1
|
Li QM, Xu H, Zha XQ, Zhang FY, Luo JP. Polygonatum cyrtonema polysaccharide alleviates dopaminergic neuron apoptosis in Parkinson's disease mouse model via inhibiting oxidative stress and endoplasmic reticulum stress. Int J Biol Macromol 2025; 311:143986. [PMID: 40339848 DOI: 10.1016/j.ijbiomac.2025.143986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Parkinson's disease (PD) has become a global health threat as a progressive neurodegenerative disorder. Polygonatum cyrtonema polysaccharide (PCP), the main bioactive constituent in P. cyrtonema rhizome, displays various biological activities. However, its antiparkinsonian effect is elusive. Here, the effect of PCP on PD-like pathology was evaluated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and its molecular mechanism was further investigated. The results showed that PCP at different dosages significantly improved MPTP-induced weight loss and dyskinesia in PD mice. Moreover, PCP treatment mitigated the dopaminergic neuron loss in the substantia nigra pars compacta (SNc). Analysis of apoptosis-related proteins revealed that PCP markedly decreased the expression levels of Bax and cleaved-caspase 3, and increased the expression level of Bcl-2 in PD mice. Meanwhile, PCP markedly enhanced the activities of antioxidant enzymes superoxidase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), reduced malondialdehyde (MDA) content, and reversed the expression of oxidant stress-related proteins Nrf2 and Keap1, in the SNc of PD mice. Furthermore, PCP treatment significantly reduced the MPTP-mediated increase of endoplasmic reticulum (ER) stress-related proteins. These findings suggest that PCP protects against PD-like pathology by mitigating oxidant stress and ER stress-mediated apoptosis of dopaminergic neurons, highlighting its potential as a therapeutic agent for PD.
Collapse
Affiliation(s)
- Qiang-Ming Li
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Huan Xu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Feng-Yun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
2
|
Xu C, Xie Q, Kuo CL, Yang X, Huang D. Evidence-Based Nutraceuticals Derived from Antrodia cinnamomea. Foods 2025; 14:1212. [PMID: 40238365 PMCID: PMC11988738 DOI: 10.3390/foods14071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Antrodia cinnamomea (A. cinnamomea), a medicinal and edible mushroom endemic to Taiwan, has been traditionally valued as a health tonic. Recent studies have highlighted the diverse specialized metabolites and bioactive potential of this substance, primarily attributed to key secondary metabolites such as benzenoids, maleic and succinic acids, ubiquinone, triterpenoids, and the primary metabolite polysaccharides. These compounds exhibit a broad spectrum of pharmacological properties, including those related to antibacterial, antitumor, anti-inflammation, hepatoprotection, hypoglycaemia, and antioxidant activities, and immunomodulation and gut microbiota regulation. These findings highlight the therapeutic potential of A. cinnamomea and its potential applications in health supplements and functional foods. This review evaluated recent advancements in the cultivation, extraction, and characterization of bioactive compounds from A. cinnamomea, with a particular focus on submerged and solid-state fermentation methods. We hope to provide a comprehensive framework for promoting the efficient and scientific evidence based utilization of A. cinnamomea in novel therapeutic strategies and health-related innovations.
Collapse
Affiliation(s)
- Chunyuhang Xu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore; (C.X.); (Q.X.)
| | - Qingtong Xie
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore; (C.X.); (Q.X.)
| | - Chien-Liang Kuo
- PhD Programme for Aging, College of Medicine, China Medical University, Taichung 406040, China;
| | - Xin Yang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore; (C.X.); (Q.X.)
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China
| |
Collapse
|
3
|
Yang L, Hou H, Lu L, Sun Y, Chen R, Deng Q, Chen H. Effects of natural source polysaccharides on neurological diseases: A review. Int J Biol Macromol 2025; 296:139697. [PMID: 39805435 DOI: 10.1016/j.ijbiomac.2025.139697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
With the aging of society and changes in lifestyle, the incidence of neurological diseases (NDs) has been increasing year by year, bringing a heavy burden to patients and society. Although the efficacy of chemical drugs in the treatment of NDs is remarkable, there are problems such as high side effects and high costs. Therefore, finding mild and efficient drugs for NDs treatment has become an urgent clinical need. Natural source polysaccharides (NSPs) are macromolecules with unique bioactivity and low toxicity characteristics, which have great potential to become novel therapeutic agents for NDs. In the present study, the pharmacological activities and potential molecular mechanisms of NSPs to alleviate NDs are systematically reviewed from the perspectives of inflammation, oxidative stress, apoptosis, neuronal cell autophagy, neurotoxicity, and sedation-hypnosis. In addition, the limitations of the existing studies were analyzed and discussed, and the future research direction was suggested. This study may provide scientific basis for the research and development of therapeutic agents for NDs based on NSPs.
Collapse
Affiliation(s)
- Luyuan Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Hailu Hou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Liping Lu
- Guizhou Dalong Pharmaceutical Co., Ltd., Guiyang 550001, China
| | - Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Ruhai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
4
|
Lin ZH, Phan SNC, Tran DNH, Lu MK, Lin TY. Anti-inflammatory and anticancer effects of polysaccharides from Antrodia cinnamomea : A review. J Chin Med Assoc 2025; 88:1-11. [PMID: 39467830 DOI: 10.1097/jcma.0000000000001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Antrodia cinnamomea ( Ac ), also known as "Niu-Chang-Chih" in Chinese, is a valuable fungus that has been widely used as medicine and food among indigenous people in Taiwan. Ac is rich in polysaccharides ( Ac -PS), making it a promising candidate for adjunctive therapy in cancer and inflammation conditions. There are two types of Ac -PS: general (non-sulfated) PS ( Ac -GPS) and sulfated PS ( Ac -SPS). This review highlights that both Ac -GPS and Ac -SPS possess immunomodulatory, anti-inflammatory, and anticancer properties. Each type influences interleukin signaling pathways to exert its anti-inflammatory effects. Ac -GPS is particularly effective in alleviating inflammation in the brain and liver, while Ac -SPS shows its efficacy in macrophage models. Both Ac -GSP and Ac -SPS have demonstrated anticancer effects supported by in vitro and in vivo studies, primarily through inducing apoptosis in various cancer cell lines. They may also synergize with chemotherapy and exhibit antiangiogenic properties. Notably, Ac -SPS appears to have superior anticancer efficacy, potentially due to its sulfate groups. Furthermore, Ac -SPS has been more extensively studied in terms of its mechanisms and effects on lung cancer compared with Ac -GPS, highlighting its significance in cancer research. In addition, Ac -SPS is often reported for its ability to activate macrophage-mediated responses. Clinically, Ac -GPS has been used as an adjunctive therapy for advanced lung cancer, as noted in recent reports. However, given the numerous studies emphasizing its anticancer mechanisms, Ac -SPS may exhibit greater efficacy, warranting further investigation. This review concludes that Ac -derived Ac -GPS or Ac -SPS have the potential to be developed into functional health supplements or adjunctive therapies, providing dual benefits of anti-inflammatory and anticancer effects.
Collapse
Affiliation(s)
- Zhi-Hu Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Sang-Nguyen-Cao Phan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Faculty of Traditional Medicine, University of Health Sciences, Vietnam National University, Ho Chi Minh, Vietnam
| | - Diem-Ngoc-Hong Tran
- Faculty of Traditional Medicine, University of Health Sciences, Vietnam National University, Ho Chi Minh, Vietnam
| | - Mei-Kuang Lu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Traditional Chinese Medicine Glycomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Traditional Chinese Medicine Glycomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Li W, Wan P, Qiao J, Liu Y, Peng Q, Zhang Z, Shu X, Xia Y, Sun B. Current and further outlook on the protective potential of Antrodia camphorata against neurological disorders. Front Pharmacol 2024; 15:1372110. [PMID: 38694913 PMCID: PMC11061445 DOI: 10.3389/fphar.2024.1372110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and stroke are increasingly becoming a global burden as society ages. It is well-known that degeneration and loss of neurons are the fundamental underlying processes, but there are still no effective therapies for these neurological diseases. In recent years, plenty of studies have focused on the pharmacology and feasibility of natural products as new strategies for the development of drugs that target neurological disorders. Antrodia camphorata has become one of the most promising candidates, and the crude extracts and some active metabolites of it have been reported to play various pharmacological activities to alleviate neurological symptoms at cellular and molecular levels. This review highlights the current evidence of Antrodia camphorata against neurological disorders, including safety evaluation, metabolism, blood-brain barrier penetration, neuroprotective activities, and the potential on regulating the gut-microbiome-brain axis. Furthermore, potential strategies to resolve problematic issues identified in previous studies are also discussed. We aim to provide an overview for the ongoing development and utilization of Antrodia camphorata in cerebral neuropathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
6
|
Xue J, Tao K, Wang W, Wang X. What Can Inflammation Tell Us about Therapeutic Strategies for Parkinson's Disease? Int J Mol Sci 2024; 25:1641. [PMID: 38338925 PMCID: PMC10855787 DOI: 10.3390/ijms25031641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with a complicated etiology and pathogenesis. α-Synuclein aggregation, dopaminergic (DA) neuron loss, mitochondrial injury, oxidative stress, and inflammation are involved in the process of PD. Neuroinflammation has been recognized as a key element in the initiation and progression of PD. In this review, we summarize the inflammatory response and pathogenic mechanisms of PD. Additionally, we describe the potential anti-inflammatory therapies, including nod-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome inhibition, nuclear factor κB (NF-κB) inhibition, microglia inhibition, astrocyte inhibition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, targeting the mitogen-activated protein kinase (MAPK) pathway, targeting the adenosine monophosphate-activated protein kinase (AMPK)-dependent pathway, targeting α-synuclein, targeting miRNA, acupuncture, and exercise. The review focuses on inflammation and will help in designing new prevention strategies for PD.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| |
Collapse
|
7
|
Kumari N, Anand S, Shah K, Chauhan NS, Sethiya NK, Singhal M. Emerging Role of Plant-Based Bioactive Compounds as Therapeutics in Parkinson's Disease. Molecules 2023; 28:7588. [PMID: 38005310 PMCID: PMC10673433 DOI: 10.3390/molecules28227588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Neurological ailments, including stroke, Alzheimer's disease (AD), epilepsy, Parkinson's disease (PD), and other related diseases, have affected around 1 billion people globally to date. PD stands second among the common neurodegenerative diseases caused as a result of dopaminergic neuron loss in the midbrain's substantia nigra regions. It affects cognitive and motor activities, resulting in tremors during rest, slow movement, and muscle stiffness. There are various traditional approaches for the management of PD, but they provide only symptomatic relief. Thus, a survey for finding new biomolecules or substances exhibiting the therapeutic potential to patients with PD is the main focus of present-day research. Medicinal plants, herbal formulations, and natural bioactive molecules have been gaining much more attention in recent years as synthetic molecules orchestrate a number of undesired effects. Several in vitro, in vivo, and in silico studies in the recent past have demonstrated the therapeutic potential of medicinal plants, herbal formulations, and plant-based bioactives. Among the plant-based bioactives, polyphenols, terpenes, and alkaloids are of particular interest due to their potent anti-inflammatory, antioxidant, and brain-health-promoting properties. Further, there are no concise, elaborated articles comprising updated mechanism-of-action-based reviews of the published literature on potent, recently investigated (2019-2023) medicinal plants, herbal formulations, and plant based-bioactive molecules, including polyphenols, terpenes, and alkaloids, as a method for the management of PD. Therefore, we designed the current review to provide an illustration of the efficacious role of various medicinal plants, herbal formulations, and bioactives (polyphenols, terpenes, and alkaloids) that can become potential therapeutics against PD with greater specificity, target approachability, bioavailability, and safety to the host. This information can be further utilized in the future to develop several value-added formulations and nutraceutical products to achieve the desired safety and efficacy for the management of PD.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Santosh Anand
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India;
| | | | - Neeraj K. Sethiya
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| | - Manmohan Singhal
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| |
Collapse
|
8
|
Zeng N, Wang Q, Zhang C, Zhou Y, Yan J. A review of studies on the implication of NLRP3 inflammasome for Parkinson's disease and related candidate treatment targets. Neurochem Int 2023; 170:105610. [PMID: 37704080 DOI: 10.1016/j.neuint.2023.105610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease for which the prevalence is second only to Alzheimer's disease (AD). This disease primarily affects people of middle and old age, significantly impacting their health and quality of life. The main pathological features include the degenerative nigrostriatal dopaminergic (DA) neuron loss and Lewy body (LB) formation. Currently, available PD medications primarily aim to alleviate clinical symptoms, however, there is no universally recognized therapy worldwide that effectively prevents, clinically treats, stops, or reverses the disease. Consequently, the evaluation and exploration of potential therapeutic targets for PD are of utmost importance. Nevertheless, the pathophysiology of PD remains unknown, and neuroinflammation mediated by inflammatory cytokines that prompts neuron death is fundamental for the progression of PD. The nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a key complex of proteins linking the neuroinflammatory cascade in PD. Moreover, mounting evidence suggests that traditional Chinese medicine (TCM) alleviates PD by suppressing the NLRP3 inflammasome. This article aims to comprehensively review the available studies on the composition and activating mechanism of the NLRP3 inflammasome, along with its significance in PD pathogenesis and potential treatment targets. We also review natural products or synthetic compounds which reduce neuroinflammation via modulating NLRP3 inflammasome activity, aiming to identify new targets for future PD diagnosis and treatment through the exploration of NLRP3 inhibitors. Additionally, this review offers valuable references for developing new PD treatment methods.
Collapse
Affiliation(s)
- Nannan Zeng
- Department of Physiology, Guilin Medical University, Guilin, 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China
| | - Qi Wang
- Department of Physiology, Guilin Medical University, Guilin, 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China
| | - Chong Zhang
- Department of Neurology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541100, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin, 541004, China.
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin, 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
9
|
Lanza M, Cucinotta L, Casili G, Filippone A, Basilotta R, Capra AP, Campolo M, Paterniti I, Cuzzocrea S, Esposito E. The Transcription Factor Nrf2 Mediates the Effects of Antrodia camphorata Extract on Neuropathological Changes in a Mouse Model of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24119250. [PMID: 37298200 DOI: 10.3390/ijms24119250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is a disorder that is characterized by progressive and selective neuronal injury and cell death. Recent studies have provided accumulating evidence for a significant role of the immune system and neuroinflammation in PD pathogenesis. On this basis, many scientific articles have highlighted the anti-inflammatory and neuroprotective properties of Antrodia camphorata (AC), an edible fungus containing various bioactive compounds. This study aimed to evaluate the inhibitory effect of AC administration on neuroinflammation and oxidative stress in a murine model of MPTP-induced dopaminergic degeneration. AC (10, 30, 100 mg/kg) was administered daily by oral gavage starting 24 h after the first administration of MPTP, and mice were sacrificed 7 days after MPTP induction. In this study, treatment with AC significantly reduced the alteration of PD hallmarks, increasing tyrosine hydroxylase expression and reducing the number of alpha-synuclein-positive neurons. In addition, AC treatment restored the myelination process of neurons associated with PD and attenuated the neuroinflammatory state. Furthermore, our study demonstrated that AC was able to reduce the oxidative stress induced by MPTP injection. In conclusion, this study highlighted that AC could be a potential therapeutic agent for the treatment of neurodegenerative disorders such as PD.
Collapse
Affiliation(s)
- Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
10
|
Gan Q, Ding Y, Peng M, Chen L, Dong J, Hu J, Ma Y. The Potential of Edible and Medicinal Resource Polysaccharides for Prevention and Treatment of Neurodegenerative Diseases. Biomolecules 2023; 13:biom13050873. [PMID: 37238743 DOI: 10.3390/biom13050873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
As natural medicines in complementary and alternative medicine, edible and medicinal resources are being gradually recognized throughout the world. According to statistics from the World Health Organization, about 80% of the worldwide population has used edible and medicinal resource products to prevent and treat diseases. Polysaccharides, one of the main effective components in edible and medicinal resources, are considered ideal regulators of various biological responses due to their high effectiveness and low toxicity, and they have a wide range of possible applications for the development of functional foods for the regulation of common, frequently occurring, chronic and severe diseases. Such applications include the development of polysaccharide products for the prevention and treatment of neurodegenerative diseases that are difficult to control by a single treatment, which is of great value to the aging population. Therefore, we evaluated the potential of polysaccharides to prevent neurodegeneration by their regulation of behavioral and major pathologies, including abnormal protein aggregation and neuronal damage caused by neuronal apoptosis, autophagy, oxidative damage, neuroinflammation, unbalanced neurotransmitters, and poor synaptic plasticity. This includes multi-target and multi-pathway regulation involving the mitochondrial pathway, MAPK pathway, NF-κB pathway, Nrf2 pathway, mTOR pathway, PI3K/AKT pathway, P53/P21 pathway, and BDNF/TrkB/CREB pathway. In this paper, research into edible and medicinal resource polysaccharides for neurodegenerative diseases was reviewed in order to provide a basis for the development and application of polysaccharide health products and promote the recognition of functional products of edible and medicinal resources.
Collapse
Affiliation(s)
- Qingxia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Yugang Ding
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Maoyao Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Linlin Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Jijing Dong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Jiaxi Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuntong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| |
Collapse
|
11
|
Li J, Wen S, Zhang B, Wang F. Selenium Enrichment of the Edible Medicinal Mushroom Antrodia camphorata by Submerged Fermentation. Molecules 2023; 28:molecules28073036. [PMID: 37049798 PMCID: PMC10095838 DOI: 10.3390/molecules28073036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Selenium (Se) is an essential nutrient element in human physiological metabolism and immune function. Supplementation of bioavailable Se will confer benefit on human life, especially when intake of this nutrient is inadequate. The edible and medicinal mushroom Antrodia camphorata is a unique fungus endemic to Taiwan, which has shown high therapeutic and nutritive value. This study is the first to demonstrate that A. camphorata can assimilate and transform sodium selenite into organic selenium. With an initial concentration of Se (IV) at 10 mg/L in 100 mL of the medium at 25 °C, the total selenium content in Se-enriched A. camphorata mycelia was 1281.3 ± 79.2 µg/g, in which the organic selenium content accounted for 88.1%. Further analysis demonstrated that selenium-enriched polysaccharide was the main form of Se present in A. camphorata (61.5% of the organic selenium). Four water-soluble Se-polysaccharide fractions were separated from A. camphorata, and ACP II was the major fraction of Se-polysaccharide. The scavenging efficiency of Se-polysaccharides on DPPH and ABTS radicals was determined, proving that selenium enrichment dramatically improved the in vitro antioxidant capacity of A. camphorata polysaccharide. Therefore, the selenium accumulation and transformation ability of A. camphorata provides an opportunity for developing this beneficent fungus into a novel selenium-enriched dietary or medicinal supplement.
Collapse
|
12
|
Mushroom Polysaccharides as Potential Candidates for Alleviating Neurodegenerative Diseases. Nutrients 2022; 14:nu14224833. [PMID: 36432520 PMCID: PMC9696021 DOI: 10.3390/nu14224833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs) are a widespread and serious global public health burden, particularly among the older population. At present, effective therapies do not exist, despite the increasing understanding of the different mechanisms of NDs. In recent years, some drugs, such as galantamine, entacapone, riluzole, and edaravone, have been proposed for the treatment of different NDs; however, they mainly concentrate on symptom management and confer undesirable side effects and adverse reactions. Therefore, there is an urgent need to find novel drugs with fewer disadvantages and higher efficacy for the treatment of NDs. Mushroom polysaccharides are macromolecular complexes with multi-targeting bioactivities, low toxicity, and high safety. Some have been demonstrated to exhibit neuroprotective effects via their antioxidant, anti-amyloidogenic, anti-neuroinflammatory, anticholinesterase, anti-apoptotic, and anti-neurotoxicity activities, which have potential in the treatment of NDs. This review focuses on the different processes involved in ND development and progression, highlighting the neuroprotective activities and potential role of mushroom polysaccharides and summarizing the limitations and future perspectives of mushroom polysaccharides in the prevention and treatment of NDs.
Collapse
|
13
|
Su Q, Ng WL, Goh SY, Gulam MY, Wang LF, Tan EK, Ahn M, Chao YX. Targeting the inflammasome in Parkinson's disease. Front Aging Neurosci 2022; 14:957705. [PMID: 36313019 PMCID: PMC9596750 DOI: 10.3389/fnagi.2022.957705] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/20/2022] [Indexed: 02/15/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases in which neuroinflammation plays pivotal roles. An important mechanism of neuroinflammation is the NLRP3 inflammasome activation that has been implicated in PD pathogenesis. In this perspective, we will discuss the relationship of some key PD-associated proteins including α-synuclein and Parkin and their contribution to inflammasome activation. We will also review promising inhibitors of NLRP3 inflammasome pathway that have potential as novel PD therapeutics. Finally, we will provide a summary of current and potential in vitro and in vivo models that are available for therapeutic discovery and development.
Collapse
Affiliation(s)
- Qi Su
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Wei Lun Ng
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Suh Yee Goh
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Muhammad Yaaseen Gulam
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders Program, Duke–NUS Medical School, Singapore, Singapore
| | - Matae Ahn
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Yin-Xia Chao
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders Program, Duke–NUS Medical School, Singapore, Singapore
| |
Collapse
|
14
|
Li HX, Wang JJ, Lu CL, Gao YJ, Gao L, Yang ZQ. Review of Bioactivity, Isolation, and Identification of Active Compounds from Antrodia cinnamomea. Bioengineering (Basel) 2022; 9:494. [PMID: 36290462 PMCID: PMC9598228 DOI: 10.3390/bioengineering9100494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2023] Open
Abstract
Antrodia cinnamomea is a precious and popular edible and medicinal mushroom. It has attracted increasing attention due to its various and excellent bioactivities, such as hepatoprotection, hypoglycemic, antioxidant, antitumor, anticancer, anti-inflammatory, immunomodulation, and gut microbiota regulation properties. To elucidate its bioactivities and develop novel functional foods or medicines, numerous studies have focused on the isolation and identification of the bioactive compounds of A. cinnamomea. In this review, the recent advances in bioactivity, isolation, purification, and identification methods of active compounds from A. cinnamomea were summarized. The present work is beneficial to the further isolation and discovery of new active compounds from A. cinnamomea.
Collapse
Affiliation(s)
- Hua-Xiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Juan-Juan Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chun-Lei Lu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ya-Jun Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Lu Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Ren L, Li Q, Li H, Zhan X, Yang R, Li Z, Fang Z, Liu T, Wei Z, Zhao J, Lin L, Mou W, Dai W, Bai Z, Xu G, Cao J. Polysaccharide extract from Isatidis Radix inhibits multiple inflammasomes activation and alleviate gouty arthritis. Phytother Res 2022; 36:3295-3312. [PMID: 35666808 DOI: 10.1002/ptr.7514] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/09/2022] [Accepted: 04/24/2022] [Indexed: 01/06/2023]
Abstract
The polysaccharide extract from Isatidis Radix exhibits potent antiinflammatory and antiviral activities, but the mechanism of Isatidis Radix polysaccharide (IRP) remains obscure. Herein, we reported that IRP blocked the activation of nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, leading to the inhibiting of caspase-1 cleavage and IL-1β secretion. Mechanistically, IRP did not inhibit NLRP3 inflammasome through suppressing mitochondrial reactive oxygen species (mtROS) production. However, IRP can significantly suppress the oligomerization of apoptosis-associated speck-like protein (ASC) and subsequently block the formation of inflammasome. Next, we evaluate the role of IRP in monosodium urate (MSU)-induced gout in vivo which is a NLRP3-associated disease. We also observed that oral administration of IRP can reduce the increased ankle thickness and the secretion of IL-1β, IL-18, IL-6, TNF-α and MPO of the mouse ankle joints caused by MSU crystals. Furthermore, flow cytometry analysis highlighted a significant modulation of T helper 17 cells (Th17)/regulatory T cells (Treg) following IRP treatment in MSU induced gout. Overall, our findings suggest that IRP has comprehensive and potent antiinflammatory effects and provide a reasonable therapeutic strategy in preventing inflammasome-associated diseases, such as inflammatory gouty arthritis.
Collapse
Affiliation(s)
- Lutong Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Qiang Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Zhan
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruichuang Yang
- Department of Pharmacy, Inner Mongolia People's Hospital, Hohhot, China
| | - Zhiyong Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhie Fang
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting Liu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ziying Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Lin
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenqing Mou
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenzhang Dai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guang Xu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Department of Pharmacy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junling Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,School of Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Xu XL, Li S, Zhang R, Le WD. Neuroprotective effects of naturally sourced bioactive polysaccharides: an update. Neural Regen Res 2022; 17:1907-1912. [PMID: 35142666 PMCID: PMC8848587 DOI: 10.4103/1673-5374.335142] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polysaccharides are macromolecular complexes that have various biological activities. In vivo and in vitro studies have shown that polysaccharides play neuroprotective roles through multiple mechanisms; consequently, they have potential in the prevention and treatment of neurodegenerative diseases. This paper summarizes related research published during 2015-2020 and reviews advances in the understanding of the neuroprotective effects of bioactive polysaccharides. This review focuses on 15 bioactive polysaccharides from plants and fungi that have neuroprotective properties against oxidative stress, apoptosis, neuroinflammation, and excitatory amino acid toxicity mainly through the regulation of nuclear factor kappa-B, phosphatidylinositol-3-kinase/protein kinase B, mitogen-activated protein kinase, nuclear factor-E2-related factor 2/ hemeoxygenase-1, c-jun N-terminal kinase, protein kinase B-mammalian target of rapamycin, and reactive oxygen species-nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 signaling pathways. Natural bioactive polysaccharides have potential in the prevention and treatment of neurodegenerative diseases because of their advantageous characteristics, including multi-targeting, low toxicity, and synergistic effects. However, most of the recent related research has focused on cell and animal models. Future randomized clinical trials involving large sample sizes are needed to validate the therapeutic benefits of these neuroprotective polysaccharides in patients having neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Lan Xu
- Department of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Song Li
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Rong Zhang
- Department of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Wei-Dong Le
- Department of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province; Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
17
|
Lee JH, Kim HJ, Kim JU, Yook TH, Kim KH, Lee JY, Yang G. A Novel Treatment Strategy by Natural Products in NLRP3 Inflammasome-Mediated Neuroinflammation in Alzheimer's and Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22031324. [PMID: 33525754 PMCID: PMC7866084 DOI: 10.3390/ijms22031324] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common neurodegenerative diseases. Many studies have demonstrated that the release of NLRP3 inflammasome-mediated proinflammatory cytokines by the excessive activation of microglia is associated with the pathogenesis of AD and PD and suggested that the NLRP3 inflammasome plays an important role in AD and PD development. In both diseases, various stimuli, such as Aβ and α-synuclein, accelerate the formation of the NLRP3 inflammasome in microglia and induce pyroptosis through the expression of interleukin (IL)-1β, caspase-1, etc., where neuroinflammation contributes to gradual progression and deterioration. However, despite intensive research, the exact function and regulation of the NLRP3 inflammasome has not yet been clearly identified. Moreover, there have not yet been any experiments of clinical use, although many studies have recently been conducted to improve treatment of inflammatory diseases using various inhibitors for NLRP3 inflammasome pathways. However, recent studies have reported that various natural products show improvement effects in the in vivo models of AD and PD through the regulation of NLRP3 inflammasome assembly. Therefore, the present review provides an overview of natural extraction studies aimed at the prevention or treatment of NLRP3 inflammasome-mediated neurological disorders. It is suggested that the discovery and development of these various natural products could be a potential strategy for NLRP3 inflammasome-mediated AD and PD treatment.
Collapse
Affiliation(s)
- Jun Ho Lee
- College of Korea Medicine, Woosuk University, Jeonju-si, Jeollabuk-do 54986, Korea; (J.H.L.); (H.J.K.); (J.U.K.); (T.H.Y.); (K.H.K.)
| | - Hong Jun Kim
- College of Korea Medicine, Woosuk University, Jeonju-si, Jeollabuk-do 54986, Korea; (J.H.L.); (H.J.K.); (J.U.K.); (T.H.Y.); (K.H.K.)
| | - Jong Uk Kim
- College of Korea Medicine, Woosuk University, Jeonju-si, Jeollabuk-do 54986, Korea; (J.H.L.); (H.J.K.); (J.U.K.); (T.H.Y.); (K.H.K.)
| | - Tae Han Yook
- College of Korea Medicine, Woosuk University, Jeonju-si, Jeollabuk-do 54986, Korea; (J.H.L.); (H.J.K.); (J.U.K.); (T.H.Y.); (K.H.K.)
| | - Kyeong Han Kim
- College of Korea Medicine, Woosuk University, Jeonju-si, Jeollabuk-do 54986, Korea; (J.H.L.); (H.J.K.); (J.U.K.); (T.H.Y.); (K.H.K.)
| | - Joo Young Lee
- BK21plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Gabsik Yang
- College of Korea Medicine, Woosuk University, Jeonju-si, Jeollabuk-do 54986, Korea; (J.H.L.); (H.J.K.); (J.U.K.); (T.H.Y.); (K.H.K.)
- Correspondence: ; Tel.: +82-63-290-9030
| |
Collapse
|