1
|
Moradnia M, Mohammadkhani N, Azizi B, Mohammadi M, Ebrahimpour S, Tabatabaei-Malazy O, Mirsadeghi S, Ale-Ebrahim M. The power of Punica granatum: A natural remedy for oxidative stress and inflammation; a narrative review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118243. [PMID: 38677577 DOI: 10.1016/j.jep.2024.118243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pomegranate 'Punica granatum' offers multiple health benefits, including managing hypertension, dyslipidemia, hyperglycemia, insulin resistance, and enhancing wound healing and infection resistance, thanks to its potent antioxidant and anti-inflammatory properties. It has been symbolized by life, health, femininity, fecundity, and spirituality. AIM OF THE STUDY Although laboratory and animal studies have been conducted on the healing effects of pomegranate, there needs to be a comprehensive review on its anti-oxidative and anti-inflammatory effects in chronic disorders. We aim to provide a comprehensive review of these effects based on in-vitro, in-vivo, and clinical studies conducted in managing various disorders. MATERIALS AND METHODS A comprehensive search of in-vitro, in-vivo, and clinical findings of pomegranate and its derivatives focusing on the highly qualified original studies and systematic reviews are carried out in valid international web databases, including Web of Science, PubMed, Scopus, and Cochrane Library. RESULTS Relevant studies have demonstrated that pomegranate and its derivatives can modulate the expression and activity of several genes, enzymes, and receptors through influencing oxidative stress and inflammation pathways. Different parts of pomegranate; roots, bark, blossoms, fruits, and leaves contain various bioactive compounds, such as polyphenols, flavonoids, anthocyanins, and ellagitannins, that have preventive and therapeutic effects against many disorders such as cardiovascular diseases, diabetes, neurological diseases, and cancers without any serious adverse effects. CONCLUSIONS Most recent scientific evidence indicates that all parts of the pomegranate can be helpful in treating a wide range of chronic disorders due to its anti-oxidative and anti-inflammatory activities. Since the safety of pomegranate fruit, juice, and extracts is established, further investigations can be designed by targeting its active antioxidant and anti-inflammatory constituents to discover new drugs.
Collapse
Affiliation(s)
- Mahdis Moradnia
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niyoosha Mohammadkhani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bayan Azizi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Sholeh Ebrahimpour
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somayeh Mirsadeghi
- KonadHerbs Co., Sharif Innovation Area, Sharif University of Technology, Tehran, Iran.
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Amparo TR, Sousa LRD, Xavier VF, Seibert JB, Paiva DL, da Silva DDS, Teixeira LFDM, dos Santos ODH, Vieira PMDA, de Souza GHB, Brandão GC. Protium spruceanum Extract Enhances Mupirocin Activity When Combined with Nanoemulsion-Based Hydrogel: A Multi-Target Strategy for Treating Skin and Soft Tissue Infections. Pharmaceutics 2024; 16:700. [PMID: 38931824 PMCID: PMC11207036 DOI: 10.3390/pharmaceutics16060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
The treatment of skin and soft tissue infections (SSTIs) can be challenging due to bacterial resistance, particularly from strains like MRSA and biofilm formation. However, combining conventional antibiotics with natural products shows promise in treating SSTIs. The objective of this study is to develop a nanoemulsion-based hydrogel containing Protium spruceanum extract and mupirocin and evaluate its potential for the treatment of SSTIs. The nanoemulsion was obtained by phase inversion and subsequently characterized. The antibacterial activity was evaluated in vitro against S. aureus MRSA, including the synergism of the combination, changes in membrane permeability using flow cytometry, and the anti-biofilm effect. In addition, the irritative potential was evaluated by the HET-CAM assay. The combination exhibited synergistic antibacterial activity against S. aureus and MRSA due to the extract enhancing membrane permeability. The hydrogel demonstrated suitable physicochemical properties, inhibited biofilm formation, and exhibited low irritation. The formulation was nanometric (176.0 ± 1.656 nm) and monodisperse (polydispersity index 0.286 ± 0.011). It exhibited a controlled release profile at 48 h and high encapsulation efficacy (94.29 ± 4.54% for quercitrin and 94.20 ± 5.44% for mupirocin). Therefore, these findings suggest that the hydrogel developed could be a safe and effective option for treating SSTIs.
Collapse
Affiliation(s)
- Tatiane Roquete Amparo
- Department of Pharmacy, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (D.L.P.); (D.d.S.d.S.); (O.D.H.d.S.); (G.H.B.d.S.); (G.C.B.)
| | - Lucas Resende Dutra Sousa
- Department of Pharmacy, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (D.L.P.); (D.d.S.d.S.); (O.D.H.d.S.); (G.H.B.d.S.); (G.C.B.)
| | - Viviane Flores Xavier
- Department of Pharmacy, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (D.L.P.); (D.d.S.d.S.); (O.D.H.d.S.); (G.H.B.d.S.); (G.C.B.)
| | - Janaína Brandão Seibert
- Laboratory of Pathology and Microbial Control, University of São Paulo (USP-ESALQ), Piracicaba 13418-900, Brazil;
| | - Débora Luiza Paiva
- Department of Pharmacy, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (D.L.P.); (D.d.S.d.S.); (O.D.H.d.S.); (G.H.B.d.S.); (G.C.B.)
| | - Débora dos Santos da Silva
- Department of Pharmacy, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (D.L.P.); (D.d.S.d.S.); (O.D.H.d.S.); (G.H.B.d.S.); (G.C.B.)
| | | | - Orlando David Henrique dos Santos
- Department of Pharmacy, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (D.L.P.); (D.d.S.d.S.); (O.D.H.d.S.); (G.H.B.d.S.); (G.C.B.)
| | | | - Gustavo Henrique Bianco de Souza
- Department of Pharmacy, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (D.L.P.); (D.d.S.d.S.); (O.D.H.d.S.); (G.H.B.d.S.); (G.C.B.)
| | - Geraldo Célio Brandão
- Department of Pharmacy, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (D.L.P.); (D.d.S.d.S.); (O.D.H.d.S.); (G.H.B.d.S.); (G.C.B.)
| |
Collapse
|
3
|
Sahoo A, Dwivedi K, Almalki WH, Mandal AK, Alhamyani A, Afzal O, Alfawaz Altamimi AS, Alruwaili NK, Yadav PK, Barkat MA, Singh T, Rahman M. Secondary metabolites in topical infectious diseases and nanomedicine applications. Nanomedicine (Lond) 2024; 19:1191-1215. [PMID: 38651634 PMCID: PMC11418228 DOI: 10.2217/nnm-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Topical infection affects nearly one-third of the world's population; it may result from poor sanitation, hygienic conditions and crowded living and working conditions that accelerate the spread of topical infectious diseases. The problems associated with the anti-infective agents are drug resistance and long-term therapy. Secondary metabolites are obtained from plants, microorganisms and animals, but they are metabolized inside the human body. The integration of nanotechnology into secondary metabolites is gaining attention due to their interaction at the subatomic and skin-tissue levels. Hydrogel, liposomes, lipidic nanoparticles, polymeric nanoparticles and metallic nanoparticles are the most suitable carriers for secondary metabolite delivery. Therefore, the present review article extensively discusses the topical applications of nanomedicines for the effective delivery of secondary metabolites.
Collapse
Affiliation(s)
- Ankit Sahoo
- College of Pharmacy, J.S. University, Shikohabad, Firozabad, Utta Pradesh, 283135, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Shambhunath Institute of Pharmacy, Jhalwa, Prayagraj, 211015, Uttar Pradesh, India
| | - Waleed H Almalki
- Department of Pharmacology & Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Abdurrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Alaqiq, 65779-7738, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | | | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Pradip Kumar Yadav
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al-Batin, 39524, Saudi Arabia
| | - Tanuja Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 10025, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, Uttar Pradesh, India
| |
Collapse
|
4
|
Wang Z, Guo S, Cai Y, Yang Q, Wang Y, Yu X, Sun W, Qiu S, Li X, Guo Y, Xie Y, Zhang A, Zheng S. Decoding active compounds and molecular targets of herbal medicine by high-throughput metabolomics technology: A systematic review. Bioorg Chem 2024; 144:107090. [PMID: 38218070 DOI: 10.1016/j.bioorg.2023.107090] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/15/2024]
Abstract
Clinical experiences of herbal medicine (HM) have been used to treat a variety of human intractable diseases. As the treatment of diseases using HM is characterized by multi-components and multi-targets, it is difficult to determine the bio-active components, explore the molecular targets and reveal the mechanisms of action. Metabolomics is frequently used to characterize the effect of external disturbances on organisms because of its unique advantages on detecting changes in endogenous small-molecule metabolites. Its systematicity and integrity are consistent with the effective characteristics of HM. After HM intervention, metabolomics can accurately capture and describe the behavior of endogenous metabolites under the disturbance of functional compounds, which will be used to decode the bioactive ingredients of HM and expound the molecular targets. Metabolomics can provide an approach for explaining HM, addressing unclear clinical efficacy and undefined mechanisms of action. In this review, the metabolomics strategy and its applications in HM are systematically introduced, which offers valuable insights for metabolomics methods to characterizing the pharmacological effects and molecular targets of HM.
Collapse
Affiliation(s)
- Zhibo Wang
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Sifan Guo
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Ying Cai
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qiang Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yan Wang
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Xiaodan Yu
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Wanying Sun
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Shi Qiu
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| | - Xiancai Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China.
| | - Yu Guo
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| | - Yiqiang Xie
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| | - Aihua Zhang
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Shaojiang Zheng
- Medical Research Center of The First Affiliated Hospital, Hainan Women and Children Medical Center, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
5
|
Rahman MO, Ahmed SS, Alqahtani AS, Cakilcioğlu U, Akbar MA. Insight into novel inhibitors from Sterculia urens against Cholera via pharmacoinformatics and molecular dynamics simulation approaches. J Biomol Struct Dyn 2023; 42:10022-10043. [PMID: 37668010 DOI: 10.1080/07391102.2023.2254841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
The underdeveloped countries with large populations are facing a grave global threat in the form of cholera. Vibrio cholerae, the etiologic agent of Cholera has drawn attention recently due to antimicrobial resistance and resulting outbreaks that necessitates establishment of novel medications to counteract virulence and viability of the pathogen. Sterculia urens Roxb. (Malvaceae) is an ethnomedicinally important tree, which harbors a good number of bioactive phytocompounds. In the present study, 53 phytocompounds of S. urens were screened against the promising target ToxT of V. cholerae employing structure-based drug design approach that revealed three lead compounds, viz., 4,4,5,8-Tetramethylchroman-2-ol (-8.2 kcal/mol), Beta-Bisabolol (-8.2 kcal/mol) and Ledol (-8.7 kcal/mol) with satisfactory ADMET properties. Molecular dynamics simulation for 150 ns unveiled notable compactness and structural stability for the lead compounds considering RMSD, RMSF, Rg, MolSA, PSA and protein-ligand contacts parameters. Molecular mechanics-based MM/GBSA binding energy calculation revealed Beta-Bisabolol (-66.74 kcal/mol) to have better scores than 4,4,5,8-Tetramethylchroman-2-ol (-47.42 kcal/mol) and Ledol (-65.79 kcal/mol). Enzymes were mostly found as drug target class, and Nabilone was found as a structurally similar analog for 4,4,5,8-Tetramethylchroman-2-ol. These discoveries could aid in revealing new antibacterial medications targeting ToxT to combat Cholera.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M Oliur Rahman
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Sheikh Sunzid Ahmed
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Uğur Cakilcioğlu
- Department of Botany, Pertek Sakine Genç Vocational School, Munzur University, Tunceli, Pertek, Turkey
| | - Mohammad Ahsanul Akbar
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, WV, USA
| |
Collapse
|
6
|
Rinderknecht H, Mayer A, Histing T, Ehnert S, Nüssler A. Herbal Extracts of Ginseng and Maqui Berry Show Only Minimal Effects on an In Vitro Model of Early Fracture Repair of Smokers. Foods 2023; 12:2960. [PMID: 37569229 PMCID: PMC10419284 DOI: 10.3390/foods12152960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Smoking is a major risk factor for delayed fracture healing, affecting several aspects of early fracture repair, including inflammation, osteogenesis, and angiogenesis. Panax ginseng (GE) and maqui berry extract (MBE) were shown in our previous studies to reduce smoke-induced cellular damage in late bone-healing in vitro models. We aimed here to analyze their effects on the early fracture repair of smokers in a 3D co-culture model of fracture hematomas and endothelial cells. Both extracts did not alter the cellular viability at concentrations of up to 100 µg/mL. In early fracture repair in vitro, they were unable to reduce smoking-induced inflammation and induce osteo- or chondrogenicity. Regarding angiogenesis, smoking-induced stress in HUVECs could not be counteracted by both extracts. Furthermore, smoking-impaired tube formation was not restored by GE but was harmed by MBE. However, GE promoted angiogenesis initiation under smoking conditions via the Angpt/Tie2 axis. To summarize, cigarette smoking strikingly affected early fracture healing processes in vitro, but herbal extracts at the applied doses had only a limited effect. Since both extracts were shown before to be very effective in later stages of fracture healing, our data suggest that their early use immediately after fracture does not appear to negatively impact later beneficial effects.
Collapse
Affiliation(s)
| | | | | | | | - Andreas Nüssler
- Siegfried-Weller Institute for Trauma Research, BG Trauma Center, University of Tuebingen, Schnarrenbergstrasse 95, 72070 Tuebingen, Germany; (H.R.); (A.M.); (T.H.); (S.E.)
| |
Collapse
|
7
|
Xu Z, Dong M, Yin S, Dong J, Zhang M, Tian R, Min W, Zeng L, Qiao H, Chen J. Why traditional herbal medicine promotes wound healing: Research from immune response, wound microbiome to controlled delivery. Adv Drug Deliv Rev 2023; 195:114764. [PMID: 36841332 DOI: 10.1016/j.addr.2023.114764] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Impaired wound healing in chronic wounds has been a significant challenge for clinicians and researchers for decades. Traditional herbal medicine (THM) has a long history of promoting wound healing, making them culturally accepted and trusted by a great number of people in the world. However, for a long time, the understanding of herbal medicine has been limited and incomplete, particularly in the allopathic medicine-dominated research system. The therapeutic effects of individual components isolated from THM are found less pronounced compared to synthetic chemical medicine, and the clinical efficacy is always inferior to herbs. In the present article, we review and discuss underlying mechanisms of the skin microbiome involved in the wound healing process; THM in regulating immune responses and commensal microbiome. We additionally propose few pioneer ideas and studies in the development of therapeutic strategies for controlled delivery of herbal medicine. This review aims to promote wound care with a focus on wound microbiome, immune response, and topical drug delivery systems. Finally, future development trends, challenges, and research directions are discussed.
Collapse
Affiliation(s)
- Zeyu Xu
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mei Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shaoping Yin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ming Zhang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Rong Tian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wen Min
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, PR China
| | - Li Zeng
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
8
|
Škovranová G, Čulenová M, Treml J, Dzurická L, Marova I, Sychrová A. Prenylated phenolics from Morus alba against MRSA infections as a strategy for wound healing. Front Pharmacol 2022; 13:1068371. [PMID: 36532741 PMCID: PMC9747775 DOI: 10.3389/fphar.2022.1068371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/14/2022] [Indexed: 11/20/2023] Open
Abstract
Antimicrobial resistance is a public health threat and the increasing number of multidrug-resistant bacteria is a major concern worldwide. Common antibiotics are becoming ineffective for skin infections and wounds, making the search for new therapeutic options increasingly urgent. The present study aimed to investigate the antibacterial potential of prenylated phenolics in wound healing. Phenolic compounds isolated from the root bark of Morus alba L. were investigated for their antistaphylococcal potential both alone and in combination with commonly used antibiotics. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined by microdilution and agar method. Synergy was investigated using the checkerboard titration technique. Membrane-disrupting activity and efflux pump inhibition were evaluated to describe the potentiating effect. Prenylated phenolics inhibited bacterial growth of methicillin-resistant Staphylococcus aureus (MRSA) at lower concentrations (MIC 2-8 μg/ml) than commonly used antibiotics. The combination of active phenolics with kanamycin, oxacillin, and ciprofloxacin resulted in a decrease in the MIC of the antimicrobial agent. Kuwanon C, E, T, morusin, and albafuran C showed synergy (FICi 0.375-0.5) with oxacillin and/or kanamycin. Prenylated phenolics disrupted membrane permeability statistically significantly (from 28 ± 16.48% up to 73 ± 2.83%), and membrane disruption contributes to the complex antibacterial activity against MRSA. In addition, kuwanon C could be considered an efflux pump inhibitor. Despite the antibacterial effect on MRSA and the multiple biological activities, the prenylated phenolics at microbially significant concentrations have a minor effect on human keratinocyte (HaCaT) viability. In conclusion, prenylated phenolics in combination with commonly used antibiotics are promising candidates for the treatment of MRSA infections and wound healing, although further studies are needed.
Collapse
Affiliation(s)
- Gabriela Škovranová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Marie Čulenová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Jakub Treml
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Lucia Dzurická
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Ivana Marova
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Alice Sychrová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| |
Collapse
|
9
|
Žitek T, Bjelić D, Kotnik P, Golle A, Jurgec S, Potočnik U, Knez Ž, Finšgar M, Krajnc I, Krajnc I, Marevci MK. Natural Hemp-Ginger Extract and Its Biological and Therapeutic Efficacy. Molecules 2022; 27:7694. [PMID: 36431795 PMCID: PMC9697267 DOI: 10.3390/molecules27227694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The prevention and treatment of skin diseases remains a major challenge in medicine. The search for natural active ingredients that can be used to prevent the development of the disease and complement treatment is on the rise. Natural extracts of ginger and hemp offer a wide range of bioactive compounds with potential health benefits. This study evaluates the effectiveness of hemp and ginger extract as a supportive treatment for skin diseases. It reports a synergistic effect of hemp and ginger extract. The contents of cannabinoids and components of ginger are determined, with the highest being CBD (587.17 ± 8.32 µg/g) and 6-gingerol (60.07 ± 0.40 µg/g). The minimum inhibitory concentration for Staphylococcus aureus (156.5 µg/mL), Escherichia coli (625.2 µg/mL) and Candida albicans (78.3 µg/mL) was also analyzed. Analysis of WM-266-4 cells revealed the greatest decrease in metabolic activity in cells exposed to the extract at a concentration of 1.00 µg/mL. Regarding the expression of genes associated with cellular processes, melanoma aggressiveness, resistance and cell survival, a significant difference was found in the expression of ABCB5, CAV1 and S100A9 compared with the control (cells not exposed to the extract).
Collapse
Affiliation(s)
- Taja Žitek
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| | - Dragana Bjelić
- Laboratory for Analytical Chemistry and Industrial Analysis, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| | - Petra Kotnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
- Department of Chemistry, Faculty of Medicine, University of Maribor, Taborska ul. 8, 2000 Maribor, Slovenia
| | - Andrej Golle
- National Laboratory for Health, Environment and Food, Prvomajska ul. 1, 2000 Maribor, Slovenia
| | - Staša Jurgec
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ul. 8, 2000 Maribor, Slovenia
- Laboratory of Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ul. 8, 2000 Maribor, Slovenia
- Laboratory of Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
- Department of Internal Medicine, University of Maribor, Taborska ul. 8, 2000 Maribor, Slovenia
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
- Department of Chemistry, Faculty of Medicine, University of Maribor, Taborska ul. 8, 2000 Maribor, Slovenia
| | - Matjaž Finšgar
- Laboratory for Analytical Chemistry and Industrial Analysis, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| | - Ivan Krajnc
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
- Department of Internal Medicine, University of Maribor, Taborska ul. 8, 2000 Maribor, Slovenia
| | - Igor Krajnc
- Department of Cardiology and Angiology, University Clinical Center Maribor, Ljubljanska ul. 5, 2000 Maribor, Slovenia
| | - Maša Knez Marevci
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| |
Collapse
|
10
|
Nausch B, Bittner CB, Höller M, Abramov-Sommariva D, Hiergeist A, Gessner A. Contribution of Symptomatic, Herbal Treatment Options to Antibiotic Stewardship and Microbiotic Health. Antibiotics (Basel) 2022; 11:1331. [PMID: 36289988 PMCID: PMC9598931 DOI: 10.3390/antibiotics11101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 12/03/2022] Open
Abstract
Epithelial surfaces in humans are home to symbiotic microbes (i.e., microbiota) that influence the defensive function against pathogens, depending on the health of the microbiota. Healthy microbiota contribute to the well-being of their host, in general (e.g., via the gut-brain axis), and their respective anatomical site, in particular (e.g., oral, urogenital, skin, or respiratory microbiota). Despite efforts towards a more responsible use of antibiotics, they are often prescribed for uncomplicated, self-limiting infections and can have a substantial negative impact on the gut microbiota. Treatment alternatives, such as non-steroidal anti-inflammatory drugs, may also influence the microbiota; thus, they can have lasting adverse effects. Herbal drugs offer a generally safe treatment option for uncomplicated infections of the urinary or respiratory tract. Additionally, their microbiota preserving properties allow for a more appropriate therapy of uncomplicated infections, without contributing to an increase in antibiotic resistance or disturbing the gut microbiota. Here, herbal treatments may be a more appropriate therapy, with a generally favorable safety profile.
Collapse
Affiliation(s)
- Bernhard Nausch
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Claudia B. Bittner
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Martina Höller
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Dimitri Abramov-Sommariva
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
11
|
Prenylated Flavonoids in Topical Infections and Wound Healing. Molecules 2022; 27:molecules27144491. [PMID: 35889363 PMCID: PMC9323352 DOI: 10.3390/molecules27144491] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
The review presents prenylated flavonoids as potential therapeutic agents for the treatment of topical skin infections and wounds, as they can restore the balance in the wound microenvironment. A thorough two-stage search of scientific papers published between 2000 and 2022 was conducted, with independent assessment of results by two reviewers. The main criteria were an MIC (minimum inhibitory concentration) of up to 32 µg/mL, a microdilution/macrodilution broth method according to CLSI (Clinical and Laboratory Standards Institute) or EUCAST (European Committee on Antimicrobial Susceptibility Testing), pathogens responsible for skin infections, and additional antioxidant, anti-inflammatory, and low cytotoxic effects. A total of 127 structurally diverse flavonoids showed promising antimicrobial activity against pathogens affecting wound healing, predominantly Staphylococcus aureus strains, but only artocarpin, diplacone, isobavachalcone, licochalcone A, sophoraflavanone G, and xanthohumol showed multiple activity, including antimicrobial, antioxidant, and anti-inflammatory along with low cytotoxicity important for wound healing. Although prenylated flavonoids appear to be promising in wound therapy of humans, and also animals, their activity was measured only in vitro and in vivo. Future studies are, therefore, needed to establish rational dosing according to MIC and MBC (minimum bactericidal concentration) values, test potential toxicity to human cells, measure healing kinetics, and consider formulation in smart drug release systems and/or delivery technologies to increase their bioavailability.
Collapse
|
12
|
Effect of Rice ( Oryza sativa L.) Ceramides Supplementation on Improving Skin Barrier Functions and Depigmentation: An Open-Label Prospective Study. Nutrients 2022; 14:nu14132737. [PMID: 35807914 PMCID: PMC9268538 DOI: 10.3390/nu14132737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Ceramides plays a crucial role in maintaining skin barrier function. Although foregoing evidence supported beneficial effects of topical ceramides for restoration of the skin barrier, studies on oral ceramides are extremely scarce, with most published data collected from in vivo and in vitro models. Thus, this study aimed to evaluate the efficacy of rice ceramides (RC) supplementation to improve skin barrier function and as a depigmenting agent through comprehensive clinical assessments. This study investigated the beneficial effects of orally administered RC supplementation in 50 voluntary participants. Skin hydration, firmness and elasticity, transepidermal water loss (TEWL), melanin index (MI), erythema index (EI), sebum production, pH, and wrinkle severity were assessed at baseline and during monthly follow-up visits. RC supplementation was found to significantly (p < 0.01) improve skin hydration, sebum production, firmness and elasticity, and wrinkle severity for three assessed areas, namely the left cheek, dorsal neck, and right inner forearm. Additionally, RC significantly (p < 0.01) reduced the rates of TEWL, levels of MI and EI. Analyses of data indicated that participants at older age were more responsive towards the effect of RC supplementation. Our findings suggest that RC supplementation can effectively improve skin barrier function, reduce wrinkle severity, and reduce pigmentation.
Collapse
|
13
|
Almeida-Bezerra JW, Bezerra JJL, da Silva VB, Coutinho HDM, da Costa JGM, Cruz-Martins N, Hano C, de Menezes SA, Morais-Braga MFB, de Oliveira AFM. Caryocar coriaceum Wittm. (Caryocaraceae): Botany, Ethnomedicinal Uses, Biological Activities, Phytochemistry, Extractivism and Conservation Needs. PLANTS 2022; 11:plants11131685. [PMID: 35807637 PMCID: PMC9269441 DOI: 10.3390/plants11131685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Caryocar coriaceum is an endemic tree of Brazil, occurring mainly in the northeast region in the Cerrado environment. The species, popularly known as “pequi”, produces fruits that are used in the manufacture of oil for food and medicinal purposes. This work reviewed studies conducted with the species, highlighting its ethnomedicinal use, its pharmacological potential, including its chemical constituents, and its cultural and socioeconomic importance. Information was obtained through the main scientific research platforms. The keyword “Caryocar coriaceum” was used as the main index for searching the following platforms: PubMed®, PubMed Central®, SciElo, Scopus® and Web of ScienceTM. The compiled papers demonstrate that C. coriaceum has great medicinal, economic and cultural importance for northeastern Brazil. Popularly, the fruits of C. coriaceum are used to treat broncho-pulmonary diseases (bronchitis, colds and flu). The fixed oil is widely used to relieve pain from various causes in the treatment of inflammation, flu, eczema, burns, fever, rickets, indigestion, heart murmurs, fatigue and erectile dysfunction. Some of these uses are corroborated by pharmacological trials, which have demonstrated the antioxidant, healing, anti-inflammatory, gastroprotective, antinociceptive and antimicrobial properties of the species. Chemically, fatty acids and phenolic compounds are the main constituents recorded for the species. Due to its medicinal properties, the fruits and oil of C. coriaceum have a high commercial demand and are one of the main forms of subsistence activities for local populations. On the other hand, the extractive practice of the fruits, associated with anthropic factors and its physiological nature, makes the species threatened with extinction. Thus, public management policies are highly necessary in order to avoid its extinction.
Collapse
Affiliation(s)
- José Weverton Almeida-Bezerra
- Department of Botany, Federal University of Pernambuco–UFPE, Recife 50670-901, Brazil; (J.W.A.-B.); (J.J.L.B.); (V.B.d.S.); (A.F.M.d.O.)
| | - José Jailson Lima Bezerra
- Department of Botany, Federal University of Pernambuco–UFPE, Recife 50670-901, Brazil; (J.W.A.-B.); (J.J.L.B.); (V.B.d.S.); (A.F.M.d.O.)
| | - Viviane Bezerra da Silva
- Department of Botany, Federal University of Pernambuco–UFPE, Recife 50670-901, Brazil; (J.W.A.-B.); (J.J.L.B.); (V.B.d.S.); (A.F.M.d.O.)
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Regional University of Cariri–URCA, Crato 63105-000, Brazil; (J.G.M.d.C.); (M.F.B.M.-B.)
- Correspondence: (H.D.M.C.); (N.C.-M.)
| | - José Galberto Martins da Costa
- Department of Biological Chemistry, Regional University of Cariri–URCA, Crato 63105-000, Brazil; (J.G.M.d.C.); (M.F.B.M.-B.)
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-319 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- Correspondence: (H.D.M.C.); (N.C.-M.)
| | - Christophe Hano
- Department of Biochemistry, Eure et Loir Campus, University of Orleans, 28000 Chartres, France;
| | - Saulo Almeida de Menezes
- Biotechnology Center, Federal University of Rio Grande do Sul–UFRGS, Porto Alegre 91501-970, Brazil;
| | | | | |
Collapse
|
14
|
Biochemical Profile and Antimicrobial Activity of an Herbal-Based Formula and Its Potential Application in Cosmetic Industry. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microbial infections, and especially microbial resistance, are critical and actual problems that require targeted and efficient therapeutic intervention. Natural-based solutions are a viable alternative, at least for complementary therapy, due to few or no side effects and high safety and efficacy levels. The aim of this study was to demonstrate the potential use of a patented formula based on Achillea millefolium, Origanum vulgare, and Lychnis coronaria species as an antibacterial ingredient, mainly for skin and mucosal infections, in order to support its pharmaco-cosmetic application. The chemical composition of the formula was analyzed by HPLC and spectrophotometric methods. Furthermore, antioxidant and antimicrobial activity were evaluated. To determine the formula’s safety for topical application, it was used on a reconstructed human epidermal model. The formula showed inhibitory activity on both Gram-positive and Gram-negative bacteria, respectively, moderate inhibition on B. cereus, Kocuria kristinae, P. aeurginosa, S. enterica Typhimurium, methicillin-resistant and methicillin-sensible S. aureus, as well as high inhibition on S. epidermidis, Serratia marescens, and Streptococcus pyogenes. The developed product was biochemically characterized for its content in polyphenols, triterpenes, and polyphenol carboxylic acids. The formula was proven to have a nonirritant effect on the human epidermis and important antioxidant activity.
Collapse
|
15
|
Bittner Fialová S, Rendeková K, Mučaji P, Nagy M, Slobodníková L. Antibacterial Activity of Medicinal Plants and Their Constituents in the Context of Skin and Wound Infections, Considering European Legislation and Folk Medicine-A Review. Int J Mol Sci 2021; 22:ijms221910746. [PMID: 34639087 PMCID: PMC8509446 DOI: 10.3390/ijms221910746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial infections of skin and wounds may seriously decrease the quality of life and even cause death in some patients. One of the largest concerns in their treatment is the growing antimicrobial resistance of bacterial infectious agents and the spread of resistant strains not only in the hospitals but also in the community. This trend encourages researchers to seek for new effective and safe therapeutical agents. The pharmaceutical industry, focusing mainly on libraries of synthetic compounds as a drug discovery source, is often failing in the battle with bacteria. In contrast, many of the natural compounds, and/or the whole and complex plants extracts, are effective in this field, inactivating the resistant bacterial strains or decreasing their virulence. Natural products act comprehensively; many of them have not only antibacterial, but also anti-inflammatory effects and may support tissue regeneration and wound healing. The European legislative is in the field of natural products medicinal use formed by European Medicines Agency (EMA), based on the scientific work of its Committee on Herbal Medicinal Products (HMPC). HMPC establishes EU monographs covering the therapeutic uses and safe conditions for herbal substances and preparations, mostly based on folk medicine, but including data from scientific research. In this review, the medicinal plants and their active constituents recommended by EMA for skin disorders are discussed in terms of their antibacterial effect. The source of information about these plant products in the review is represented by research articles listed in scientific databases (Science Direct, PubMed, Scopus, Web of Science, etc.) published in recent years.
Collapse
Affiliation(s)
- Silvia Bittner Fialová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
- Correspondence: ; Tel.: +421-250-117-206
| | - Katarína Rendeková
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
| | - Pavel Mučaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
| | - Lívia Slobodníková
- Institute of Microbiology, Faculty of Medicine and the University Hospital in Bratislava, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| |
Collapse
|
16
|
Mussin J, Robles-Botero V, Casañas-Pimentel R, Rojas F, Angiolella L, San Martín-Martínez E, Giusiano G. Antimicrobial and cytotoxic activity of green synthesis silver nanoparticles targeting skin and soft tissue infectious agents. Sci Rep 2021; 11:14566. [PMID: 34267298 PMCID: PMC8282796 DOI: 10.1038/s41598-021-94012-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Combining traditional medicine with nanotechnology therefore opens the door to innovative strategies for treating skin and soft tissue infections (SSTIs) and also contributes to the fight against the rise of antimicrobial resistance. Acanthospermum australe (Loefl.) Kuntze is a medicinal plant used by indigenous peoples in northeastern Argentina to treat SSTIs. Spherical and stable silver nanoparticles (AgNPs) of 14 ± 2 nm were synthesized from the aqueous extract of A. australe and silver nitrate. The antimicrobial activity against main species causing SSTIs and cytotoxicity on peripheral blood mononuclear cells of AgNP solution and its synthesis components were evaluated. Compared to its synthesis components, AgNP solution showed greater antimicrobial activity and lower cytotoxicity. The antimicrobial activity of AgNPs was due to the silver and not to the metabolites of the aqueous extract present on the surface of the nanoparticles. The plant extract played an important role in the formation of stable AgNPs and acted as a modulator of cytotoxic and immune responses.
Collapse
Affiliation(s)
- Javier Mussin
- grid.423606.50000 0001 1945 2152Mycology Department, Instituto de Medicina Regional, Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Las Heras 727, 3500 Resistencia, Chaco, Argentina
| | - Viviana Robles-Botero
- grid.418275.d0000 0001 2165 8782Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, CONACYT - Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rocío Casañas-Pimentel
- grid.418275.d0000 0001 2165 8782Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, CONACYT - Instituto Politécnico Nacional, Mexico City, Mexico
| | - Florencia Rojas
- grid.423606.50000 0001 1945 2152Mycology Department, Instituto de Medicina Regional, Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Las Heras 727, 3500 Resistencia, Chaco, Argentina
| | - Letizia Angiolella
- grid.7841.aDepartment of Public Health and Infectious Diseases, University of Rome “Sapienza”, Rome, Italy
| | - Eduardo San Martín-Martínez
- grid.418275.d0000 0001 2165 8782Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada - Legaria, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gustavo Giusiano
- grid.423606.50000 0001 1945 2152Mycology Department, Instituto de Medicina Regional, Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Las Heras 727, 3500 Resistencia, Chaco, Argentina
| |
Collapse
|
17
|
Nowak A, Ossowicz-Rupniewska P, Rakoczy R, Konopacki M, Perużyńska M, Droździk M, Makuch E, Duchnik W, Kucharski Ł, Wenelska K, Klimowicz A. Bacterial Cellulose Membrane Containing Epilobium angustifolium L. Extract as a Promising Material for the Topical Delivery of Antioxidants to the Skin. Int J Mol Sci 2021; 22:6269. [PMID: 34200927 PMCID: PMC8230535 DOI: 10.3390/ijms22126269] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial cellulose membranes (BCs) are becoming useful as a drug delivery system to the skin. However, there are very few reports on their application of plant substances to the skin. Komagataeibacter xylinus was used for the production of bacterial cellulose (BC). The BC containing 5% and 10% ethanolic extract of Epilobium angustifolium (FEE) (BC-5%FEE and BC-10%FEE, respectively) were prepared. Their mechanical, structural, and antioxidant properties, as well as phenolic acid content, were evaluated. The bioavailability of BC-FESs using mouse L929 fibroblasts as model cells was tested. Moreover, In Vitro penetration through the pigskin of the selected phenolic acids contained in FEE and their accumulation in the skin after topical application of BC-FEEs was examined. The BC-FEEs were characterized by antioxidant activity. The BC-5% FEE showed relatively low toxicity to healthy mouse fibroblasts. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), 3-hydroxybenzoic acid (3-HB), and caffeic acid (CA) found in FEE were also identified in the membranes. After topical application of the membranes to the pigskin penetration of some phenolic acid and other antioxidants through the skin as well as their accumulation in the skin was observed. The bacterial cellulose membrane loaded by plant extract may be an interesting solution for topical antioxidant delivery to the skin.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland;
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.)
| | - Maciej Konopacki
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.)
| | - Magdalena Perużyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (M.P.); (M.D.)
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (M.P.); (M.D.)
| | - Edyta Makuch
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland;
| | - Wiktoria Duchnik
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Karolina Wenelska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland;
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| |
Collapse
|
18
|
Nowak A, Cybulska K, Makuch E, Kucharski Ł, Różewicka-Czabańska M, Prowans P, Czapla N, Bargiel P, Petriczko J, Klimowicz A. In Vitro Human Skin Penetration, Antioxidant and Antimicrobial Activity of Ethanol-Water Extract of Fireweed ( Epilobium angustifolium L.). Molecules 2021; 26:E329. [PMID: 33435259 PMCID: PMC7827182 DOI: 10.3390/molecules26020329] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
Epilobium angustifolium L. is applied as an antiseptic agent in the treatment of skin diseases. However, there is a lack of information on human skin penetration of active ingredients with antioxidative potential. It seems crucial because bacterial infections of skin and subcutaneous tissue are common and partly depend on oxidative stress. Therefore, we evaluated in vitro human skin penetration of fireweed ethanol-water extracts (FEEs) by determining antioxidant activity of these extracts before and after penetration study using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and Folin-Ciocalteu methods. Microbiological tests of extracts were done. The qualitative and quantitative evaluation was performed using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC-UV) methods. The in vitro human skin penetration using the Franz diffusion chamber was assessed. The high antioxidant activity of FEEs was found. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), and caffeic acid (CA) were identified in the extracts. The antibacterial activities were found against Serratia lutea, S. marcescens, Bacillus subtilis, B. pseudomycoides, and B. thuringiensis and next Enterococcus faecalis, E. faecium, Streptococcus pneumoniae, Pseudomonas aeruginosa, and P. fluorescens strains. In vitro penetration studies showed the penetration of some phenolic acids and their accumulation in the skin. Our results confirm the importance of skin penetration studies to guarantee the efficacy of formulations containing E. angustifolium extracts.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, PL-70111 Szczecin, Poland; (Ł.K.); (A.K.)
| | - Krystyna Cybulska
- Department of Microbiology and Environmental Chemistry, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, Szczecin, PL-71434 Szczecin, Poland;
| | - Edyta Makuch
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, PL-70322 Szczecin, Poland;
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, PL-70111 Szczecin, Poland; (Ł.K.); (A.K.)
| | - Monika Różewicka-Czabańska
- Clinic of Skin and Venereal Diseases, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland;
| | - Piotr Prowans
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.)
| | - Norbert Czapla
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.)
| | - Piotr Bargiel
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.)
| | - Jan Petriczko
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.)
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, PL-70111 Szczecin, Poland; (Ł.K.); (A.K.)
| |
Collapse
|
19
|
Silva JJMD, Campanharo SC, Paschoal JAR. Ethnoveterinary for food-producing animals and related food safety issues: A comprehensive overview about terpenes. Compr Rev Food Sci Food Saf 2020; 20:48-90. [PMID: 33443807 DOI: 10.1111/1541-4337.12673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/08/2020] [Accepted: 10/25/2020] [Indexed: 12/23/2022]
Abstract
Alternatives to the use of conventional veterinary drugs in food-producing animals have gained attention, such as the use of natural products (NPs), mainly to soften the risks to the animal, the environment, and consumer's health. Although NPs have consistent advantages over conventional drugs, they cannot be considered risk free under food safety matters. In this way, this document presents a comprehensive overview of the importance of considering both the pharmacological and toxicological properties of the constituents of a NP from plants intending the standardization and regulation of its use in food-producing animals. Terpenes are the most diverse class of natural substances present in NP of vegetal origin with a broad range of biological activities that can be explored in veterinary science; however, certain plants and terpenes also have significant toxic effects, a fact that can harm the health of animals and consequently generate economic losses and risks for humans. In this context, this review gathered scientific data of vegetal species of importance to ethnoveterinary for food-producing animals, which produce terpenes, its biological effects, and their implications on food safety issues for consumers. For this, more than 300 documents were selected from different online scientific databases. The present data and discussion may contribute to the rational commercial exploration of this class of NPs in veterinary medicine.
Collapse
Affiliation(s)
- Jonas Joaquim Mangabeira da Silva
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Sarah Chagas Campanharo
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jonas Augusto Rizzato Paschoal
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|