapse
Affiliation(s)
- Wattanased Jarisarapurin
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (W.J.); (K.K.)
| | - Khwandow Kunchana
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (W.J.); (K.K.)
| | - Linda Chularojmontri
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12121, Thailand;
| | - Suvara K. Wattanapitayakul
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (W.J.); (K.K.)
- Correspondence: ; Tel.: +66-2649-5385
| |
Collapse
|
15
|
Han F, Liang J, Yang BY, Kuang HX, Xia YG. Identification and comparison of triterpene saponins in Aralia elata leaves and buds by the energy-resolved MS All technique on a liquid chromatography/quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 2021; 203:114176. [PMID: 34098508 DOI: 10.1016/j.jpba.2021.114176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/25/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
In this study, we identify the triterpene saponins (TSs) extracted from the leaves and buds of Aralia elata (Miq.) Seems using ultra-performance liquid chromatography and positive ionization electrospray quadrupole time-of-flight mass spectrometry (UPLC-ESI+-QTOF). The energy-resolved MSAll (erMSall) technique is applied in order to simultaneously collect the diverse precursors attributed to [M+H]+, [M + NH4]+ and [M + Na]+ ions. A practical and effective erMSall workflow is established to rapidly identify and compare the saponins in the analyzed samples. In total, 111 TSs of structure are estimated, including 44 new compounds that had not been identified previously in A. elata. Of the five aglycones detected in the samples, a sapogenin 3β, 16α, 23-trihydroxyoleana-11,13-dien-28-oic acid (A5) that is identified for the first time in A. elata leaves. Compared to the buds, the leaves number twice as many hederagenin-type (A2) compounds. Although the number of other aglycones does not vary significantly between the buds and the leaves, A5 compounds are exclusively detected in the latter. Moreover, the C-3 sugar chains of TSs in A. elata leaves are mainly neutral (e.g., Hex+Hex, Hex+Hex+Hex and Hex+Hex+Hex+Hex), whereas those of bud TS compounds are primarily acidic (e.g., Pen+HexA, Hex+HexA and Hex+Pen+HexA). Some of the identified TS compounds, e.g., 27, 28, 32, 46, 54, 57, 71 and 105 can be used as indices to evaluate the quality of the plant leaves and buds. Overall, this study is of great significance for the comparative study of triterpenoid saponins in the leaves and buds of Aralia elata.
Collapse
Affiliation(s)
- Fang Han
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, China
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, China
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, China.
| | - Yong-Gang Xia
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, China.
| |
Collapse
|
16
|
Hydroxytyrosol Plays Antiatherosclerotic Effects through Regulating Lipid Metabolism via Inhibiting the p38 Signal Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2020:5036572. [PMID: 32685494 PMCID: PMC7330625 DOI: 10.1155/2020/5036572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/25/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
Abstract
Purpose Hydroxytyrosol (HT) processes multiaspect pharmacological properties such as antithrombosis and antidiabetes. The aim of this study was to explore the antistherosclerotic roles and relevant mechanisms of HT. Methods Male apoE−/− mice were randomly divided into 2 groups: the control group and the HT group (10 mg/kg/day orally). After 16 weeks, blood tissue, heart tissue, and liver tissue were obtained to detect the atherosclerotic lesions, histological analysis, lipid parameters, and inflammation. And the underlying molecular mechanisms of HT were also studied in vivo and in vitro. Results HT administration significantly reduced the extent of atherosclerotic lesions in the aorta of apoE−/− mice. We found that HT markedly lowered the levels of serum TG, TC, and LDL-C approximately by 17.4% (p = 0.004), 15.2% (p = 0.003), and 17.9% (p = 0.009), respectively, as well as hepatic TG and TC by 15.0% (p < 0.001) and 12.3% (p = 0.003), respectively, while inducing a 26.9% (p = 0.033) increase in serum HDL-C. Besides, HT improved hepatic steatosis and lipid deposition. Then, we discovered that HT could regulate the signal flow of AMPK/SREBP2 and increase the expression of ABCA1, apoAI, and SRBI. In addition, HT reduced the levels of serum CRP, TNF-α, IL-1β, and IL-6 approximately by 23.5% (p < 0.001), 27.8% (p < 0.001), 18.4% (p < 0.001), and 19.1% (p < 0.001), respectively, and induced a 1.4-fold increase in IL-10 level (p = 0.014). Further, we found that HT might regulate cholesterol metabolism via decreasing phosphorylation of p38, followed by activation of AMPK and inactivation of NF-κB, which in turn triggered the blockade of SREBP2/PCSK9 and upregulation of LDLR, apoAI, and ABCA1, finally leading to a reduction of LDL-C and increase of HDL-C in the circulation. Conclusion Our results provide the first evidence that HT displays antiatherosclerotic actions via mediating lipid metabolism-related pathways through regulating the activities of inflammatory signaling molecules.
Collapse
|
17
|
Liu Y, Tang LL, Liang C, Wu MM, Zhang ZR. Insulin Resistance and Pellino-1 Mediated Decrease in the Activities of Vasodilator Signaling Contributes to Sunitinib-Induced Hypertension. Front Pharmacol 2021; 12:617165. [PMID: 33841146 PMCID: PMC8027079 DOI: 10.3389/fphar.2021.617165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/21/2021] [Indexed: 01/10/2023] Open
Abstract
Antiangiogenic tyrosine kinases inhibitors induce hypertension, which may increase the incidents of cardiovascular complications and limit their use. However, the mechanisms by which usage of TKIs results in hypertension have not been fully understood. Here, we report the potential mechanisms of how sunitinib, a widely used TKI, induces hypertension. Male SD rats were randomly divided into control group and sunitinib-administrated group. We show that sunitinib administration for seven days caused a significant increase in artery blood pressure, along with glycerolipid metabolism abnormalities including decreased food intake and low body weight, hypoglycemia, hyperinsulinemia. Sunitinib administration also resulted in a significant increase in the levels of insulin autoantibody (IAA), cyclic adenosine monophosphate and free fatty acid in serum; whereas, sunitinib administration had no effects on serum glucagon levels. Sunitinib led to the decreased insulin sensitivity as determined by insulin tolerance test (ITT) and glucose tolerance test (GTT), reflecting insulin resistance occurred in sunitinib-treated rats. The results obtained from wire myograph assay in the mesenteric arteries show that endothelium-dependent relaxation, but not endothelium-independent relaxation, was impaired by sunitinib. Furthermore, western blot analysis revealed that the expressions levels of phosphorylated IRS-1, Pellino-1, AKT and eNOS were significantly attenuated by sunitinib in rat mesenteric artery tissues and in the sunitinib-treated primary cultured mesenteric artery endothelial cells. The levels of serum and endothelium-derived nitric oxide were also significantly decreased by sunitinib. Moreover, sunitinib-induced decrease in the expression levels of phosphorylated AKT and eNOS was further reduced by knocking down of Pellino-1 in MAECs. Our results suggest that sunitinib causes vascular dysfunction and hypertension, which are associated with insulin resistance- and Pellino-1-mediated inhibition of AKT/eNOS/NO signaling. Our results may provide a rational for preventing and/or treating sunitinib-induced endothelial dysfunction and hypertension.
Collapse
Affiliation(s)
- Yang Liu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Liang-Liang Tang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Chen Liang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Ming-Ming Wu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Zhi-Ren Zhang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.,NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Pai PY, Chou WC, Chan SH, Wu SY, Chen HI, Li CW, Hsieh PL, Chu PM, Chen YA, Ou HC, Tsai KL. Epigallocatechin Gallate Reduces Homocysteine-Caused Oxidative Damages through Modulation SIRT1/AMPK Pathway in Endothelial Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 49:113-129. [PMID: 33371812 DOI: 10.1142/s0192415x21500063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Elevated plasma concentration of total homocysteine is a pathological condition that causes vascular endothelial injury and subsequently leads to the progression of endothelial apoptosis in atherosclerosis. Epigallocatechin gallate (EGCG), a well-known anti-oxidant in green tea, has been reported with benefits on metabolic and cardiovascular diseases. This study aimed to explore that EGCG ameliorates homocysteine-induced endothelial cell apoptosis through enhancing the sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) survival signaling pathway. Human umbilical endothelial cells were treated with homocysteine in the presence or absence of EGCG. We found that EGCG significantly increased the activities of SIRT1 and AMPK. EGCG diminished homocysteine-mediated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation by inhibiting protein kinase C activation as well as reactive oxygen species (ROS) generation and recovered the activity of the endogenous antioxidant enzyme, superoxidase dismutase (SOD). Besides, EGCG also restores homocysteine-mediated dephosphorylation of Akt and decreases endothelial NO synthase (eNOS) expression. Furthermore, EGCG ameliorates homocysteine-activated pro-apoptotic events. The present study shows that EGCG prevents homocysteine-induced endothelial cell apoptosis via enhancing SIRT1/AMPK as well as Akt/eNOS signaling pathways. Results from this study indicated that EGCG might have some benefits for hyperhomocysteinemia.
Collapse
Affiliation(s)
- Pei-Ying Pai
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan, ROC.,Division of Cardiology, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Wan-Ching Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shih-Hung Chan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shu-Yih Wu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan, ROC.,Department of Physical and Rehabilitation Medicine, Asia University Hospital, Taichung, Taiwan, ROC.,Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan, ROC
| | - Hsiu-I Chen
- Department of Physical Therapy, Hungkuang University, Taichung, Taiwan, ROC
| | - Chi-Wen Li
- Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taichung, Taiwan, ROC
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan, ROC
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan, ROC
| | - Yu-An Chen
- Department of Health and Leisure Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan, ROC
| | - Hsiu-Chung Ou
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan, ROC
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
19
|
Yang J, Lin X, Wang L, Sun T, Zhao Q, Ma Q, Zhou Y. LncRNA MALAT1 Enhances ox-LDL-Induced Autophagy through the SIRT1/MAPK/NF-κB Pathway in Macrophages. Curr Vasc Pharmacol 2020; 18:652-662. [PMID: 32183682 DOI: 10.2174/1570161118666200317153124] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023]
Abstract
Atherosclerosis is the main cause of cardiovascular and cerebrovascular diseases. In
advanced atherosclerotic plaque, macrophage apoptosis coupled with inflammatory cytokine secretion
promotes the formation of necrotic cores. It has also been demonstrated that the long-noncoding Ribonucleic
Acid (lnc RNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), with its
potent function on gene transcription modulation, maintains oxidized low-density lipoprotein (ox-LDL)-
induced macrophage autophagy (i.e., helps with cholesterol efflux). It also showed that MALAT1 activated
Sirtuin 1 (SIRT1), which subsequently inhibited the mitogen-activated protein kinase (MAPK)
and nuclear factor kappa-B (NF-κB) signaling pathways. ox-LDL has been used to incubate human
myeloid leukemia mononuclear cells (THP-1)-derived macrophages to establish an in vitro foam cell
model. Quantitative reverse-transcription polymerase chain reaction and Western blot analyses confirmed
the increased expression level of MALAT1 and the autophagy-related protein Microtubuleassociated
protein light chain 3 (LC-3), beclin-1. The small interfering RNA study showed a significant
decrease in autophagy activity and an increase in apoptotic rate when knocking down MALAT1. Further
study demonstrated that MALAT1 inhibited the expression of MAPK and NF-κB (p65) by upregulating
SIRT1.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xuze Lin
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Liangshan Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Tienan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qi Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qian Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
20
|
Abstract
Increasing longevity, along with an aging population in Europe, has caused serious concerns about diet-related chronic diseases such as obesity, diabetes, cardiovascular diseases, and certain cancers. As recently noted during the coronavirus pandemic, regular exercise and a robust immune system complemented by adequate consumption of fruit and vegetables are recommended due to their known health benefits. Although the volume of fresh vegetable consumption in the EU is barely growing, demand for diversified, nutritious, and exotic vegetables has been increasing. Therefore, the European market for fresh Asian vegetables is expected to expand across the EU member states, and the introduction of new vegetables has enormous potential. We conducted this review to address the high number and wide range of Asian vegetable species with a commercial potential for introduction into the current European vegetable market. Many of them have not received any attention yet. Four Asian vegetables: (1) Korean ginseng sprout, (2) Korean cabbage, (3) Coastal hog fennel and (4) Japanese (Chinese or Korean) angelica tree, are further discussed. All of these vegetables possess several health benefits, are increasingly in demand, are easy to cultivate, and align with current trends of the European vegetable market, e.g., vegetables having a unique taste, higher value, are decorative and small. Introducing Asian vegetables will enhance the diversity of nutritious horticultural products in Europe, associated with all their respective consumption benefits. Future research on the Asian vegetable market within Europe is needed. In addition, experimental studies of Asian vegetables under practical conditions for their production in different European environments are required. Economic, social, and ecological aspects also ought to be considered.
Collapse
|
21
|
Yang Y, Ding Z, Zhong R, Xia T, Wang W, Zhao H, Wang Y, Shu Z. Cardioprotective effects of a Fructus Aurantii polysaccharide in isoproterenol-induced myocardial ischemic rats. Int J Biol Macromol 2020; 155:995-1002. [DOI: 10.1016/j.ijbiomac.2019.11.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
|
22
|
Sirtuins family as a target in endothelial cell dysfunction: implications for vascular ageing. Biogerontology 2020; 21:495-516. [PMID: 32285331 DOI: 10.1007/s10522-020-09873-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
The vascular endothelium is a protective barrier between the bloodstream and the vasculature that may be disrupted by different factors such as the presence of diseased states. Diseases like diabetes and obesity pose a great risk toward endothelial cell inflammation and oxidative stress, leading to endothelial cell dysfunction and thereby cardiovascular complications such as atherosclerosis. Sirtuins are NAD+-dependent histone deacetylases that are implicated in the pathophysiology of cardiovascular diseases, and they have been identified to be important regulators of endothelial cell function. A handful of recent studies suggest that disbalance in the regulation of endothelial sirtuins, mainly sirtuin 1 (SIRT1), contributes to endothelial cell dysfunction. Herein, we summarize how SIRT1 and other sirtuins may contribute to endothelial cell function and how presence of diseased conditions may alter their expressions to cause endothelial dysfunction. Moreover, we discuss how the beneficial effects of exercise on the endothelium are dependent on SIRT1. These mainly include regulation of signaling pathways related to endothelial nitric oxide synthase phosphorylation and nitric oxide production, mitochondrial biogenesis and mitochondria-mediated apoptotic pathways, oxidative stress and inflammatory pathways. Sirtuins as modulators of the adverse conditions in the endothelium hold a promising therapeutic potential for health conditions related to endothelial dysfunction and vascular ageing.
Collapse
|
23
|
Lu L, Qin Y, Chen C, Zhang X, Xu X, Lv C, Wan X, Ruan W, Guo X. The atheroprotective roles of heart-protecting musk pills against atherosclerosis development in apolipoprotein E-deficient mice. ANNALS OF TRANSLATIONAL MEDICINE 2020; 7:714. [PMID: 32042730 DOI: 10.21037/atm.2019.12.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Heart-protecting musk pill (HMP), derived from Chinese herbal medicines, has been found to possess protective roles against atherosclerosis-related cardiovascular diseases (CVDs), however, the anti-atherosclerotic mechanisms of HMP are still unclear. Here, we investigated the effects of HMP on alleviating atherosclerotic lesion severity in mice and explored the molecular mechanisms. Methods Apolipoprotein E-deficient mice were fed western-type diet supplemented with HMP (25 mg/kg/day) or normal saline gavage for 20 weeks. Then histopathological staining was performed to assess the atheromatous plaque burden. Biochemical kits were used to detect levels of lipid profiles. Moreover, effector factors associated with lipid metabolism in liver and intestinal tissues were investigated by western blot and real-time PCR assays. Levels of signal molecules participating in the mitochondrial-mediated apoptosis pathway were detected by Western blot. Results We found that HMP notably reduced atherosclerotic lesion size (P<0.05) and improved plaque stability (P<0.05). HMP treatment decreased circulating TC (P<0.01), LDL-C (P<0.01) and TG (P<0.05) levels and increased HDL-C (P<0.05) content. HMP was found to suppress SREBP2, HMGCR and PCSK9 expressions (P<0.05), yet promote LDLR expression (P<0.05) in hepatocytes. Moreover, HMP was discovered to activate PPARα/CPT-1A cascade (P<0.05) and inhibit contents of SREBP1c and the lipogenic genes FAS and ACCα (P<0.05). The LBK1/AMPK cascade was also activated after HMP administration (P<0.05). Additionally, HMP was found to facilitate transintestinal cholesterol excretion by increasing ABCG5 and ABCG8 levels and reducing NPC1L1 content (P<0.05). In terms of vasoprotective activities, we observed that HMP decreased cleaved caspase-3 content (P<0.05) in the vascular intima, which might be due to inhibition of mitochondrial-related signaling pathway. Conclusions Altogether, our study indicates that HMP plays anti-atherosclerotic roles via regulating lipid metabolism and improving vascular intimal injury.
Collapse
Affiliation(s)
- Li Lu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yating Qin
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Department of Cardiology, The Third People's Hospital of Hubei Province, Wuhan 430030, China
| | - Xinxin Zhang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyu Xu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250000, China
| | - Chao Lv
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoning Wan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weibin Ruan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomei Guo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
24
|
Luo Y, Lu S, Gao Y, Yang K, Wu D, Xu X, Sun G, Sun X. Araloside C attenuates atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy. Aging (Albany NY) 2020; 12:1704-1724. [PMID: 31986489 PMCID: PMC7053643 DOI: 10.18632/aging.102708] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis-related cardiovascular disease is still the predominant cause of death worldwide. Araloside C (AsC), a natural saponin, exerts extensive anti-inflammatory properties. In this study, we explored the protective effects and mechanism of AsC on macrophage polarization in atherosclerosis in vivo and in vitro. Using a high-fat diet (HFD)-fed ApoE-/- mouse model and RAW264.7 macrophages exposed to ox-LDL, AsC was evaluated for its effects on polarization and autophagy. AsC significantly reduced the plaque area in atherosclerotic mice and lipid accumulation in ox-LDL-treated macrophages, promoted M2 phenotype macrophage polarization, increased the number of autophagosomes and modulated the expression of autophagy-related proteins. Moreover, the autophagy inhibitor 3-methyladenine and BECN1 siRNA obviously abolished the antiatherosclerotic and M2 macrophage polarization effects of AsC. Mechanistically, AsC targeted Sirt1and increased its expression, and this increase in expression was associated with increased autophagy and M2 phenotype polarization. In contrast, the effects of AsC were markedly blocked by EX527 and Sirt1 siRNA. Altogether, AsC attenuates foam cell formation and lessens atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy.
Collapse
Affiliation(s)
- Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Ye Gao
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, Heilongjiang, China
| | - Ke Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Daoshun Wu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xudong Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
25
|
Low serum level of sirtuin 1 predicts coronary atherosclerosis plaques during computed tomography angiography among an asymptomatic cohort. Coron Artery Dis 2019; 30:621-625. [DOI: 10.1097/mca.0000000000000804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Kim GD. SIRT1-Mediated Protective Effect of Aralia elata (Miq.) Seem against High-Glucose-Induced Senescence in Human Umbilical Vein Endothelial Cells. Nutrients 2019; 11:nu11112625. [PMID: 31684006 PMCID: PMC6893469 DOI: 10.3390/nu11112625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Aralia elata (Miq.) Seem (AS) is widely been for treating many diseases, enhancing energy, and boosting immunity; however, its protective effects against high-glucose (HG)-triggered endothelial dysfunction and the potential underlying mechanisms have not been investigated. In this study, we determined the effect of AS on senescence in human umbilical vein endothelial cells (HUVECs) and elucidated the mechanisms underlying its anti-aging effects. The senescence model of endothelial cells (ECs) was established by culturing HUVECs in media containing HG (30 mM). We found that the proportion of senescent (senescence-associated β-galactosidase+) cells in the HG group was significantly higher than that in the control group; however, this increase was suppressed by AS treatment. Moreover, cell cycle analysis revealed that AS (20 μg/mL) significantly recovered HG-induced cell cycle arrest in ECs, and Western blot revealed that AS prevented HG-induced decreases in silent information regulator 1 (SIRT1) level and endothelial nitric oxide synthase (eNOS) phosphorylation. These results show that AS delayed HG-induced senescence in ECs by modulation of the SIRT1/5′ AMP-activated protein kinase and AKT/eNOS pathways.
Collapse
Affiliation(s)
- Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Changwon-si 51767, Korea.
| |
Collapse
|