1
|
Zhang L, Sun Z, Yuan Y, Sheng J. Integrating bioinformatics and machine learning to identify glomerular injury genes and predict drug targets in diabetic nephropathy. Sci Rep 2025; 15:16868. [PMID: 40374840 PMCID: PMC12081755 DOI: 10.1038/s41598-025-01628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that poses significant challenges to public health. Among its various complications, diabetic nephropathy (DN) emerges as a critical microvascular complication associated with high mortality rates. Despite the development of diverse therapeutic strategies targeting metabolic improvement, hemodynamic regulation, and fibrosis mitigation, the precise mechanisms responsible for glomerular injury in DN are not yet fully elucidated. To explore these mechanisms, public DN datasets (GSE30528, GSE104948, and GSE96804) were obtained from the GEO database. We merged the GSE30528 and GSE104948 datasets to identify differentially expressed genes (DEGs) between DN and control groups using R software. Weighted gene co-expression network analysis (WGCNA) was subsequently employed to discern genes associated with DN in key modules. We utilized Venny software to pinpoint co-expressed genes shared between DEGs and key module genes. These co-expressed genes underwent gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses. Through LASSO, SVM, and RF methods, we isolated five significant genes: FN1, C1orf21, CD36, CD48, and SRPX2. These genes were further validated using a logistic model and 10-fold cross-validation. The external dataset GSE96804 served to validate the identified biomarkers, while receiver operating characteristic (ROC) curve analysis assessed their diagnostic efficacy for DN. Additionally, GSE104948 facilitated comparison of biomarker expression levels between DN and five other kidney diseases, highlighting their specificity for DN. These biomarkers also enabled the identification and validation of two molecular subtypes characterized by distinct immune profiles. The Nephroseq v5 database corroborated the correlation between biomarkers and clinical data. Furthermore, the GSigDB database was employed to predict protein-drug interactions, with molecular docking confirming the therapeutic potential of these drug targets. Finally, a diabetic mouse model (BKS-db) was constructed, and RT-qPCR experiments validated the reliability of the identified biomarkers. The study identified five biomarkers with robust diagnostic predictive power for DN. Subtype classification based on these biomarkers revealed distinct enrichment pathways and immune cell infiltration profiles, underscoring the close relationship between these genes and immune functions in DN. Drug prediction and molecular docking analyses demonstrated excellent binding affinities of candidate drugs to target proteins. Differential expression analysis between DN and five other kidney diseases indicated that all biomarkers, except C1orf21, were highly expressed in DN. Notably, as the mouse model lacks the C1orf21 gene, RT-qPCR confirmed the upregulated expression of FN1, CD36, CD48, and SRPX2. This study successfully identified five biomarkers with potential diagnostic and therapeutic value for DN. These biomarkers not only offer insights into the regulatory mechanisms underlying glomerular injury but also provide a theoretical foundation for the development of diagnostic biomarkers and therapeutic targets related to DN-associated glomerular injury.
Collapse
Affiliation(s)
- Li Zhang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - ZhenPeng Sun
- Department of Urology, Xi'an Daxing Hospital, Xian, Shaanxi, 710016, China
| | - Yao Yuan
- Department of Pharmacology, College of Pharmacy, Army Medical University, Chongqing, 400016, China
| | - Jie Sheng
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, China.
| |
Collapse
|
2
|
Abukhalil MH, Althunibat OY, Althobaiti NA, Alaryani FS, Albalawi AE, Alhasani RH, Felemban SG, Al-Zayadneh AJ, Al-Shara B, Alwardat S. Cyclophosphamide-Induced Pulmonary Toxicity Involves Oxidative Stress, Inflammation, Apoptosis, and Fibrosis with Impaired Nrf2/HO-1 Signaling: Protective Role of Rosmarinic Acid. Food Chem Toxicol 2025:115552. [PMID: 40379079 DOI: 10.1016/j.fct.2025.115552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/19/2025]
Abstract
Cyclophosphamide (CYP) is a widely used immunosuppressive and antineoplastic agent; nevertheless, its use is linked to significant pulmonary toxicity. Rosmarinic acid (RA), a natural polyphenolic compound found in various medicinal plants, is well-known for its powerful anti-inflammatory and antioxidant properties. This study aimed to explore the protective effects of RA against CYP-induced lung damage in mice. The mice received co-treatment of RA (25 and 50 mg/kg, orally) and CYP (30 mg/kg, i.p.) for 10 consecutive days, with sacrifice occurring 24 hours after the final dose. Administration of CYP resulted in notable lung injury characterized by several histopathological changes and fibrosis, along with increased markers of oxidative stress, including malondialdehyde and protein carbonyl levels, and decreased antioxidant defenses such as reduced glutathione levels and superoxide dismutase and catalase activities. Furthermore, CYP treatment induced intense inflammatory reactions (enhanced NF-κB p65 expression and pro-inflammatory cytokines TNF-α and IL-6 levels) and apoptosis (reduced Bcl-2 and increased Bax and caspase-3) in lung tissues. Notably, treatment with RA alleviated CYP-induced lung injury by balancing redox state, reducing inflammation, and inhibiting apoptosis. Moreover, RA restored Nrf2/HO-1 signaling pathway in lung tissues. Our results suggest RA may represent a promising protective tool against CYP-induced lung injury via its ability to mitigate oxidative tissue injury, inflammation, and apoptosis and to restore Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Mohammad H Abukhalil
- Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma'an 71111, Jordan.
| | - Osama Y Althunibat
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Jadara University, Irbid, 21110, Jordan; Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an 71111, Jordan
| | - Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Fatima S Alaryani
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47913, Saudi Arabia
| | - Reem H Alhasani
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah 21961, Saudi Arabia
| | - Shatha G Felemban
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia
| | - Alaa J Al-Zayadneh
- Department of Clinical Pharmacy, Ma'an Government Hospital, Ma'an 71110, Jordan
| | - Baker Al-Shara
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Jadara University, Irbid, 21110, Jordan
| | - Sofian Alwardat
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Jadara University, Irbid, 21110, Jordan
| |
Collapse
|
3
|
Ageena SA, Bakr AG, Mokhlis HA, Abd-Ellah MF. Renoprotective effects of apocynin and/or umbelliferone against acrylamide-induced acute kidney injury in rats: role of the NLRP3 inflammasome and Nrf-2/HO-1 signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:569-580. [PMID: 39028331 PMCID: PMC11787205 DOI: 10.1007/s00210-024-03271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Acrylamide (ACR) is a toxic, probably carcinogenic compound commonly found in fried foods and used in the production of many industrial consumer products. ACR-induced acute kidney injury is mediated through several signals. In this research, we investigated, for the first time, the therapeutic effects of phytochemicals apocynin (APO) and/or umbelliferone (UMB) against ACR-induced nephrotoxicity in rats and emphasized the underlying molecular mechanism. To achieve this goal, five groups of rats were randomly assigned: the control group received vehicle (0.5% CMC; 1 ml/rat), ACR (40 mg/kg, i.p.), ACR + APO (100 mg/kg, P.O.), ACR + UMB (50 mg/kg, P.O.), and combination group for 10 days. In ACR-intoxicated rats, there was a significant reduction in weight gain while the levels of blood urea, uric acid, creatinine, and Kim-1 were elevated, indicating renal injury. Histopathological injury was also observed in the kidneys of ACR-intoxicated rats, confirming the biochemical data. Moreover, MDA, TNF-α, and IL-1β levels were raised; and GSH and SOD levels were decreased. In contrast, treatment with APO, UMB, and their combination significantly reduced the kidney function biomarkers, prevented tissue damage, and decreased inflammatory cytokines and MDA. Mechanistically, it suppressed the expression of NLRP-3, ASC, GSDMD, caspase-1, and IL-1β, while it upregulated Nrf-2 and HO-1 in the kidneys of ACR-intoxicated rats. In conclusion, APO, UMB, and their combination prevented ACR-induced nephrotoxicity in rats by attenuating oxidative injury and inflammation, suppressing NLRP-3 inflammasome signaling, enhancing antioxidants, and upregulating Nrf-2 and HO-1 in the kidneys of ACR-induced rats.
Collapse
Affiliation(s)
- Saad A Ageena
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Adel G Bakr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hamada A Mokhlis
- Department of Pharmacology & Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Kantara Branch, Sinai University, Cairo, Egypt
| | - Mohamed F Abd-Ellah
- Department of Pharmacology & Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Liu Y, Wang C, Li M, Zhu Y, Liu K, Liu Y, Luo M, Zhang C. Natural ingredients in the regulation of abnormal lipid peroxidation: a potential therapy for pulmonary diseases. Front Pharmacol 2024; 15:1507194. [PMID: 39759448 PMCID: PMC11695318 DOI: 10.3389/fphar.2024.1507194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Pulmonary diseases are a major category of diseases that pose a threat to human health. The most common drugs currently used to treat lung diseases are still chemical drugs, but this may lead to drug resistance and damage to healthy organs in the body. Therefore, developing new drugs is an urgent task. Lipid peroxidation is caused by the disruption of redox homeostasis, accumulation of reactive oxygen species (ROS), depletion of glutathione (GSH), and inactivation of glutathione peroxidase 4 (GPX4). Lipid peroxidation is closely related to the occurrence and progression of respiratory diseases, including acute lung injury, asthma, pulmonary fibrosis, pulmonary hypertension, chronic obstructive pulmonary disease, and lung cancer. Natural ingredients have high safety, high availability, and low cost, and can regulate lipid peroxidation through multiple pathways and targets, making them valuable new drugs. This article aims to summarize the pharmacology and mechanism of natural ingredients targeting lipid peroxidation in the treatment of lung diseases. The reviewed data indicate that natural ingredients are a promising anti-lipid peroxidation drug, mainly alleviating lipid peroxidation through the cystine/glutamate antiporter (System Xc -)/GSH/GPX4 axis, Nrf2 pathway, and ROS pathway. In the future, it will still be necessary to further study the mechanisms of natural products in treating pulmonary diseases through lipid peroxidation and conduct multi-center, large-sample clinical trials to promote the development of new drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Luo L, Liu K, Deng L, Wang W, Lai T, Li X. Chicoric acid acts as an ALOX15 inhibitor to prevent ferroptosis in asthma. Int Immunopharmacol 2024; 142:113187. [PMID: 39298822 DOI: 10.1016/j.intimp.2024.113187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Chicoric acid (CA) is a crucial immunologically active compound found in chicory and echinacea, possessing a range of biological activities. Ferroptosis, a type of iron-dependent cell death induced by lipid peroxidation, plays a key role in the development and advancement of asthma. Targeting ferroptosis could be a potential therapeutic strategy for treating asthma. PURPOSE The purpose of this study was to explore the screening of ALOX15, a pivotal target of ferroptosis in asthma, and potential therapeutic agents, as well as to investigate the promising potential of CA as an ALOX15 inhibitor for modulating ferroptosis in asthma. METHODS Through high-throughput data processing of bronchial epithelial RNA from asthma patients using bioinformatics and machine learning, the key target of ferroptosis in asthma, ALOX15, was identified. An inhibitor of ALOX15 was then obtained through high-throughput molecular docking and molecular dynamics simulation tests. In vitro experiments were conducted using a 16HBE cell model induced by house dust mite (HDM) and lipopolysaccharide (LPS), which were treated with the ALOX15 inhibitor (PD146176), CA treatment, or ALOX15 knockdown. In vivo experiments were also carried out using a mouse model induced by HDM and LPS. RESULTS The composite model of ALOX15 and CA in molecular dynamics simulations shows good stability and flexibility. Network pharmacological analysis reveals that CA regulates ferroptosis through ALOX15 in treating asthma. In vitro studies show that ALOX15 is highly expressed in HDM and LPS treatments, while CA inhibits HDM and LPS-induced ferroptosis in 16HBE cells by reducing ALOX15 expression. Knockdown of ALOX15 has the opposite effect. Metabolomics analysis identifies key compounds associated with ferroptosis, including L-Targinine, eicosapentaenoic acid, 16-hydroxy hexadecanoic acid, and succinic acid. In vivo experiments demonstrate that CA suppresses ALOX15 expression, inhibits ferroptosis, and improves asthma symptoms in mice. CONCLUSION Our research initially identified CA as a promising asthma treatment that effectively blocks ferroptosis by specifically targeting ALOX15. This study not only highlights CA as a potential therapeutic agent for asthma but also introduces novel targets and treatment options for this condition, along with innovative approaches for utilizing natural compounds to target diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Kangdi Liu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Liyan Deng
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wenjian Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Tianli Lai
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Xiaoling Li
- Experimental Animal Center, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
6
|
Seker U, Kavak DE, Dokumaci FZ, Kizildag S, Irtegun-Kandemir S. The nephroprotective effect of Quercetin in Cyclophosphamide-induced renal toxicity might be associated with MAPK/ERK and NF-κB signal modulation activity. Drug Chem Toxicol 2024; 47:1165-1174. [PMID: 38726926 DOI: 10.1080/01480545.2024.2347541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/18/2024] [Indexed: 11/21/2024]
Abstract
The present study aimed to examine the protective effect of quercetin (QUE) on cyclophosphamide (CTX)-induced nephrotoxicity. For that purpose, 24 mice were divided into four groups (Control, QUE, CTX, and CTX + QUE). The CTX and CTX + QUE groups received 200 mg/kg of cyclophosphamide on the 1st and 7th days. The QUE and CTX + QUE groups were treated with 50 mg/kg of quercetin daily for 14 days. At the end of the experiment, the animals were sacrificed, and kidney samples were analyzed. The results indicated that CTX leads to severe morphological degenerations and disruption in renal function. Serum BUN, Creatinine, Uric acid, tissue Bax, Caspase 3, TNF-α and IL-1β expression levels were upregulated in the CTX group compared to Control and QUE groups (p < 0.05). Although MAPK/ERK phosphorylation level is not affected in CTX group, there was a significant increase in CTX + QUE group (p < 0.05), but the NF-κB was significantly suppressed in this group (p < 0.01). The RT-qPCR results showed that the cyt-c and the Bax/Bcl-2 ratio mRNA expression folds were upregulated in the CTX group (p < 0.01), which was downregulated in the CTX + QUE group. However, there was a significant difference in the CTX + QUE group compared to the Control and QUE groups (p < 0.01). The findings showed that administering quercetin along with cyclophosphamide alleviated renal injury by regulating apoptotic and inflammatory expression. Moreover, the administration of quercetin and cyclophosphamide could synergistically improve renal function test results, and activate cellular responses, which upmodulate MAPK/ERK phosphorylation and suppression of NF-κB.
Collapse
Affiliation(s)
- Ugur Seker
- Department of Histology and Embryology, Faculty of Medicine, Mardin Artuklu University, Mardin, Türkiye
| | - Deniz Evrim Kavak
- Dicle University Science and Technology Research Center, Dicle University, Diyarbakir, Türkiye
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Türkiye
| | | | - Sefa Kizildag
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Türkiye
| | - Sevgi Irtegun-Kandemir
- Cancer Research Center, Dicle University, Diyarbakir, Türkiye
- Department of Medical Biology, Faculty of Medicine, Dicle University, Diyarbakir, Türkiye
| |
Collapse
|
7
|
Alghamdi B, Hassanein EHM, Alharthy SA, Farsi RM, Harakeh S. Vinpocetine attenuates methotrexate-induced hippocampal intoxication via Keap-1/Nrf2, NF-κB/AP-1, and apoptotic pathways in rats. Drug Chem Toxicol 2024; 47:1038-1049. [PMID: 38508707 DOI: 10.1080/01480545.2024.2329155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Methotrexate (MTX) is an anti-folate chemotherapeutic commonly used to treat cancer and autoimmune diseases. Despite its widespread clinical use, MTX has been linked to serious neurotoxicity side effects. Vinpocetine (VNP) has been widely used clinically to treat many neurological conditions. This study was conducted to study the potential neuroprotective effects of VNP against MTX hippocampal intoxication in rats. Thirty-two rats were randomly allocated into 4 groups: (I) control (Vehicle); (II) VNP-treated group (20 mg/kg/day, p.o); (III) MTX-control (20 mg/kg/once, i.p.) group; and (IV) the VNP + MTX group. VNP was administered orally for 10 days, during which MTX was given intraperitoneally once at the end of day 5. Our data indicated that VNP administration significantly improved MTX-induced neuronal cell death, odema, vacuolation and degeneration. VNP attenuated oxidative injury mediated by significant upregulation of the Nrf2, HO-1, and GCLC genes, while the Keap-1 mRNA expression downregulated. Moreover, VNP suppressed cytokines release mediated by increasing IκB expression level while it caused a marked downregulation in NF-κB and AP-1 (C-FOS and C-JUN) levels. Additionally, VNP attenuated apoptosis by reducing hippocampal Bax levels while increasing Bcl2 levels in MTX-intoxicated rats. In conclusion, our results suggested that VNP significantly attenuated MTX hippocampal intoxication by regulating Keap-1/Nrf2, NF-κB/AP-1, and apoptosis signaling in these effects.
Collapse
Affiliation(s)
- Badrah Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Saif A Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem M Farsi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Das S, Ajith TA, Janardhanan KK, Harikumaran Thampi BS. Bioactive extract of Morchella esculenta ameliorates cyclophosphamide-induced mitochondrial dysfunction and cardiotoxicity by modulating KEAP1/NRF2 and pro-inflammatory genes expression. Food Chem Toxicol 2024; 191:114847. [PMID: 38964650 DOI: 10.1016/j.fct.2024.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Prevention of anticancer drugs-induced cardiotoxicity remains an imperative area of oncology research as it continues to be a major challenge in cancer chemotherapy. This study was undertaken to investigate the protective effect of methanol extract of Morchella esculenta (ME) against cyclophosphamide (CP)-induced cardiotoxicity. Myocardial damage was assessed by biochemical and histopathological methods. Proinflammatory cytokines gene expression was determined by RT-PCR analysis. To assess the mitochondrial dysfunction, TCA cycle and electron transport chain complexes enzymes activities were determined. Chemical finger print of ME was accomplished by HPTLC. CP (200 mg/kg) treated animals showed elevation in cardiac injury markers which was attenuated by ME (p < 0.05). CP-induced decline of antioxidant status and expression of nuclear factor erythroid 2-related factor 2 were restored by ME. CP-induced expression of NF-ĸB, IL1-β, IL-6, TNF-α, COX-2 and iNOS (p < 0.05) was attenuated by ME (500 mg/kg). Bioactive compounds namely, 5-eicosapentaenoicacid (C20H30O2), 8-hydroxyoctadecadienoic acid (C18H32O3), 4,4-dipo-zetacarotene (C30H44), CynarosideA (C21H32O10) present in the extract might be responsible for cardioprotection. The findings reveal the protective effect of ME against CP-induced cardiomyopathy.
Collapse
Affiliation(s)
- Sneha Das
- Amala Cancer Research Centre, Amala Nagar, Thrissur, 680 555, Kerala, India
| | | | | | | |
Collapse
|
9
|
Abd Elmaaboud MA, Kabel AM, Borg HM, Magdy AA, Kabel SM, Arafa ESA, Alsufyani SE, Arab HH. Omarigliptin/rosinidin combination ameliorates cyclophosphamide-induced lung toxicity in rats: The interaction between glucagon-like peptide-1, TXNIP/NLRP3 inflammasome signaling, and PI3K/Akt/FoxO1 axis. Biomed Pharmacother 2024; 177:117026. [PMID: 38936197 DOI: 10.1016/j.biopha.2024.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
Cyclophosphamide is an anti-neoplastic drug that has shown competence in the management of a broad range of malignant tumors. In addition, it represents a keystone agent for management of immunological conditions. Despite these unique properties, induction of lung toxicity may limit its clinical use. Omarigliptin is one of the dipeptidyl peptidase-4 inhibitors that has proven efficacy in management of diabetes mellitus. Rosinidin is an anthocyanidin flavonoid that exhibited promising results in management of diseases characterized by oxidative stress, inflammation, and apoptosis. The present work investigated the possible effects of omarigliptin with or without rosinidin on cyclophosphamide-induced lung toxicity with an exploration of the molecular mechanisms that contribute to these effects. In a rodent model of cyclophosphamide elicited lung toxicity, the potential efficacy of omarigliptin with or without rosinidin was investigated at both the biochemical and the histopathological levels. Both omarigliptin and rosinidin exhibited a synergistic ability to augment the tissue antioxidant defenses, mitigate the inflammatory pathways, restore glucagon-like peptide-1 levels, modulate high mobility group box 1 (HMGB1)/receptors of advanced glycation end products (RAGE)/nuclear factor kappa B (NF-κB) axis, downregulate the fibrogenic mediators, and create a balance between the pathways involved in apoptosis and the autophagy signals in the pulmonary tissues. In conclusion, omarigliptin/rosinidin combination may be introduced as a novel therapeutic modality that attenuates the different forms of lung toxicities induced by cyclophosphamide.
Collapse
Affiliation(s)
- Maaly A Abd Elmaaboud
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Hany M Borg
- Physiology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh 33516, Egypt
| | - Amr A Magdy
- Anesthesia and ICU Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Shaimaa M Kabel
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Shuruq E Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
10
|
Deng J, Li N, Hao L, Li S, Aiyu N, Zhang J, Hu X. Transcription factor NF-E2-related factor 2 plays a critical role in acute lung injury/acute respiratory distress syndrome (ALI/ARDS) by regulating ferroptosis. PeerJ 2024; 12:e17692. [PMID: 39670103 PMCID: PMC11637007 DOI: 10.7717/peerj.17692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/14/2024] [Indexed: 12/14/2024] Open
Abstract
NRF2 is an important transcription factor that regulates redox homeostasis in vivo and exerts its anti-oxidative stress and anti-inflammatory response by binding to the ARE to activate and regulate the transcription of downstream protective protein genes, reducing the release of reactive oxygen species. Ferroptosis is a novel iron-dependent, lipid peroxidation-driven cell death mode, and recent studies have shown that ferroptosis is closely associated with acute lung injury/acute respiratory distress syndrome (ALI/ARDS). NRF2 is able to regulate ferroptosis through the regulation of the transcription of its target genes to ameliorate ALI/ARDS. Therefore, This article focuses on how NRF2 plays a role in ALI/ARDS by regulating ferroptosis. We further reviewed the literature and deeply analyzed the signaling pathways related to ferroptosis which were regulated by NRF2. Additionally, we sorted out the chemical molecules targeting NRF2 that are effective for ALI/ARDS. This review provides a relevant theoretical basis for further research on this theory and the prevention and treatment of ALI/ARDS. The intended audience is clinicians and researchers in the field of respiratory disease.
Collapse
Affiliation(s)
- JiaLi Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Nie Aiyu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Disease, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - XiaoYu Hu
- Department of Infectious Disease, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Luo C, Ye Y, Lv A, Zuo W, Yang Y, Jiang C, Ke J. The impact of Astragaloside IV on the inflammatory response and gut microbiota in cases of acute lung injury is examined through the utilization of the PI3K/AKT/mTOR pathway. PLoS One 2024; 19:e0305058. [PMID: 38954702 PMCID: PMC11218977 DOI: 10.1371/journal.pone.0305058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVES Astragaloside IV (AS-IV) is a natural triterpenoid saponin compound with a variety of pharmacological effects, and several studies have clarified its anti-inflammatory effects, which may make it an effective alternative treatment against inflammation. In the study, we aimed to investigate whether AS-IV could attenuate the inflammatory response to acute lung injury and its mechanisms. METHODS Different doses of AS-IV (20mg·kg-1, 40mg·kg-1, and 80mg·kg-1) were administered to the ALI rat model, followed by collection of serum and broncho alveolar lavage fluid (BALF) for examination of the inflammatory response, and HE staining of the lung and colon tissues, and interpretation of the potential molecular mechanisms by quantitative real-time PCR (qRT-PCR), Western blotting (WB). In addition, fecal samples from ALI rats were collected and analyzed by 16S rRNA sequencing. RESULTS AS-IV decreased the levels of TNF-α, IL-6, and IL-1β in serum and BALF of mice with Acute lung injury (ALI). Lung and colon histopathology confirmed that AS-IV alleviated inflammatory infiltration, tissue edema, and structural changes. qRT-PCR and WB showed that AS-IV mainly improved inflammation by inhibiting the expression of PI3K, AKT and mTOR mRNA, and improved the disorder of intestinal microflora by increasing the number of beneficial bacteria and reducing the number of harmful bacteria. CONCLUSION AS-IV reduces the expression of inflammatory factors by inhibiting the PI3K/AKT/mTOR pathway and optimizes the composition of the gut microflora in AIL rats.
Collapse
Affiliation(s)
- Cheng Luo
- Clinical College of traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuanhang Ye
- Clinical College of traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Anqi Lv
- Clinical College of traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Wanzhao Zuo
- Clinical College of traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yi Yang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Cheng Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Jia Ke
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
12
|
Zhang T, Zhao L, Xu M, Jiang P, Zhang K. Moringin alleviates DSS-induced ulcerative colitis in mice by regulating Nrf2/NF-κB pathway and PI3K/AKT/mTOR pathway. Int Immunopharmacol 2024; 134:112241. [PMID: 38761782 DOI: 10.1016/j.intimp.2024.112241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Ulcerative colitis (UC) is a main form of inflammatory bowel disease (IBD), which is a chronic and immune-mediated inflammatory disease. Moringin (MOR) is an isothiocyanate isolated from Moringa oleifera Lam., and has been recognized as a promising potent drug for inflammatory diseases and antibacterial infections. The present study investigated the role of moringin in dextran sulfate sodium (DSS)-induced UC mice. Mouse colitis was induced by adding DSS to the drinking water for seven consecutive days. Our experimental results showed that MOR relieves DSS-induced UC in mice by increasing body weight and colonic length, and reducing the disease activity index and histological injury. Mechanistically, MOR improves intestinal barrier function by increasing the expression of tight junction proteins (TJPs) and enhancing the secretion of mucin in DSS-induced mice. MOR inhibits inflammatory response and intestinal damage by regulating Nrf2/NF-κB signaling pathway and modulating the PI3K/AKT/mTOR pathway. Furthermore, in Nrf2 knockout (Nrf2-/-) mice, the protective effects of MOR on DSS-induced UC were abolished. Meanwhile, treatment with MOR reduced inflammation and cell damage via regulating Nrf2/NF-κB pathway in a lipopolysaccharide (LPS)-induced inflammation model of Caco-2 cells. In contrast, ML385, an Nrf2 inhibitor, might eliminate the protection provided by MOR. Notably, treatment with MOR significantly up-regulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), suggesting that MOR may be a potential PPAR-γ activator. In conclusion, MOR exerts protective effect in UC by improving intestinal barrier function, regulating Nrf2/NF-κB and PI3K/AKT/mTOR signaling pathways, and another effect associated with the regulation of PPAR-γ expression.
Collapse
Affiliation(s)
- Tongbo Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Meng Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Jiang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
13
|
Chen M, Lv J, Guo N, Ji T, Fang Y, Wang Z, He X. Crtc1 deficiency protects against sepsis-associated acute lung injury through activating akt signaling pathway. J Inflamm (Lond) 2024; 21:12. [PMID: 38644501 PMCID: PMC11034098 DOI: 10.1186/s12950-024-00385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Interplay between systemic inflammation and programmed cell death contributes to the pathogenesis of acute lung injury (ALI). cAMP-regulated transcriptional coactivator 1 (CRTC1) has been involved in the normal function of the pulmonary system, but its role in ALI remains unclear. METHODS AND RESULTS We generated a Crtc1 knockout (KO; Crtc1-/-) mouse line. Sepsis-induced ALI was established by cecal ligation and puncture (CLP) for 24 h. The data showed that Ctrc1 KO substantially ameliorated CLP-induced ALI phenotypes, including improved lung structure destruction, reduced pulmonary vascular permeability, diminished levels of proinflammatory cytokines and chemokines, compared with the wildtype mice. Consistently, in lipopolysaccharide (LPS)-treated RAW264.7 cells, Crtc1 knockdown significantly inhibited the expression of inflammatory effectors, including TNF-α, IL-1β, IL-6 and CXCL1, whereas their expressions were significantly enhanced by Crtc1 overexpression. Moreover, both Crtc1 KO in mice and its knockdown in RAW264.7 cells dramatically reduced TUNEL-positive cells and the expression of pro-apoptotic proteins. In contrast, Crtc1 overexpression led to an increase in the pro-apoptotic proteins and LPS-induced TUNEL-positive cells. Mechanically, we found that the phosphorylation of Akt was significantly enhanced by Crtc1 knockout or knockdown, but suppressed by Crtc1 overexpression. Administration of Triciribine, an Akt inhibitor, substantially blocked the protection of Crtc1 knockdown on LPS-induced inflammation and cell death in RAW264.7 cells. CONCLUSIONS Our study demonstrates that CRTC1 contribute to the pathological processes of inflammation and apoptosis in sepsis-induced ALI, and provides mechanistic insights into the molecular function of CRTC1 in the lung. Targeting CRTC1 would be a promising strategy to treat sepsis-induced ALI in clinic.
Collapse
Affiliation(s)
- Meng Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, China
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, 430070, Wuhan, Hubei, China
| | - Jian Lv
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, 518057, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China
| | - Ningning Guo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, 518057, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China
| | - Tuo Ji
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, China
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Yu Fang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, 518057, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China
| | - Zhihua Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, 518057, Shenzhen, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China.
| | - Xianghu He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Fang J, Huang Q, Shi C, Gai L, Wang X, Yan B. Songorine inhibits oxidative stress-related inflammation through PI3K/AKT/NRF2 signaling pathway to alleviate lipopolysaccharide-induced septic acute lung injury. Immunopharmacol Immunotoxicol 2024; 46:152-160. [PMID: 37977206 DOI: 10.1080/08923973.2023.2281902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE The present study aimed to investigate the protective action and mechanism of songorine on sepsis-induced acute lung injury (ALI). METHODS The sepsis-induced ALI mouse and cell models were established by lipopolysaccharide (LPS) induction. Lung injury was assayed by hematoxylin and eosin staining, lung injury score, and lung wet-to-dry (W/D) weight ratio. Apoptosis in lung tissues was evaluated by TUNEL assay, and the expression of apoptosis-related markers (Bcl2, Bax, and caspase-3) was measured by western blotting. Levels of pro-inflammatory factors and oxidative stress markers in the bronchoalveolar lavage fluid (BALF) of mice were measured by ELISA and RT-qPCR. The expression of PI3K/AKT/NRF2 pathway-related proteins was analyzed by western blotting. RESULTS Songorine treatment at 40 mg/kg mitigated sepsis-induced ALI, characterized by improved histopathology, lung injury score, and lung W/D weight ratio (p < 0.05). Moreover, songorine markedly attenuated sepsis-induced apoptosis in lung tissues; this was evidenced by an increase in Bcl2 levels and a decrease in Bax and caspase-3 levels (p < 0.01). Also, songorine reduced levels of proinflammatory cytokines (TNF-α, IL-6, IL-1β and MPO) and oxidative stress regulators (SOD and GSH) in the BALF of LPS-induced sepsis mice and RAW264.7 cells (p < 0.05). In addition, songorine upregulated the PI3K/AKT/NRF2 pathway-related proteins in LPS-induced sepsis mice and RAW264.7 cells (p < 0.05). Furthermore, LY294002 (a PI3K inhibitor) treatment reversed the protective effect of songorine on sepsis-induced ALI. CONCLUSION Songorine inhibits oxidative stress-related inflammation in sepsis-induced ALI via the activation of the PI3K/AKT/NRF2 signaling pathway.
Collapse
Affiliation(s)
- Jingjing Fang
- Department of Critical Care Medicine, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Qin Huang
- Department of Critical Care Medicine, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chaolu Shi
- Department of Critical Care Medicine, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lei Gai
- Department of Critical Care Medicine, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xinnian Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Biqing Yan
- Department of Critical Care Medicine, the First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Bai X, Zheng E, Tong L, Liu Y, Li X, Yang H, Jiang J, Chang Z, Yang H. Angong Niuhuang Wan inhibit ferroptosis on ischemic and hemorrhagic stroke by activating PPARγ/AKT/GPX4 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117438. [PMID: 37984544 DOI: 10.1016/j.jep.2023.117438] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angong Niuhuang Wan (AGNHW) is a prescription from traditional Chinese medicine (TCM) that has been used for centuries to treat ischemic stroke (IS) and hemorrhagic stroke (HS). According to a recent study, targeting ferroptosis might be effective in the management of IS and HS. However, the ferroptosis-related effects and mechanisms of AGNHW have not yet been reported. AIM OF THE STUDY This research examines the anti-ferroptosis mechanisms of AGNHW in the treatment of IS and HS. MATERIALS AND METHODS A system pharmacological approach including in vivo experiment, UHPLC-Q-Orbitrap HRMS, network pharmacology, molecular docking, microscale thermophoresis, and in vitro experiment was utilized to study the anti-ferroptosis mechanisms of AGNHW against IS and HS. RESULTS In vivo experiments indicated that AGNHW enhanced nerve function, decreased cerebral infarct volume, ameliorated histological brain injuries, improved the structural integrity of the blood-brain barrier, ameliorated the mitochondrial dysfunction and morphology disruption, and inhibits ROS, LPO and Fe2+ accumulations in IS and HS rats. Using UHPLC-Q-Orbitrap HRMS, the key ingredients of AGNHW-containing serum were identified as bilirubin, berberine, baicalin, and wogonoside. According to the network pharmacology analyses, AGNHW could inhibit ferroptosis by modulating the PPAR and PI3K/AKT signaling pathways. The core targets are PPARγ, AKT, and GPX4. Molecular docking and microscale thermophoresis experiments further revealed that the key ingredients have strong interactions with ferroptosis-regulating core proteins. Moreover, in vitro experiment results showed that AGNHW alleviated ferroptosis injury induced by erastin in PC12 cells, increased cell viability, reduced the LPO and Fe2+ levels, and up-regulated mRNA expressions of PPARγ, AKT, and GPX4. AGNHW also up-regulated protein expressions of PPARγ, p-AKT/AKT, and GPX4 in IS and HS rats. CONCLUSIONS AGNHW attenuated ferroptosis in treating IS and HS by targeting the PPARγ/AKT/GPX4 pathway. This work reveals AGNHW's anti-ferroptosis mechanism against IS and HS, but it also develops an integrated approach to demonstrate the common characteristics of drugs in treating different diseases.
Collapse
Affiliation(s)
- Xue Bai
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Disease, Beijing, 100700, China.
| | - Enqi Zheng
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Disease, Beijing, 100700, China; Henan University of Chinese Medicine, Henan, 450046, China
| | - Lin Tong
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yang Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Disease, Beijing, 100700, China
| | - Xianyu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Disease, Beijing, 100700, China
| | - Hong Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Disease, Beijing, 100700, China
| | - Jie Jiang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Disease, Beijing, 100700, China
| | - Zhenghui Chang
- Henan University of Chinese Medicine, Henan, 450046, China
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Disease, Beijing, 100700, China.
| |
Collapse
|
16
|
Adeyemi DH, Hamed MA, Oluwole DT, Omole AI, Akhigbe RE. Acetate attenuates cyclophosphamide-induced cardiac injury via inhibition of NF-kB signaling and suppression of caspase 3-dependent apoptosis in Wistar rats. Biomed Pharmacother 2024; 170:116019. [PMID: 38128178 DOI: 10.1016/j.biopha.2023.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
AIM The goal of the current study was to examine the potential therapeutic effects of sodium acetate on cardiac toxicities caused by cyclophosphamide in Wistar rats. The possible involvement of NF-kB/caspase 3 signaling was also explored. MAIN METHODS Thirty-two male Wistar rats were divided into four groups at random. (n = 8). The control animals received 0.5 mL of distilled water orally for 14 days, the acetate-treated group received 200 mg/kg/day of sodium acetate orally for 14 consecutive days, and cyclophosphamide-treated rats received 150 mg/kg /day of cyclophosphamide i.p. on day 8, while cyclophosphamide + acetate group received sodium acetate and cyclophosphamide as earlier stated. KEY FINDINGS Results showed that cyclophosphamide-induced cardiotoxicity, which manifested as a marked drop in body and cardiac weights as well as cardiac weight/tibial length, increased levels of troponin, C-reactive protein, lactate, and creatinine kinase, and lactate dehydrogenase activities in the plasma and cardiac tissue. Histopathological examination also revealed toxic cardiac histopathological changes. These alterations were associated with a significant increase in xanthine oxidase and myeloperoxidase activities, uric acid, malondialdehyde, TNF-α, IL-1β, NFkB, DNA fragmentation, and caspase 3 and caspase 9 activities in addition to a marked decline in Nrf2 and GSH levels, and SOD and catalase activities in the cardiac tissue. Acetate co-administration significantly attenuated cyclophosphamide cardiotoxicity by its antioxidant effect, preventing NFkB activation and caspase 9/caspase 3 signalings. SIGNIFICANCE This study shows that acetate co-administration may have cardio-protective effects against cyclophosphamide-induced cardiotoxicity by inhibiting NF-kB signaling and suppressing caspase-3-dependent apoptosis.
Collapse
Affiliation(s)
- D H Adeyemi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osun State, Nigeria
| | - M A Hamed
- Department of Medical Laboratory Sciences, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria; The Brainwill Laboratories, Osogbo, Osun State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - D T Oluwole
- Department of Physiology, Crescent University, Abeokuta, Ogun State, Nigeria
| | - A I Omole
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| |
Collapse
|
17
|
Hassanein EHM, Kamel EO, Gad-Elrab WM, Ahmed MA, Mohammedsaleh ZM, Ali FEM. Lansoprazole attenuates cyclophosphamide-induced cardiopulmonary injury by modulating redox-sensitive pathways and inflammation. Mol Cell Biochem 2023; 478:2319-2335. [PMID: 36717473 PMCID: PMC10520119 DOI: 10.1007/s11010-023-04662-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Cyclophosphamide (CPA) is a classical chemotherapeutic drug widely used as an anticancer and immunosuppressive agent. However, it is frequently associated with significant toxicities to the normal cells of different organs, including the lung and heart. Lansoprazole (LPZ), a proton pump inhibitor (PPI), possesses antioxidant and anti-inflammatory properties. The current study investigated how LPZ protects against CPA-induced cardiac and pulmonary damage, focusing on PPARγ, Nrf2, HO-1, cytoglobin, PI3K/AKT, and NF-κB signaling. Animals were randomly assigned into four groups: normal control group (received vehicle), LPZ only group (Rats received LPZ at a dose of 50 mg/kg/day P.O. for 10 days), CPA group (CPA was administered (200 mg/kg) as a single i.p. injection on the 7th day), and cotreatment group (LPZ plus CPA). Histopathological and biochemical analyses were conducted. Our results revealed that LPZ treatment revoked CPA-induced heart and lung histopathological alterations. Also, LPZ potently mitigated CPA-induced cardiac and pulmonary oxidative stress through the activation of PPARγ, Nrf2/HO-1, cytoglobin, and PI3K/AKT signaling pathways. Also, LPZ effectively suppressed inflammatory response as evidenced by down-regulating the inflammatory strategic controller NF-κB, MPO, and pro-inflammatory cytokines. The present findings could provide a mechanistic basis for understanding LPZ's role in CPA-induced cardiopulmonary injury through the alleviation of oxidative stress and inflammatory burden.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esam O Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Wail M Gad-Elrab
- Department of Human Anatomy & Embryology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Mohammed A Ahmed
- Pathology Department, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| |
Collapse
|
18
|
Alharthy SA, Zughaibi TA, Vij P, Tabrez S, Almashjary MN, Alharthi S, Alamri T, Alghamdi BS, Harakeh S, Azhari SA, Farsi RM, Althagafy HS, Hassanein EHM. Mirtazapine attenuated cadmium-induced neuronal intoxication by regulating Nrf2 and NF-κB/TLR4 signals. Toxicol Mech Methods 2023; 33:675-687. [PMID: 37403423 DOI: 10.1080/15376516.2023.2231530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Cadmium (Cd) is one of the most hazardous metals to the environment and human health. Neurotoxicity is of the most serious hazards caused by Cd. Mirtazapine (MZP) is a central presynaptic α2 receptor antagonist used effectively in treating several neurological disorders. This study investigated the anti-inflammatory and antioxidant activity of MZP against Cd-induced neurotoxicity. In this study, rats were randomly divided into five groups: control, MZP (30 mg/kg), Cd (6.5 mg/kg/day; i.p), Cd + MZP (15 mg/kg), and Cd + MZP (30 mg/kg). Histopathological examination, oxidative stress biomarkers, inflammatory cytokines, and the impact of Nrf2 and NF-κB/TLR4 signals were assessed in our study. Compared to Cd control rats, MZP attenuated histological abrasions in the cerebral cortex and CA1 and CA3 regions of the hippocampus as well as the dentate gyrus. MZP attenuated oxidative injury by upregulating Nrf2. In addition, MZP suppressed the inflammatory response by decreasing TNF-α, IL-1β, and IL-6 mediated by downregulating TLR4 and NF-κB. It is noteworthy that MZP's neuroprotective actions were dose-dependent. Collectively, MZP is a promising therapeutic strategy for attenuating Cd-induced neurotoxicity by regulating Nrf2, and NF-κB/TLR4 signals, pending further study in clinical settings.
Collapse
Affiliation(s)
- Saif A Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Toxicology and Forensic Sciences King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A Zughaibi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Toxicology and Forensic Sciences King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Puneet Vij
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Shams Tabrez
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Toxicology and Forensic Sciences King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed N Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badra S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sheren A Azhari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem M Farsi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
19
|
AbdElrazek DA, Ibrahim MA, Hassan NH, Hassanen EI, Farroh KY, Abass HI. Neuroprotective effect of quercetin and nano-quercetin against cyclophosphamide-induced oxidative stress in the rat brain: Role of Nrf2/ HO-1/Keap-1 signaling pathway. Neurotoxicology 2023; 98:16-28. [PMID: 37419146 DOI: 10.1016/j.neuro.2023.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Quercetin (Qu) is a powerful flavanol antioxidant that is naturally found in plants and is part of the flavonoid family. Qu has a wide range of biological properties, such as neuroprotective, anti-cancer, anti-diabetic, anti-inflammatory, and radical scavenging capabilities. However, the in vivo application of Qu is limited by its poor water solubility and low bioavailability. These issues could be addressed by utilizing Qu nanoformulations. Cyclophosphamide (CP) is a potent chemotherapeutic agent that causes severe neuronal damage and cognitive impairment due to reactive oxygen species (ROS) overproduction. The present study aimed to explore the proposed neuroprotective mechanism of quercetin (Qu) and quercetin-loaded Chitosan nanoparticles (Qu-Ch NPs) against the brain oxidative damage induced by CP in male albino rats. For this aim, thirty-six adult male rats were randomly divided into six groups (n = 6). Rats were pretreated with Qu and Qu-Ch NPs orally in doses of 10 mg/kg bwt/day for 2 weeks, and CP (75 mg/kg bwt) was administered intraperitoneally 24 h before the termination of the experiment. After 2 weeks, some neurobehavioral parameters were evaluated, and then euthanization was done to collect the brain and blood samples. Results showed that CP induces neurobehavioral deteriorations and impaired brain neurochemical status demonstrated by a significant decrease in brain glutathione (GSH), serum total antioxidant capacity (TAC), and serotonin (5-HT) levels while malondialdehyde (MDA), nitric oxide (NO), Tumor necrosis factor α (TNFα), and choline esterase (ChE) concentrations increased significantly compared to the control group. Pretreatment with Qu and Qu-Ch NPs showed a significant anti-oxidative, anti-depressive, and neuroprotective effect through modification of the above-mentioned parameters. The results were further validated by assessing the expression levels of selected genes in brain homogenates and histopathological investigations were done to pinpoint the exact brain-altered regions. It could be concluded that Qu and Qu-Ch NPs can be useful neuroprotective adjunct therapy to overcome neurochemical damage induced by CP.
Collapse
Affiliation(s)
- Dina A AbdElrazek
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Neven H Hassan
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| | - H I Abass
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Alruhaimi RS. Protective effect of arbutin against cyclophosphamide-induced oxidative stress, inflammation, and hepatotoxicity via Nrf2/HO-1 pathway in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68101-68110. [PMID: 37119491 DOI: 10.1007/s11356-023-27354-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Cyclophosphamide (CP) is a potent anticancer drug widely employed in chemotherapy against various types of cancer. However, CP leads to toxicity to non-targeted organs, including the liver and this limits its clinical use. This study explored the role of arbutin (ARB) against CP-mediated oxidative and inflammatory reactions and hepatotoxicity. Rats were administered ARB (25 and 50 mg/kg) for 14 days and CP (150 mg/kg). CP triggered liver tissue injury with marked increase in serum AST, ALT, ALP, and bilirubin, and hepatic malondialdehyde (MDA) and nitric oxide (NO) coupled with diminution of GSH, SOD, catalase, and GPx. Liver NF-kB p65, NOS, IL-6, TNF-α, Bax and caspase-3 were upregulated by CP injection and IL-10 and Bcl-2 were decreased. ARB prevented liver injury, suppressed MDA, NO, NF-kB p65, inflammatory markers, Bax and caspase-3 in CP-treated rats. ARB restored antioxidants, IL-10 and Bcl-2, and enhanced Nrf2 and hemeoxygenase-1 (HO) both gene and protein in the liver of rats. In conclusion, these results pinpointed the protective role of ARB on oxidative and inflammatory reactions, apoptosis, and hepatotoxicity in rats. This hepatoprotective activity was linked to the ability of ARB to modulate Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
21
|
Hassanein EHM, Ali FEM, Mohammedsaleh ZM, Atwa AM, Elfiky M. The involvement of Nrf2/HO-1/cytoglobin and Ang-II/NF-κB signals in the cardioprotective mechanism of lansoprazole against cisplatin-induced heart injury. Toxicol Mech Methods 2023; 33:316-326. [PMID: 36258671 DOI: 10.1080/15376516.2022.2137870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 12/08/2022]
Abstract
Cardiac toxicity is a serious adverse effect of cisplatin (CIS). Lansoprazole (LPZ) is a proton pump inhibitor with promising cardioprotective effects. Our study planned to examine the cardioprotective effect of LPZ against CIS-induced cardiac injury. To achieve this goal, 32 male rats were randomly allocated into four groups. CIS, 7 mg/kg, was injected i.p. on the fifth day of the experiment. LPZ was administered via oral gavage at a dose of 50 mg/kg. The present study revealed that CIS injection induced a remarkable cardiac injury evidenced by an increase in serum ALP, AST, CK-MB, LDH, and troponin-I levels. The cardiac oxidative damage was also observed after CIS injection and mediated by downregulation of GSH, SOD, GST, Nrf2, HO-1, PPAR-γ, and cytoglobin levels associated with the upregulation of MDA content. Besides, CIS injection caused a significant inflammatory reaction mediated by alteration of cardiac NF-κB, STAT-3, p-STAT-3, and IκB expressions. Additionally, cardiac Ang-II expression was significantly increased in CIS control rats, while Ang 1-7 expression was significantly reduced relative to normal rats. In contrast, LPZ administration remarkably ameliorated these changes in the heart of CIS-intoxicated rats. Collectively, LPZ potently attenuated cardiac toxicity induced by CIS via regulation of Nrf2/HO-1, PPAR-γ, cytoglobin, IκB/NF-κB/STAT-3, and Ang-II/Ang 1-7 signals.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Elfiky
- Human Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin ElKoum-Menoufia, Egypt
- Anatomy Department, Faculty of Medicine, Batterjee Medical College, Jedda, Saudi Arabia
| |
Collapse
|
22
|
Mahmoud NA, Hassanein EHM, Bakhite EA, Shaltout ES, Sayed AM. Apocynin and its chitosan nanoparticles attenuated cisplatin-induced multiorgan failure: Synthesis, characterization, and biological evaluation. Life Sci 2023; 314:121313. [PMID: 36565813 DOI: 10.1016/j.lfs.2022.121313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Cisplatin (CDDP) is an effective chemotherapeutic drug that has been used successfully in treating various tumors. Although its higher antineoplastic agent activity, CDDP exhibited severe side effects that limit its use. CDDP-induced toxicity is attributed to oxidative stress and inflammation. Apocynin (APO) is a bioactive phytochemical with potent antioxidant and anti-inflammatory properties. However, pharmaceutical experts face significant hurdles due to the limited bioavailability and quick elimination of APO. Therefore, we synthesized a chitosan (CTS)-based nano delivery system using the ionic gelation method to enhance APO bioactivity. CTS-APO-NPs were characterized using different physical and chemical approaches, including FTIR, XRD, TGA, Zeta-sizer, SEM, and TEM. In addition, the protective effect of CTS-APO-NPs against CDDP-induced nephrotoxicity, hepatotoxicity, and cardiotoxicity in rats was evaluated. CTS-APO-NPs restored serum biomarkers and antioxidants to their normal levels. Also, histopathological examination was used to assess the recovery of heart, kidney, and liver tissues. CTS-APO-NPs attenuated the oxidative stress mediated by Nrf2 activation while it dampened inflammation mediated by NF-κB suppression. CTS-APO-NPs is a potentially attractive target for more therapeutic trials.
Collapse
Affiliation(s)
- Nahed A Mahmoud
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Egypt
| | - Etify A Bakhite
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Eman S Shaltout
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
23
|
Xu H, Xu S, Li L, Wu Y, Mai S, Xie Y, Tan Y, Li A, Xue F, He X, Li Y. Integrated metabolomics, network pharmacology and biological verification to reveal the mechanisms of Nauclea officinalis treatment of LPS-induced acute lung injury. Chin Med 2022; 17:131. [PMID: 36434729 PMCID: PMC9700915 DOI: 10.1186/s13020-022-00685-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a severe inflammatory disease, underscoring the urgent need for novel treatments. Nauclea officinalis Pierre ex Pitard (Danmu in Chinese, DM) is effective in treating inflammatory respiratory diseases. However, there is still no evidence of its protective effect against ALI. METHODS Metabolomics was applied to identify the potential biomarkers and pathways in ALI treated with DM. Further, network pharmacology was introduced to predict the key targets of DM against ALI. Then, the potential pathways and key targets were further verified by immunohistochemistry and western blot assays. RESULTS DM significantly improved lung histopathological characteristics and inflammatory response in LPS-induced ALI. Metabolomics analysis showed that 16 and 19 differential metabolites were identified in plasma and lung tissue, respectively, and most of these metabolites tended to recover after DM treatment. Network pharmacology analysis revealed that the PI3K/Akt pathway may be the main signaling pathway of DM against ALI. The integrated analysis of metabolomics and network pharmacology identified 10 key genes. These genes are closely related to inflammatory response and cell apoptosis of lipopolysaccharide (LPS)-induced ALI in mice. Furthermore, immunohistochemistry and western blot verified that DM could regulate inflammatory response and cell apoptosis by affecting the PI3K/Akt pathway, and expression changes in Bax and Bcl-2 were also triggered. CONCLUSION This study first integrated metabolomics, network pharmacology and biological verification to investigate the potential mechanism of DM in treating ALI, which is related to the regulation of inflammatory response and cell apoptosis. And the integrated analysis can provide new strategies and ideas for the study of traditional Chinese medicines in the treatment of ALI.
Collapse
Affiliation(s)
- Han Xu
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, College of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Hainan 571199 Haikou, People’s Republic of China
| | - Sicong Xu
- grid.443397.e0000 0004 0368 7493College of Biomedical Information and Engineering, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, No. 3 Xueyuan Road, Haikou, 571199 Hainan People’s Republic of China
| | - Liyan Li
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, College of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Hainan 571199 Haikou, People’s Republic of China
| | - Yuhuang Wu
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, College of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Hainan 571199 Haikou, People’s Republic of China
| | - Shiying Mai
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, College of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Hainan 571199 Haikou, People’s Republic of China
| | - Yiqiang Xie
- grid.443397.e0000 0004 0368 7493College of Chinese Medicine, Hainan Medical University, No. 3 Xueyuan Road, Haikou, 571199 Hainan People’s Republic of China
| | - Yinfeng Tan
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, College of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Hainan 571199 Haikou, People’s Republic of China
| | - Ailing Li
- grid.443397.e0000 0004 0368 7493The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Av., Haikou, 571199 Hainan People’s Republic of China
| | - Fengming Xue
- grid.443397.e0000 0004 0368 7493The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Av., Haikou, 571199 Hainan People’s Republic of China
| | - Xiaoning He
- grid.443397.e0000 0004 0368 7493The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Av., Haikou, 571199 Hainan People’s Republic of China
| | - Yonghui Li
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, College of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Hainan 571199 Haikou, People’s Republic of China ,grid.443397.e0000 0004 0368 7493The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Av., Haikou, 571199 Hainan People’s Republic of China
| |
Collapse
|
24
|
Upregulation of Nrf2/HO-1 Signaling and Attenuation of Oxidative Stress, Inflammation, and Cell Death Mediate the Protective Effect of Apigenin against Cyclophosphamide Hepatotoxicity. Metabolites 2022; 12:metabo12070648. [PMID: 35888772 PMCID: PMC9322057 DOI: 10.3390/metabo12070648] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Liver injury is among the adverse effects of the chemotherapeutic agent cyclophosphamide (CP). This study investigated the protective role of the flavone apigenin (API) against CP-induced liver damage, pointing to the involvement of Nrf2/HO-1 signaling. Rats were treated with API (20 and 40 mg/kg) for 15 days and received CP (150 mg/kg) on day 16. CP caused liver damage manifested by an elevation of transaminases, alkaline phosphatase (ALP), and lactate dehydrogenase (LDH), and histological alterations, including granular vacuolation, mononuclear cell infiltration, and hydropic changes. Hepatic reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO) were increased and glutathione (GSH) and antioxidant enzymes were decreased in CP-administered rats. CP upregulated the inflammatory markers NF-κB p65, TNF-α, IL-6, and iNOS, along with the pro-apoptotic Bax and caspase-3. Pre-treatment with API ameliorated circulating transaminases, ALP, and LDH, and prevented histopathological changes in CP-intoxicated rats. API suppressed ROS, MDA, NO, NF-κB p65, iNOS, inflammatory cytokines, oxidative DNA damage, Bax, and caspase-3 in CP-intoxicated rats. In addition, API enhanced hepatic antioxidants and Bcl-2 and boosted the Nrf2 and HO-1 mRNA abundance and protein. In conclusion, API is effective in preventing CP hepatotoxicity by attenuating oxidative stress, the inflammatory response, and apoptosis. The hepatoprotective efficacy of API was associated with the upregulation of Nrf2/HO-1 signaling.
Collapse
|
25
|
Wang Y, Shen Z, Zhao S, Huang D, Wang X, Wu Y, Pei C, Shi S, Jia N, He Y, Wang Z. Sipeimine ameliorates PM2.5-induced lung injury by inhibiting ferroptosis via the PI3K/Akt/Nrf2 pathway: A network pharmacology approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113615. [PMID: 35567927 DOI: 10.1016/j.ecoenv.2022.113615] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) exposure can cause lung injury and a large number of respiratory diseases. Sipeimine is a steroidal alkaloid isolated from Fritillaria roylei which has been associated with anti-inflammatory, antitussive and antiasthmatic properties. In this study, we explored the potential effects of sipeimine against PM2.5-induced lung injury in Sprague Dawley rats. Sipeimine alleviated lung injury caused by PM2.5 and decreased pulmonary edema, inflammation and the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the bronchoalveolar lavage fluid. In addition, sipeimine upregulated the glutathione (GSH) expression and downregulated the expression of 4-hydroxynonenal (4-HNE), tissue iron and malondialdehyde (MDA). The downregulation of proteins involved in ferroptosis, including nuclear factor E2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), heme oxygenase-1 (HO-1) and solute carrier family 7 member 11 (SLC7A11) was reversed by sipeimine. The administration of RSL3, a potent ferroptosis-triggering agent, blocked the effects of sipeimine. Using network pharmacology, we found that the effects of sipeimine were presumably mediated through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. A PI3K inhibitor (LY294002) blocked the PI3K/Akt signaling pathway and reversed the effects of sipeimine. Overall, this study suggested that the protective effect of sipeimine against PM2.5-induced lung injury was mainly mediated through the PI3K/Akt pathway, ultimately leading to a reduction in ferroptosis.
Collapse
Affiliation(s)
- Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| |
Collapse
|
26
|
You Y, He M. Simvastatin Alleviates Vascular Cognitive Impairment Caused by Lacunar Cerebral Infarction Through Protein Kinase B/Nuclear Factor Erythroid 2–Related Factor 2 (AKT/Nrf2) Signaling Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lacunar cerebral infarction (LACI) is one of the main causes of vascular cognitive impairment (VCI). Herein, this study explored the potential effect of Simvastatin (Sim) on VCI secondary to LACI and Akt/Nrf2 signaling transduction and apoptosis. We established a rat model of VCI and
the animals were administered with Sim (40 mg/kg and 80 mg/kg) every day for 28 days. After that, the cognition and memory abilities of rats were assessed together with analysis of morphological changes of hippocampal neurons by immunohistochemistry staining and level of anti-apoptotic related
proteins and Akt and Nrf2 signaling proteins by western blot. Compared with normal saline (control group), Sim administration significantly improved the capacity spatial learning and relieved the memory impairment with an improvement in morphological defects. Importantly, Sim treatment restored
the p-Akt, t-Nrf2, n-Nrf2 and HO-1 expression along with up-regulation of Bcl-2 and down-regulation of Bax. In conclusion, Sim improves cognitive and morphological disorders induced by LACI possibly through regulating Akt/Nrf2 signaling pathway. These evidence might promote the development
of Sim-based treatment for VCI and LACI.
Collapse
Affiliation(s)
- Yiping You
- Department of Neurology, People’s Hospital, Wuxi 214000, Jiangsu, China
| | - Min He
- Department of Nail Breast, The Second People’s Hospital, Wuxi 214000, Jiangsu, China
| |
Collapse
|
27
|
Abd El-Ghafar OAM, Hassanein EHM, Ali FEM, Omar ZMM, Rashwan EK, Mohammedsaleh ZM, Sayed AM. Hepatoprotective effect of acetovanillone against methotrexate hepatotoxicity: Role of Keap-1/Nrf2/ARE, IL6/STAT-3, and NF-κB/AP-1 signaling pathways. Phytother Res 2022; 36:488-505. [PMID: 34939704 DOI: 10.1002/ptr.7355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/14/2021] [Accepted: 11/27/2021] [Indexed: 11/09/2022]
Abstract
This study targeted to examine the protective effects of acetovanillone (AV) against methotrexate (MTX)-induced hepatotoxicity. Thirty-two rats were allocated into four groups of eight animals; Group 1: Normal; Group 2: administered AV (100 ml/kg; P.O.) for 10 days; Group 3: challenged with MTX (20 mg/kg, i.p; single dose); Group 4: administered AV 5 days before and 5 days after MTX. For the first time, this study affords evidence for AV's hepatoprotective effects on MTX-induced hepatotoxicity. The underlined mechanisms behind its hepatic protection include counteracting MTX-induced oxidative injury via down-regulation of NADPH oxidase and up-regulation of Nrf2/ARE, SIRT1, PPARγ, and cytoglobin signals. Additionally, AV attenuated hepatic inflammation through down-regulation of IL-6/STAT-3 and NF-κB/AP-1 signaling. Network pharmacology analysis exhibited a high enrichment score between the interacting proteins and strongly suggested the intricate and essential role of the target proteins regulating MTX-induced oxidative damage and inflammatory perturbation. Besides, AV increased the in vitro cytotoxic activity of MTX toward PC-3, HeLa, and K562 cancer cell lines. On the whole, our investigation suggested that AV might be regarded as a promising adjuvant for the amelioration of MTX hepatotoxicity and/or increased its in vitro antitumor efficacy, and it could be used in patients receiving MTX.
Collapse
Affiliation(s)
- Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Zainab M M Omar
- Department of Pharmacology, College of Medicine, Al-Azhar University, Assiut, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
28
|
Refaie MM, El-Hussieny M, Bayoumi AM, Shehata S, Welson NN, Abdelzaher WY. Simvastatin cardioprotection in cyclophosphamide-induced toxicity via the modulation of inflammasome/caspase1/interleukin1β pathway. Hum Exp Toxicol 2022; 41:9603271221111440. [PMID: 35762198 DOI: 10.1177/09603271221111440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Drug-induced cardiotoxicity is a serious adverse effect that occurs during the administration of chemotherapeutic agents such as cyclophosphamide (CYC). Therefore, there is a critical need to find cardioprotective agents to keep the heart healthy. The current study aimed to investigate the protective effect of simvastatin (SIM) against CYC-induced heart damage and evaluate different mechanisms involved in mediating this effect, including the inflammasome/caspase1/interleukin1β (IL1β) pathway and endothelial nitric oxide synthase (eNOS). 36 rats were randomly assigned to one of four groups: a control group that received only vehicles, a CYC group that received CYC (150 mg/kg/day) i.p. on the fourth and fifth days, a CYC+SIM group that received SIM (10 mg/kg/day) orally for 5 days and CYC (150 mg/kg/day) i.p. on the fourth and fifth days, and a CYC+SIM+ Nitro- ω-L-arginine (L-NNA) group that received L-NNA (25 mg/kg/day, SIM (10 mg/kg/day) orally for 5 days and CYC (150 mg/kg/day) i.p. on the 4th and 5th days. The CYC group revealed an obvious elevation in cardiac enzymes and heart weights with toxic histopathological changes. Moreover, there was an increase in malondialdehyde (MDA), tumor necrosis factor-alpha (TNFα) levels, and up-regulation of the NLRP3inflammasome/caspase1/IL1β pathway. In addition, total antioxidant capacity (TAC), eNOS, reduced glutathione (GSH), and superoxide dismutase (SOD) significantly decreased. CYC-induced cardiotoxicity was most properly reversed by SIM through its anti-oxidant, anti-inflammatory, and anti-apoptotic actions with the stimulation of eNOS. The co-administration of L-NNA diminished the protective effect of SIM, indicating the essential role of eNOS in mediating this effect. Therefore, SIM ameliorated CYC-induced cardiotoxicity.
Collapse
Affiliation(s)
- Marwa Mm Refaie
- Department of Pharmacology, Faculty of Medicine, 68877Minia University, El-Minia, Egypt
| | - Maram El-Hussieny
- Department of Pathology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Asmaa Ma Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, Egypt.,Department of Biochemistry, 215098Kyushu University Graduate School of Medical Sciences, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, 158411Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|