1
|
Shanmugam R, Arthi B, Pragya P, Girigoswami A, Koyeli G, Pemula G, Senthilkumar N, Arumugam VA. A Comprehensive Assessment of the Antioxidant Capacity of Varied
Bacopa Monnieri
Extracts and Its Toxicity on Early Life Stages of Zebrafish Embryos. Nat Prod Commun 2025; 20. [DOI: 10.1177/1934578x251327815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
Abstract
Background:
Bacopa monnieri
is an herbal plant used predominantly in Ayurvedic medicine. Though this plant has pharmacological properties, it is pivotal to acknowledge its antioxidant capacity and toxicological properties which are not well established.
Objectives:
The principal aim of this study is to elucidate the antioxidant capacity and toxicological properties of
B. monnieri
leaf extracts in the early life stages of
Danio rerio
(zebrafish) embryos.
Methods:
This was a comparative identification of the antioxidant capacities of five different extracts of aqueous, ethanol, acetone, chloroform, and petroleum ether of
B. monnieri
leaf by investigating through
in vitro
antioxidant assays such as Diphenyl-1-Picrylhydrazyl (DPPH), azinobis[3-Ethylbenzothiazoline-6-Sulfonate] (ABTS), ferric reducing antioxidant power (FRAP), and total antioxidant capacity (TAC) and enzymatic assays such as SOD, CAT, Px, AO, and PPO. Additionally tested for the qualitative and quantitative estimation of phytochemicals. Furthermore, the Fish Embryo Toxicity (FET) assay has been performed to analyze the developmental deformities, lethal and sublethal toxic effects, hatch rate, heart rate, and survival of zebrafish embryos upon treatment with the aqueous plant extract.
Result:
The results showed the availability of polyphenols and non-phenolic macromolecules. Total phenol and flavonoid content were greater in the aqueous extract and tannin content was higher in ethanol extract. Among the five extracts, the aqueous extract showed greater antioxidant and free radical scavenging activities. Furthermore, the investigation addressed the toxicological effects of aqueous extract on zebrafish embryos that resulted in the least developmental abnormalities and delayed hatching rate at greater concentrations along with 100% mortality at 96 h Post Fertilization (hpf) of higher concentrations.
Conclusion:
The results indicate that
B. monnieri
may serve a strong prophylactic action against reactive oxygen species-related diseases with the least sublethal effects.
Collapse
Affiliation(s)
- Ramya Shanmugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Boro Arthi
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Pallavi Pragya
- School of Biomedical Engineering, IIT (BHU), Varanasi, Uttar Pradesh
| | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| | - Girigoswami Koyeli
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Gowtham Pemula
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Natchiappan Senthilkumar
- Institute of Forest Genetics and Tree Breeding (IFGTB) (Indian Council of Forestry Research and Education-ICFRE), Coimbatore, Tamil Nadu, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman D, Karaman R. Promising Natural Remedies for Alzheimer's Disease Therapy. Molecules 2025; 30:922. [PMID: 40005231 PMCID: PMC11858286 DOI: 10.3390/molecules30040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the intricacies of Alzheimer's disease (AD), its origins, and the potential advantages of various herbal extracts and natural compounds for enhancing memory and cognitive performance. Future studies into AD treatments are encouraged by the review's demonstration of the effectiveness of phytoconstituents that were extracted from a number of plants. In addition to having many beneficial effects, such as improved cholinergic and cognitive function, herbal medicines are also much less harmful, more readily available, and easier to use than other treatments. They also pass without difficulty through the blood-brain barrier (BBB). This study focused on natural substances and their effects on AD by using academic databases to identify peer-reviewed studies published between 2015 and 2024. According to the literature review, 66 phytoconstituents that were isolated from 21 distinct plants have shown efficacy, which could be encouraging for future research on AD therapies. Since most clinical trials produce contradictory results, the study suggests that larger-scale studies with longer treatment durations are necessary to validate or refute the therapeutic efficacy of herbal AD treatments.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Department of Chemistry, Birzeit University, West Bank, Ramallah 00972, Palestine;
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Aseel Wasel Ghanem
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Sara AbuMadi
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Dania Thaher
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Weam Jaghama
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Donia Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
3
|
Dadhich A, Jain R, Sharma MM. Bacopa monnieri (L.) Wettst. plant extract mediated synthesis of metallic nanoparticles and regulation of bacoside-A- memory enhancer compound and their application: A comprehensive review. PLANT NANO BIOLOGY 2025; 11:100133. [DOI: 10.1016/j.plana.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Gupta V, Prasad S. Differential Alterations in the Expression of AMPA Receptor and Its Trafficking Proteins in the Hippocampus Are Associated with Recognition Memory Impairment in the Rotenone-Parkinson's Disease Mouse Model: Neuroprotective Role of Bacopa monnieri Extract CDRI 08. Mol Neurobiol 2025; 62:2086-2104. [PMID: 39073529 DOI: 10.1007/s12035-024-04392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Parkinson's disease (PD), an age-associated neurodegenerative motor disorder, is associated with dementia and cognitive decline. However, the precise molecular insight into PD-induced cognitive decline is not fully understood. Here, we have investigated the possible alterations in the expression of glutamate receptor and its trafficking/scaffolding/regulatory proteins underlying the memory formation and neuroprotective effects of a specialized Bacopa monnieri extract, CDRI-08 (BME) in the hippocampus of the rotenone-induced PD mouse model. Our Western blotting and qRT-PCR data reveal that the PD-induced recognition memory decline is associated with significant upregulation of the AMPA receptor subunit GluR1 and downregulation of GluR2 subunit genes in the hippocampus of rotenone-affected mice as compared to the vehicle control. Further, expressions of the trafficking proteins are significantly upregulated in the hippocampus of rotenone-affected mice compared to the vehicle control. Our results also reveal that the above alterations in the hippocampus are associated with similar expression patterns of total CREB, pCREB, and BDNF. BME (CDRI-08, 200 mg/kg BW) reverses the expression of AMPA receptor subunits, their trafficking proteins differentially, and the transcriptional modulatory proteins depending on whether the BME treatment was given before or after the rotenone treatment. Our data suggest that expression of the above genes is significantly reversed in the BME pre-treated mice subjected to rotenone treatment towards their levels in the control mice compared to its treatment after rotenone administration. Our results provide the possible molecular basis underlying the rotenone-induced recognition memory decline, conditions mimicking the PD symptoms in mouse model and neuroprotective action of bacoside A and bacoside B (58%)-enriched Bacopa monnieri extract (BME) in the hippocampus.
Collapse
Affiliation(s)
- Vartika Gupta
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - S Prasad
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
5
|
Gupta A, Roy A, Roy A, Raja V, Sharma K, Verma R. Role of Medicinal Plants in the Management of Multiple Sclerosis. Curr Pharm Biotechnol 2025; 26:665-679. [PMID: 39390830 DOI: 10.2174/0113892010324850240923181408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
There is a rapid spread of Multiple Sclerosis disorder across the globe, around 2.8 million cases of Multiple Sclerosis in the world. Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by demyelination, neuroinflammation, and a wide spectrum of clinical manifestations. Many drugs have been tested on MS patients but there is no effective treatment for MS till now. So to inhibit the symptoms caused by MS we performed a study in which we identified various naturally occurring materials with neuroprotective effects on the body that can treat Multiple Sclerosis. The therapeutic strategies portion of the paper reviews the array of disease-modifying therapies currently available for MS management. This paper evaluated their mechanisms of action, efficacy, and safety profiles. It also addressed emerging treatment paradigms by using different naturally occurring materials, including personalized medicine approaches and novel therapies in development. This paper provides a comprehensive overview of the current state of knowledge regarding MS, focusing on its pathogenesis, diagnostic approaches, and therapeutic strategies.
Collapse
Affiliation(s)
- Aaryan Gupta
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Amit Roy
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Vaseem Raja
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University Gharuan, Mohali, Punjab, 140413, India
| | - Kuldeep Sharma
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140401, Punjab, India
| | - Rajan Verma
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, 174103, India
| |
Collapse
|
6
|
Guha T, Bhattacharya E, Dutta M, Dutta A, Dandapat M, Bose R, Biswas SM. Enhanced bacoside synthesis in Bacopa monnieri plants using seed exudates from Tamarindus indica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109287. [PMID: 39549384 DOI: 10.1016/j.plaphy.2024.109287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Diverse allelochemicals are released from different plant parts via leaching, exudation, volatilization, etc., which can induce either stimulatory or inhibitory effects depending on the target plant species. Very few reports provide details about allelopathic interaction through seed exudates. Since Tamarindus indica L. seed exudate (TSE) has been known to exhibit growth stimulatory effect on lettuce, radish, and sesame, in the present study we have evaluated its role in regulating the secondary metabolism of an over-exploited medicinal herb, Bacopa monnieri (L.) Pennel. The bacoside biosynthesis rate of B. monnieri is quite low in comparison to its increasingly high demands in the pharmaceutical industry. Currently, researches are aimed towards enhancing the biosynthesis of this secondary metabolite in planta by utilizing external stress factors. Presently, 7-day-old B. monnieri seedlings were treated with 1:16, 1:8, 1:4, 1:3, and 1:2 (seed weight: water) TSE. Maximum upregulation of secondary metabolite contents was found in the 1:4 (seed weight: water) TSE treatment set. This TSE treatment also enhanced H2O2 and salicylic acid production leading to the upregulation of the genes related to the MVA pathway (BmAACT, BmHMGR, BmMDD, BmSQS, and BmBAS) which are responsible for bacoside biosynthesis and 1.7-fold higher bacoside level was found in TSE treated set compared to control. LC-HRMS analysis of TSE confirmed the presence of alkaloid (lupanine), phenol (chlorogenic acid), and organic acid (mucic acid), which are identified as potential allelochemicals responsible for modulating the secondary metabolism of B. monnieri. Thus, this study highlights a sustainable approach towards enhancing bacoside production in planta.
Collapse
Affiliation(s)
- Titir Guha
- Agricultural& Ecological Research Unit, Biological Science Division Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India; Department of Biology, Indian Institute of Science Education and Research, Tirupati, Srinivasapuram, Yerpedu Mandal, Tirupati, 517619, Andhra Pradesh, India.
| | - Ekta Bhattacharya
- Agricultural& Ecological Research Unit, Biological Science Division Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India
| | - Madhurima Dutta
- Agricultural& Ecological Research Unit, Biological Science Division Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India
| | - Anisha Dutta
- Agricultural& Ecological Research Unit, Biological Science Division Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India
| | - Moumita Dandapat
- Agricultural& Ecological Research Unit, Biological Science Division Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India
| | - Rahul Bose
- Agricultural& Ecological Research Unit, Biological Science Division Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India
| | - Suparna Mandal Biswas
- Agricultural& Ecological Research Unit, Biological Science Division Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India.
| |
Collapse
|
7
|
Roy D, Manumol M, Alagarasu K, Parashar D, Cherian S. Phytochemicals of Different Medicinal Herbs as Potential Inhibitors Against Dengue Serotype 2 Virus: A Computational Approach. Mol Biotechnol 2024:10.1007/s12033-024-01282-8. [PMID: 39264526 DOI: 10.1007/s12033-024-01282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Dengue is one of the major mosquito-borne infectious diseases of the present century, reported to affect about 100-400 million people globally. The lack of effective therapeutic options has inspired several in vitro and in silico studies for the search of antivirals. Our previous study revealed the anti-dengue activity of different plant extracts from Plumeria alba, Bacopa monnieri, Vitex negundo, and Ancistrocladus heyneanus. Therefore, the current in silico study was designed to identify the phytochemicals present in the aforementioned plants, which are possibly responsible for the anti-dengue activity. Different plant databases as well as relevant literature were explored to find out the major compounds present in the above-stated plants followed by screening of the retrieved phytochemicals for the assessment of their binding affinity against different dengue viral proteins via molecular docking. The best poses of protein-ligand complexes obtained after molecular docking were selected for the calculation of binding free energy via MM-GBSA method. Based on the highest docking score and binding energy, six complexes were considered for further analysis. To analyze the stability of the complex, 100 ns molecular dynamics (MD) simulations were carried out using Desmond module in the Schrodinger suite. The MD simulation analysis showed that four compounds viz. liriodendrin, bacopaside VII, isoorientin, and cynaroside exhibited stability with viral targets including the RdRp, NS3 helicase, and E protein indicating their potential as novel anti-dengue antivirals.
Collapse
Affiliation(s)
- Diya Roy
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - M Manumol
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - Kalichamy Alagarasu
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - Deepti Parashar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - Sarah Cherian
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India.
| |
Collapse
|
8
|
Mankar SD, Parjane SR, Siddheshwar SS, Dighe SB. Formulation, Optimization and In-Vivo Characterization of Thermosensitive In-Situ Nasal Gel Loaded with Bacoside a for Treatment of Epilepsy. AAPS PharmSciTech 2024; 25:151. [PMID: 38954171 DOI: 10.1208/s12249-024-02870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
The intranasal route has demonstrated superior systemic bioavailability due to its extensive surface area, the porous nature of the endothelial membrane, substantial blood flow, and circumvention of first-pass metabolism. In traditional medicinal practices, Bacopa monnieri, also known as Brahmi, is known for its benefits in enhancing cognitive functions and potential effects in epilepsy. This study aimed to develop and optimize a thermosensitive in-situ nasal gel for delivering Bacoside A, the principal active compound extracted from Bacopa monnieri. The formulation incorporated Poloxamer 407 as a thermogelling agent and HPMC K4M as the Mucoadhesive polymer. A 32-factorial design approach was employed for Optimization. Among the formulations. F7 exhibited the most efficient Ex-vivo permeation through the nasal mucosa, achieving 94.69 ± 2.54% permeation, and underwent a sol-gel transition at approximately 30.48 °C. The study's factorial design revealed that gelling temperature and mucoadhesive strength were critical factors influencing performance. The potential of in-situ nasal Gel (Optimized Batch-F7) for the treatment of epilepsy was demonstrated in an in-vivo investigation using a PTZ-induced convulsion model. This formulation decreased both the occurrence and intensity of seizures. The optimized formulation F7 showcases significant promise as an effective nasal delivery system for Bacoside A, offering enhanced bioavailability and potentially increased efficacy in epilepsy treatment.
Collapse
Affiliation(s)
| | - Shraddha Ranjan Parjane
- Pravara Rural College of Pharmacy, Pravaranagar, Loni (Bk), Ahmednagar, Maharashtra, 413736, India
| | | | - Santosh Bhausaheb Dighe
- Pravara Rural College of Pharmacy, Pravaranagar, Loni (Bk), Ahmednagar, Maharashtra, 413736, India
| |
Collapse
|
9
|
Tripathi PN, Lodhi A, Rai SN, Nandi NK, Dumoga S, Yadav P, Tiwari AK, Singh SK, El-Shorbagi ANA, Chaudhary S. Review of Pharmacotherapeutic Targets in Alzheimer's Disease and Its Management Using Traditional Medicinal Plants. Degener Neurol Neuromuscul Dis 2024; 14:47-74. [PMID: 38784601 PMCID: PMC11114142 DOI: 10.2147/dnnd.s452009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. While there is currently no cure for AD, several pharmacotherapeutic targets and management strategies have been explored. Additionally, traditional medicinal plants have gained attention for their potential role in AD management. Pharmacotherapeutic targets in AD include amyloid-beta (Aβ) aggregation, tau protein hyperphosphorylation, neuroinflammation, oxidative stress, and cholinergic dysfunction. Traditional medicinal plants, such as Ginkgo biloba, Huperzia serrata, Curcuma longa (turmeric), and Panax ginseng, have demonstrated the ability to modulate these targets through their bioactive compounds. Ginkgo biloba, for instance, contains flavonoids and terpenoids that exhibit neuroprotective effects by reducing Aβ deposition and enhancing cerebral blood flow. Huperzia serrata, a natural source of huperzine A, has acetylcholinesterase-inhibiting properties, thus improving cholinergic function. Curcuma longa, enriched with curcumin, exhibits anti-inflammatory and antioxidant effects, potentially mitigating neuroinflammation and oxidative stress. Panax ginseng's ginsenosides have shown neuroprotective and anti-amyloidogenic properties. The investigation of traditional medicinal plants as a complementary approach to AD management offers several advantages, including a lower risk of adverse effects and potential multi-target interactions. Furthermore, the cultural knowledge and utilization of these plants provide a rich source of information for the development of new therapies. However, further research is necessary to elucidate the precise mechanisms of action, standardize preparations, and assess the safety and efficacy of these natural remedies. Integrating traditional medicinal-plant-based therapies with modern pharmacotherapies may hold the key to a more comprehensive and effective approach to AD treatment. This review aims to explore the pharmacotherapeutic targets in AD and assess the potential of traditional medicinal plants in its management.
Collapse
Affiliation(s)
- Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Ankit Lodhi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Sachchida Nand Rai
- Center of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nilay Kumar Nandi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Shweta Dumoga
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Pooja Yadav
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Amit Kumar Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Santosh Kumar Singh
- Center of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Abdel-Nasser A El-Shorbagi
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Sachin Chaudhary
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
10
|
Rathour A, Gupte SS, Gupta D, Singh S, Shrivastava S, Yadav D, Shukla S. Modulatory potential of Bacopa monnieri against aflatoxin B1 induced biochemical, molecular and histological alterations in rats. Toxicol Res (Camb) 2024; 13:tfae060. [PMID: 38655144 PMCID: PMC11033570 DOI: 10.1093/toxres/tfae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/17/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Oxidative injury is concerned with the pathogenesis of several liver injuries, including those from acute liver failure to cirrhosis. This study was designed to explore the antioxidant activity of Bacopa monnieri (BM) on Aflatoxin B1 (AFB1) induced oxidative damage in Wistar albino rats. Aflatoxin B1 treatment (200 μg/kg/day, p.o.) for 28 days induced oxidative injury by a significant alteration in serum liver function test marker enzymes (AST, ALT, ALP, LDH, albumin and bilirubin), inflammatory cytokines (IL-6, IL-10 and TNF-α), thiobarbituric acid reactive substances (TBARS) along with reduction of antioxidant enzymes (GSH, SOD, CAT), GSH cycle enzymes and drug-metabolizing enzymes (AH and AND). Treatment of rats with B. monnieri (20, 30 and 40 mg/kg for 5 days, p.o.) after 28 days of AFB1 intoxication significantly restored these parameters near control in a dose-dependent way. Histopathological examination disclosed extensive hepatic injuries, characterized by cellular necrosis, infiltration, congestion and sinusoidal dilatation in the AFB1-treated group. Treatment with B. monnieri significantly reduced these toxic effects resulting from AFB1. B. monnieriper se group (40 mg/kg) did not show any significant change and proved safe. The cytotoxic activity of B. monnieri was also evaluated on HepG2 cells and showed a good percentage of cytotoxic activity. This finding suggests that B. monnieri protects the liver against oxidative damage caused by AFB1, which aids in the evaluation of the traditional usage of this medicinal plant.
Collapse
Affiliation(s)
- Arti Rathour
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| | - Shamli S Gupte
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| | - Divya Gupta
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| | - Shubham Singh
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, CG 495009, India
| | - Sadhana Shrivastava
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| | - Deepa Yadav
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| | - Sangeeta Shukla
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| |
Collapse
|
11
|
Vo TP, Nguyen THP, Nguyen VK, Dang TCT, Nguyen LGK, Chung TQ, Vo TTH, Nguyen DQ. Extracting bioactive compounds and proteins from Bacopa monnieri using natural deep eutectic solvents. PLoS One 2024; 19:e0300969. [PMID: 38551952 PMCID: PMC10980249 DOI: 10.1371/journal.pone.0300969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
This study employed novel extraction methods with natural deep eutectic solvents (NADES) to extract bioactive compounds and proteins from Bacopa monnieri leaves. The conditional influence of ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), and enzymatic-assisted extraction (EAE) on the recovery efficiency of phenolics, proteins, flavonoids, and terpenoids was evaluated. The conditions of UAE were 50 mL/g LSR, 600W of ultrasonic power, and 30% water content with 40°C for 1 min to obtain the highest bioactive compounds and protein contents. The conditions of MAE were 40 mL/g LSR, 400W of microwave power with 30% water content for 3 min to reach the highest contents of biological compounds. The conditions of EAE were 30 mL/g of LSR, 20 U/g of enzyme concentration with L-Gly-Na molar ratio at 2:4:1, and 40% water content for 60 min to acquire the highest bioactive compound contents. Scanning electron microscopy (SEM) is employed to analyze the surface of Bacopa monnieri leaves before and after extraction. Comparing seven extraction methods was conducted to find the most favorable ones. The result showed that the UMEAE method was the most effective way to exploit the compounds. The study suggested that UMEAE effectively extracts phenolics, flavonoids, terpenoids, and protein from DBMP.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tran Ha Phuong Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Vy Khang Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thi Cam Tu Dang
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Le Gia Kiet Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thanh Quynh Chung
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thi Thanh Huong Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Dinh Quan Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|
12
|
Valotto Neto LJ, Reverete de Araujo M, Moretti Junior RC, Mendes Machado N, Joshi RK, dos Santos Buglio D, Barbalho Lamas C, Direito R, Fornari Laurindo L, Tanaka M, Barbalho SM. Investigating the Neuroprotective and Cognitive-Enhancing Effects of Bacopa monnieri: A Systematic Review Focused on Inflammation, Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis. Antioxidants (Basel) 2024; 13:393. [PMID: 38671841 PMCID: PMC11047749 DOI: 10.3390/antiox13040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The aging of the global population has increased the prevalence of neurodegenerative conditions. Bacopa monnieri (BM), an herb with active compounds, such as bacosides A and B, betulinic acid, loliolide, asiatic acid, and quercetin, demonstrates the potential for brain health. Limited research has been conducted on the therapeutic applications of BM in neurodegenerative conditions. This systematic review aims to project BM's beneficial role in brain disorders. BM has anti-apoptotic and antioxidant actions and can repair damaged neurons, stimulate kinase activity, restore synaptic function, improve nerve transmission, and increase neuroprotection. The included twenty-two clinical trials demonstrated that BM can reduce Nuclear Factor-κB phosphorylation, improve emotional function, cognitive functions, anhedonia, hyperactivity, sleep routine, depression, attention deficit, learning problems, memory retention, impulsivity, and psychiatric problems. Moreover, BM can reduce the levels of pro-inflammatory biomarkers and oxidative stress. Here, we highlight that BM provides notable therapeutic benefits and can serve as a complementary approach for the care of patients with neurodegenerative conditions associated with brain disorders. This review adds to the growing interest in natural products and their potential therapeutic applications by improving our understanding of the mechanisms underlying cognitive function and neurodegeneration and informing the development of new therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Luiz José Valotto Neto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
- Department of Education, Government of Uttarakhand, Nainital 263001, India;
| | - Matheus Reverete de Araujo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Renato Cesar Moretti Junior
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Nathalia Mendes Machado
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Rakesh Kumar Joshi
- Department of Education, Government of Uttarakhand, Nainital 263001, India;
| | - Daiane dos Santos Buglio
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy de Farmácia, University of Lisboa, 1649-003 Lisbon, Portugal;
- Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Medical School of Marilia (FAMEMA), Marília 17519-030, SP, Brazil;
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| |
Collapse
|
13
|
Mumtaz, Ahmed F, Rabbani SA, El-Tanani M, Najmi AK, Ali J, Khan MA. Tauopathy in AD: Therapeutic Potential of MARK-4. Curr Alzheimer Res 2024; 21:779-790. [PMID: 39931856 DOI: 10.2174/0115672050358397250126151707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 04/30/2025]
Abstract
Alzheimer's disease (AD) is one of the leading causes of cognitive decline, which leads to dementia and poses significant challenges for its therapy. The reason is primarily the ineffective available treatments targeting the underlying pathology of AD. It is a neurodegenerative disease that is mainly characterised by the various molecular pathways contributing to its complex pathology, including extracellular amyloid beta (Aβ) plaques, intracellular neurofibrillary tangles (NFTs), oxidative stress, and neuroinflammation. One of the crucial features is the hyperphosphorylation of tau proteins, which is facilitated by microtubule affinity-regulating kinase-4 (MARK-4). The kinase plays a crucial role in the disease development by modifying microtubule integrity, leading to neuronal dysfunction and death. MARK-4 is thus a druggable target and has a pivotal role in AD. Amongst MARK-4 inhibitors, 16 compounds demonstrate significant capacity in molecular docking studies, showing high binding affinity to MARK-4 and promising potential for tau inhibition. Further, in-vitro investigations provide evidence of their neuroprotective properties. The present review mainly focuses on the role of MARK-4 and its potential inhibitors used in treating AD, which have been thoroughly investigated in silico and in vitro..
Collapse
Affiliation(s)
- Mumtaz
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Faraha Ahmed
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Arman Rabbani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
14
|
Shoukat S, Zia MA, Uzair M, Alsubki RA, Sajid K, Shoukat S, Attia KA, Fiaz S, Ali S, Kimiko I, Ali GM. Synergistic neuroprotection by phytocompounds of Bacopa monnieri in scopolamine-induced Alzheimer's disease mice model. Mol Biol Rep 2023; 50:7967-7979. [PMID: 37535247 DOI: 10.1007/s11033-023-08674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Millions of people around the globe are affected by Alzheimer's disease (AD). This crippling condition has no treatment despite intensive studies. Some phytocompounds have been shown to protect against Alzheimer's in recent studies. METHODS Thus, this work aimed to examine Bacopa monnieri phytocompounds' synergistic effects on neurodegeneration, antioxidant activity, and cognition in the scopolamine-induced AD mice model. The toxicity study of two phytocompounds: quercetin and bacopaside X revealed an LD50 of more than 2000 mg/kg since no deaths occurred. RESULTS The neuroprotection experiment consists of 6 groups i.e., control (saline), scopolamine (1 mg/kg), donepezil (5 mg/kg), Q (25 mg/kg), BX (20 mg/kg), and Q + BX (25 mg/kg + 20 mg/kg). Visual behavioral assessment using the Morris water maze showed that animals in the diseased model group (scopolamine) moved more slowly toward the platform and exhibited greater thigmotaxis behavior than the treatment and control groups. Likewise, the concentration of biochemical NO, GSH, and MDA improved in treatment groups concerning the diseased group. mRNA levels of different marker genes including ChAT, IL-1α, IL-1 β, TNF α, tau, and β secretase (BACE1) improved in treatment groups with respect to the disease group. CONCLUSION Both bacopaside X and quercetin synergistically have shown promising results in neuroprotection. Therefore, it is suggested that Q and BX may work synergistically due to their antioxidant and neuroprotective property.
Collapse
Affiliation(s)
- Shehla Shoukat
- Department of Plant Genomics and Biotechnology, PARC Institute of Advanced Studies in Agriculture, Affiliated with Quaid-e-Azam University, National Agriculture Research Centre, Islamabad, Pakistan.
| | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Roua A Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kaynat Sajid
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Sana Shoukat
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan
| | - Shaukat Ali
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan.
| | - Itoh Kimiko
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | | |
Collapse
|
15
|
Sudheer WN, Thiruvengadam M, Nagella P. A comprehensive review on tissue culture studies and secondary metabolite production in Bacopa monnieri L. Pennell: a nootropic plant. Crit Rev Biotechnol 2023; 43:956-970. [PMID: 35819370 DOI: 10.1080/07388551.2022.2085544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 04/20/2022] [Accepted: 05/24/2022] [Indexed: 11/03/2022]
Abstract
Bacopa monnieri L. Pennell, commonly known as Brahmi, is an important medicinal plant that belongs to the family Plantaginaceae. Brahmi is rich in innumerable bioactive secondary metabolites, especially bacosides that can be employed to reduce many health issues. This plant is used as a neuro-tonic and treatment for mental health, depression, and cognitive performance. Brahmi is also known for its antioxidant, anti-inflammatory, and anti-hepatotoxic activities. There is a huge demand for its raw materials, particularly for the extraction of bioactive molecules. The conventional mode of propagation could not meet the required commercial demand. To overcome this, biotechnological approaches, such as plant tissue culture techniques have been established for the production of important secondary metabolites through various culture techniques, such as callus and cell suspension cultures and organ cultures, to allow for rapid propagation and conservation of medicinally important plants with increased production of bioactive compounds. It has been found that a bioreactor-based technology can also enhance the multiplication rate of cell and organ cultures for commercial propagation of medicinally important bioactive molecules. The present review focuses on the propagation and production of bacoside A by cell and organ cultures of Bacopa monnieri, a nootropic plant. The review also focuses on the biosynthesis of bacoside A, different elicitation strategies, and the over-expression of genes for the production of bacoside-A. It also identifies research gaps that need to be addressed in future studies for the sustainable production of bioactive molecules from B. monnieri.
Collapse
Affiliation(s)
- W N Sudheer
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, South Korea
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, India
| |
Collapse
|
16
|
Sadaqat M, Qasim M, Tahir Ul Qamar M, Masoud MS, Ashfaq UA, Noor F, Fatima K, Allemailem KS, Alrumaihi F, Almatroudi A. Advanced network pharmacology study reveals multi-pathway and multi-gene regulatory molecular mechanism of Bacopa monnieri in liver cancer based on data mining, molecular modeling, and microarray data analysis. Comput Biol Med 2023; 161:107059. [PMID: 37244150 DOI: 10.1016/j.compbiomed.2023.107059] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Liver cancer is a malignant tumor that grows on the surface or inside the liver. The leading cause is a viral infection with hepatitis B or C virus. Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer. A list of studies evidences the therapeutic efficacy of Bacopa monnieri against liver cancer, but the precise molecular mechanism is yet to be discovered. This study combines data mining, network pharmacology, and molecular docking analysis to potentially revolutionize liver cancer treatment by identifying effective phytochemicals. Initially, the information on active constituents of B. monnieri and target genes of both liver cancer and B. monnieri were retrieved from literature as well as from publicly available databases. Based on the matching results between B. monnieri potential targets and liver cancer targets, the protein-protein interaction (PPI) network was constructed using the STRING database and imported into Cytoscape for screening of hub genes based on their degree of connectivity. Later, the interactions network between compounds and overlapping genes was constructed using Cytoscape software to analyze the network pharmacological prospective effects of B. monnieri on liver cancer. Gene Ontology (GO) and KEGG pathway analysis of hub genes revealed that these genes are involved in the cancer-related pathway. Lastly, the expression level of core targets was analyzed using microarray data (GSE39791, GSE76427, GSE22058, GSE87630, and GSE112790). Further, the GEPIA server and PyRx software were used for survival and molecular docking analysis, respectively. In summary, we proposed that quercetin, luteolin, apigenin, catechin, epicatechin, stigmasterol, beta-sitosterol, celastrol, and betulic acid inhibit tumor growth by affecting tumor protein 53 (TP53), interleukin 6 (IL6), RAC-alpha serine/threonine protein kinases 1 (AKT1), caspase-3 (CASP3), tumor necrosis factor (TNF), jun proto-oncogene (JUN), heat shot protein 90 AA1 (HSP90AA1), vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR), and SRC proto-oncogene (SRC). Through, microarray data analysis, the expression level of JUN and IL6 were found to be upregulated while the expression level of HSP90AA1 was found to be downregulated. Kaplan-Meier survival analysis indicated that HSP90AA1 and JUN are promising candidate genes that can serve as diagnostic and prognostic biomarkers for liver cancer. Moreover, the molecular docking and molecular dynamic simulation of 60ns well complemented the binding affinity of the compound and revealed strong stability of predicted compounds at the docked site. Calculation of binding free energies using MMPBSA and MMGBSA validated the strong binding affinity between the compound and binding pockets of HSP90AA1 and JUN. Despite that, in vivo and in vitro studies are mandatory to unveil pharmacokinetics and biosafety profiles to completely track the candidature status of B. monnieri in liver cancer.
Collapse
Affiliation(s)
- Muhammad Sadaqat
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan.
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan.
| | - Muhammad Tahir Ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan.
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan.
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan.
| | - Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan.
| | - Kinza Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan.
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.
| |
Collapse
|
17
|
Kumar V, Sharma N, Saini R, Mall S, Zengin G, Sourirajan A, Khosla PK, Dev K, El-Shazly M. Therapeutic potential and industrial applications of Terminalia arjuna bark. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116352. [PMID: 36933876 DOI: 10.1016/j.jep.2023.116352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia arjuna (Roxb. ex DC.) Wight & Arnot (Combretaceae) is one of the most frequently used medicinal trees in Indian traditional medicinal systems. It is used for the treatment of a variety of diseases including cardiovascular disorders. AIM OF THE STUDY The purpose of this review was to provide a comprehensive overview of the phytochemistry, medicinal uses, toxicity, and industrial applications of T. arjuna bark (BTA), as well as to identify gaps in research and applications of this important tree. It also aimed to analyze trends and future research paths to utilize the full potential of this tree. MATERIALS AND METHODS Extensive bibliographic research on the T. arjuna tree was carried out using scientific research engines and databases such as Google Scholar, PubMed, and Web of Science, covering all relevant English-language articles. The database "World Flora Online (WFO)" (http://www.worldfloraonline.org) was used to confirm plant taxonomy. RESULTS To date, BTA has been traditionally employed for several disorders such as snakebites, scorpion stings, gleets, earaches, dysentery, sexual disorders, and urinary tract infections along with the cardioprotective activity. About 38 phytocompounds were identified from BTA and were classified as triterpenoids, tannins, flavonoids, and glycosides. A wide range of in vitro and in vivo pharmacological effects of BTA were reported such as anti-cancer, antimicrobial, antiviral, anti-inflammatory, antioxidant, hepatoprotective, anti-allergic, anti-diabetic, and wound healing activities. The oral administration of BTA (500 mg/kg) per day did not result in any toxicity in humans. The in vivo acute and sub-acute toxicity analysis of the methanol extract of BTA and one of its major compounds, 7-methyl gallate, did not produce any adverse effects up to a dose of 1000 mg/kg. CONCLUSIONS This comprehensive review highlights various aspects of traditional knowledge, phytochemicals, and pharmacological significance of BTA. The review covered safety information on employing BTA in pharmaceutical dosage forms. Despite its long history of medicinal benefit, more studies are needed to understand the molecular mechanisms, structure-activity relationship, and potential synergistic and antagonistic effects of its phytocompounds, drug administration, drug-drug interactions, and toxicological effects.
Collapse
Affiliation(s)
- Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, 140413, India; Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan, 173229, HP, India.
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, 140307, India
| | - Rakshandha Saini
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan, 173229, HP, India
| | - Smita Mall
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan, 173229, HP, India
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, 42130, Konya, Turkey
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan, 173229, HP, India
| | - Prem Kumar Khosla
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan, 173229, HP, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan, 173229, HP, India; Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, 4543, USA.
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
18
|
Tabassum R, Kousar S, Mustafa G, Jamil A, Attique SA. In Silico Method for the Screening of Phytochemicals against Methicillin-Resistant Staphylococcus Aureus. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5100400. [PMID: 37250750 PMCID: PMC10212682 DOI: 10.1155/2023/5100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved resistance even against the last resort β-lactam antibiotics. This is because of the acquisition of an additional penicillin-binding protein 2a (PBP2a) which is a resistance determinant in MRSA. Currently, available PBP2a inhibitors are ineffective against life-threatening and fatal infections caused by microorganisms. Therefore, there is an urgent need to screen natural compounds that could overpass the resistance issue alone or in combination with antibacterial drugs. We studied the interactions of different phytochemicals with PBP2a so that crosslinking of peptidoglycans could be inhibited. In structure-based drug designing, in silico approach plays a key role in determining phytochemical interactions with PBP2a. In this study, a total of 284 antimicrobial phytochemicals were screened using the molecular docking approach. The binding affinity of methicillin, -11.241 kcal/mol, was used as the threshold value. The phytochemicals having binding affinities with PBP2a stronger than methicillin were identified, and the drug-likeness properties and toxicities of the screened phytochemicals were calculated. Out of the multiple phytochemicals screened, nine were found as good inhibitors to be PBP2a, among which cyanidin, tetrandrine, cyclomorusin, lipomycin, and morusin showed strong binding potential with the receptor protein. These best-selected phytochemicals were also docked to the allosteric site of PBP2a, and most of the compounds revealed strong interactions with the allosteric site. These compounds were safe to be used as drugs because they did not show any toxicity and had good bioactivity scores. Cyanidin had the highest binding affinity (S-score of -16.061 kcal/mol) with PBP2a and with high gastrointestinal (GI) absorption. Our findings suggest that cyanidin can be used as a drug against MRSA infection either in purified form or that its structure can lead to the development of more potent anti-MRSA medicines. However, experimental studies are required to evaluate the inhibitory potential of these phytochemicals against MRSA.
Collapse
Affiliation(s)
- Riaz Tabassum
- Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sumaira Kousar
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Syed Awais Attique
- School of Interdisciplinary Engineering & Science (SINES), National University of Sciences & Technology (NUST), Islamabad, Pakistan
- Agency for Science, Technology and Research (ASTAR), Bioinformatics Institute, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| |
Collapse
|
19
|
Pal T, Anand U, Sikdar Mitra S, Biswas P, Tripathi V, Proćków J, Dey A, Pérez de la Lastra JM. Harnessing and bioprospecting botanical-based herbal medicines against potential drug targets for COVID-19: a review coupled molecular docking studies. J Biomol Struct Dyn 2023:1-23. [PMID: 37105230 DOI: 10.1080/07391102.2023.2187634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Since the end of February 2020, the world has come to a standstill due to the virus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Since then, the global scientific community has explored various remedies and treatments against this virus, including natural products that have always been a choice because of their many benefits. Various known phytochemicals are well documented for their antiviral properties. Research is being carried out to discover new natural plant products or existing ones as a treatment measure for this disease. The three important targets in this regard are-papain like protease (PLpro), spike protein, and 3 chymotrypsin like proteases (3CLpro). Various docking studies are also being elucidated to identify the phytochemicals that modulate crucial proteins of the virus. The paper is simultaneously a comprehensive review that covers recent advances in the domain of the effect of various botanically derived natural products as an alternative treatment approach against Coronavirus Disease 2019 (COVID-19). Furthermore, the docking analyses revealed that rutin (inhibitor of the major protease of SARS-CoV-2), gallocatechin (e.g., interacting with 03 hydrogen bonds with a spike-like protein), lycorine (showing the best binding affinity with amino acids GLN498, THR500 and GLY446 of the spike-like protein), and quercetrin (inhabiting at its residues ASP216, PHE219, and ILE259) are promising inhibitors of SARS‑CoV‑2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tarun Pal
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | | | - Shreya Sikdar Mitra
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - José M Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, Tenerife, Spain
| |
Collapse
|
20
|
Zhang X, Wang L, Li B, Shi J, Xu J, Yuan M. Targeting Mitochondrial Dysfunction in Neurodegenerative Diseases: Expanding the Therapeutic Approaches by Plant-Derived Natural Products. Pharmaceuticals (Basel) 2023; 16:277. [PMID: 37259422 PMCID: PMC9961467 DOI: 10.3390/ph16020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 09/16/2023] Open
Abstract
Mitochondria are the primary source of energy production in neurons, supporting the high energy consumption of the nervous system. Inefficient and dysfunctional mitochondria in the central nervous system have been implicated in neurodegenerative diseases. Therefore, targeting mitochondria offers a new therapeutic opportunity for neurodegenerative diseases. Many recent studies have proposed that plant-derived natural products, as pleiotropic, safe, and readily obtainable sources of new drugs, potentially treat neurodegenerative diseases by targeting mitochondria. In this review, we summarize recent advances in targeting mitochondria in neurotherapeutics by employing plant-derived natural products. We discuss the mechanism of plant-derived natural products according to their mechanism of action on mitochondria in terms of regulating biogenesis, fusion, fission, bioenergetics, oxidative stress, calcium homeostasis, membrane potential, and mitochondrial DNA stability, as well as repairing damaged mitochondria. In addition, we discuss the potential perspectives and challenges in developing plant-derived natural products to target mitochondria, highlighting the clinical value of phytochemicals as feasible candidates for future neurotherapeutics.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Longqin Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiayan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jia Xu
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Minlan Yuan
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Agarwal A, Mishra B, Gupta A, Srivastava MVP, Basheer A, Sharma J, Vishnu VY. Importance of high-quality evidence regarding the use of Bacopa monnieri in dementia. Front Aging Neurosci 2023; 15:1134775. [PMID: 36936504 PMCID: PMC10014812 DOI: 10.3389/fnagi.2023.1134775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Bacopa monnieri (BM), a commonly used herb, has shown neuroprotective effects in animal and in vitro studies; but human studies on patients with Alzheimer's Disease (AD) have been inconclusive. Further high-quality trials are required to conclusively state the utility of BM in AD and other neurodegenerative dementias. Methods In the present study, we did a narrative review of the current challenges in designing clinical trials of BM in dementia and their evidence-based recommendations. Results Many facets of the BM trials need improvement, especially effect size and sample size estimation. Current assessment and outcomes measures need a more holistic approach and newer scales for diagnosing and monitoring prodromal AD. The stringent guidelines in CONSORT and STROBE are often considered difficult to implement for clinical trials in ayurvedic medications like BM. However, adherence to these guidelines will undoubtedly improve the quality of evidence and go a long way in assessing whether BM is efficacious in treating AD/prodromal AD patients and other neurodegenerative dementias. Conclusion Future studies on BM should implement more randomized controlled trials (RCTs) with an appropriate sample size of accurately diagnosed AD/prodromal AD patients, administering a recommended dosage of BM and for a pre-specified time calculated to achieve adequate power for the study. Researchers should also develop and validate more sensitive cognitive scales, especially for prodromal AD. BM should be evaluated in accordance with the same rigorous standards as conventional drugs to generate the best quality evidence.
Collapse
Affiliation(s)
- Ayush Agarwal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Biswamohan Mishra
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Anu Gupta
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Aneesh Basheer
- DM Wayanad Institute of Medical Sciences (DM WIMS), Wayanad, India
| | - Jyoti Sharma
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Venugopalan Y. Vishnu
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
- *Correspondence: Venugopalan Y. Vishnu,
| |
Collapse
|
22
|
Mitra SS, Ghorai M, Nandy S, Mukherjee N, Kumar M, Radha, Ghosh A, Jha NK, Proćków J, Dey A. Barbaloin: an amazing chemical from the 'wonder plant' with multidimensional pharmacological attributes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1525-1536. [PMID: 36173445 PMCID: PMC9520999 DOI: 10.1007/s00210-022-02294-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022]
Abstract
Aloe vera (L.) Burm.f. is nicknamed the 'Miracle plant' or sometimes as the 'Wonder plant'. It is a plant that has been used since ancient times for the innumerable health benefits associated with it. It is one of the important plants that has its use in conventional medicinal treatments. It is a perennial succulent, drought-tolerant member of the family Asphodelaceae. There are scores of properties associated with the plant that help in curing various forms of human ailments. Extracts and gels obtained from plants have been shown to be wonderful healers of different conditions, mainly various skin problems. Also, this plant is popular in the cosmetics industry. The underlying properties of the plant are now mainly associated with the natural phytochemicals present in the plant. Diverse groups of phytoingredients are found in the plant, including various phenolics, amino acids, sugars, vitamins, and different other organic compounds, too. One of the primary ingredients found in the plant is the aloin molecule. It is an anthraquinone derivative and exists as an isomer of Aloin A and Aloin B. Barbaloin belonging to the first group is a glucoside of the aloe-emodin anthrone molecule. Various types of pharmacological properties exhibited by the plant can be attributed to this chemical. Few significant ones are antioxidant, anti-inflammatory, anti-diabetic, anti-cancer, anti-microbial, and anti-viral, along with their different immunity-boosting actions. Recently, molecular coupling studies have also found the role of these molecules as a potential cure against the ongoing COVID-19 disease. This study comprehensively focuses on the numerous pharmacological actions of the primary compound barbaloin obtained from the Aloe vera plant along with the mechanism of action and the potent application of these natural molecules under various conditions.
Collapse
Affiliation(s)
- Shreya Sikdar Mitra
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Nobendu Mukherjee
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research On Cotton Technology, Mumbai, 400019, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Arabinda Ghosh
- Department of Botany, Gauhati University, 781014, Guwahati, Assam, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631, Wrocław, Poland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
23
|
NAUREEN ZAKIRA, DHULI KRISTJANA, MEDORI MARIACHIARA, CARUSO PAOLA, MANGANOTTI PAOLO, CHIURAZZI PIETRO, BERTELLI MATTEO. Dietary supplements in neurological diseases and brain aging. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E174-E188. [PMID: 36479494 PMCID: PMC9710403 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A healthy diet shapes a healthy mind. Diet quality has a strong association with brain health. Diet influences the onset and consequences of neurological diseases, and dietary factors may influence mental health at individual and population level. The link between unhealthy diet, impaired cognitive function and neurodegenerative diseases indicates that adopting a healthy diet would ultimately afford prevention and management of neurological diseases and brain aging. Neurodegenerative diseases are of multifactorial origin and result in progressive loss of neuronal function in the brain, leading to cognitive impairment and motoneuron disorders. The so-called Mediterranean diet (MedDiet) with its healthy ingredients rich in antioxidant, anti-inflammatory, immune, neuroprotective, antidepressant, antistress and senolytic activity plays an essential role in the prevention and management of neurological diseases and inhibits cognitive decline in neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases. The MedDiet also modulates the gut-brain axis by promoting a diversity of gut microbiota. In view of the importance of diet in neurological diseases management, this review focuses on the dietary components, natural compounds and medicinal plants that have proven beneficial in neurological diseases and for brain health. Among them, polyphenols, omega-3 fatty acids, B vitamins and several ayurvedic herbs have promising beneficial effects.
Collapse
Affiliation(s)
| | - KRISTJANA DHULI
- MAGI’S LAB, Rovereto, Italy
- Correspondence: Kristjana Dhuli, MAGI’S LAB, Rovereto (TN), 38068, Italy. E-mail:
| | | | - PAOLA CARUSO
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - PAOLO MANGANOTTI
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - PIETRO CHIURAZZI
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - MATTEO BERTELLI
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto, Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
24
|
Afsheen N, Rafique S, Rafeeq H, Irshad K, Hussain A, Huma Z, Kumar V, Bilal M, Aleya L, Iqbal HMN. Neurotoxic effects of environmental contaminants-measurements, mechanistic insight, and environmental relevance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70808-70821. [PMID: 36059010 DOI: 10.1007/s11356-022-22779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Pollution is a significant and growing concern for any population regardless of age because these environmental contaminants exhibit different neurodegenerative effects on persons of different ages. These environmental contaminants are the products of human welfare projects like industry, automobile exhaust, clinical and research laboratory extrudes, and agricultural chemicals. These contaminants are found in various forms in environmental matrices like nanoparticles, particulate matter, lipophilic vaporized toxicants, and ultrafine particulate matter. Because of their small size, they can easily cross blood-brain barriers or use different cellular mechanisms for assistance. Other than this, these contaminants cause an innate immune response in different cells of the central nervous system and cause neurotoxicity. Considering the above critiques and current needs, this review summarizes different protective strategies based on bioactive compounds present in plants. Various bioactive compounds from medicinal plants with neuroprotective capacities are discussed with relevant examples. Many in vitro studies on clinical trials have shown promising outcomes using plant-based bioactive compounds against neurological disorders.
Collapse
Affiliation(s)
- Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Sadia Rafique
- Department of Pharmacy, Riphah International University, Faisalabad, 38000, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Kanwal Irshad
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Asim Hussain
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Zille Huma
- Department of Chemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Vineet Kumar
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
25
|
Bandyopadhyay A, Dey A. Medicinal pteridophytes: ethnopharmacological, phytochemical, and clinical attributes. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Almost from the very beginning of human existence, man has been interacting with plants. Throughout human history, plants have provided humans with basic needs such as sustenance, firewood, livestock feed, and wood. The world has approximately 3 million vascular plants. The treatment of primary health problems is provided primarily by traditional medicines by around 80% of the world's population. Compared to other vascular plants, pteridophytes remain underexplored in ethnobotanical aspects, despite being regarded as a valuable component of healthcare for centuries. As an alternative medicine, pteridophytes are being investigated for their pharmacological activity. Almost 2000 years ago, humans were exploring and using plant species from this lineage because of its beneficial properties since pteridophytes were the first vascular plants.
Main body of the abstract
All popular search engines such as PubMed, Google Scholar, ScienceDirect, and Scopus were searched to retrieve the relevant literature using various search strings relevant to the topic. Pteridophytes belonging to thirty different families have been documented as medicinal plants. For instance, Selaginella sp. has been demonstrated to have numerous therapeutic properties, including antioxidative, inflammation-reducing, anti-carcinogenic, diabetes-fighting, virucidal, antibacterial, and anti-senile dementia effects. In addition, clinical trials and studies performed on pteridophytes and derived compounds are also discussed in details.
Short conclusion
This review offers a compilation of therapeutically valuable pteridophytes utilized by local ethnic groups, as well as the public.
Graphical Abstract
Collapse
|
26
|
Biswas P, Anand U, Saha SC, Kant N, Mishra T, Masih H, Bar A, Pandey DK, Jha NK, Majumder M, Das N, Gadekar VS, Shekhawat MS, Kumar M, Radha, Proćków J, Lastra JMPDL, Dey A. Betelvine (Piper betle L.): A comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes. J Cell Mol Med 2022; 26:3083-3119. [PMID: 35502487 PMCID: PMC9170825 DOI: 10.1111/jcmm.17323] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
Piper betle L. (synonym: Piper betel Blanco), or betel vine, an economically and medicinally important cash crop, belongs to the family Piperaceae, often known as the green gold. The plant can be found all over the world and is cultivatedprimarily in South East Asian countries for its beautiful glossy heart-shaped leaves, which are chewed or consumed as betelquidand widely used in Chinese and Indian folk medicine, as carminative, stimulant,astringent, against parasitic worms, conjunctivitis, rheumatism, wound, etc., andis also used for religious purposes. Hydroxychavicol is the most important bioactive compound among the wide range of phytoconstituents found in essential oil and extracts. The pharmacological attributes of P. betle are antiproliferation, anticancer, neuropharmacological, analgesic, antioxidant, antiulcerogenic, hepatoprotective, antifertility, antibacterial, antifungal and many more. Immense attention has been paid to nanoformulations and their applications. The application of P. betle did not show cytotoxicity in preclinical experiments, suggesting that it could serve as a promising therapeutic candidate for different diseases. The present review comprehensively summarizes the botanical description, geographical distribution, economic value and cultivation, ethnobotanical uses, preclinical pharmacological properties with insights of toxicological, clinical efficacy, and safety of P. betle. The findings suggest that P. betle represents an orally active and safe natural agent that exhibits great therapeutic potential for managing various human medical conditions. However, further research is needed to elucidate its underlying molecular mechanisms of action, clinical aspects, structure-activity relationships, bioavailability and synergistic interactions with other drugs.
Collapse
Affiliation(s)
- Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Suchismita Chatterjee Saha
- Department of Zoology, Nabadwip Vidyasagar College (Affiliated to the University of Kalyani), Nabadwip, West Bengal, India
| | - Nishi Kant
- Department of Biotechnology, School of Health and Allied Science, ARKA Jain University, Jamshedpur, Jharkhand, India
| | - Tulika Mishra
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Harison Masih
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Ananya Bar
- Department of Zoology, Wilson College (Affiliated to University of Mumbai), Mumbai, Maharashtra, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Madhumita Majumder
- Department of Botany, Raidighi College (Affiliated to University of Calcutta), Raidighi, West Bengal, India
| | - Neela Das
- Department of Botany, Rishi Bankim Chandra College (Affiliated to the West Bengal State University), Naihati, West Bengal, India
| | - Vijaykumar Shivaji Gadekar
- Zoology Department, Sangola College (Affiliated to Punyashlok Ahilyadevi Holkar Solapur University), Solapur, Maharashtra, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - José M Pérez de la Lastra
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones científicas (CSIS), Santa Cruz de Tenerife, Spain
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
27
|
Mitra S, Anand U, Ghorai M, Vellingiri B, Jha NK, Behl T, Kumar M, Radha, Shekhawat MS, Proćków J, Dey A. Unravelling the Therapeutic Potential of Botanicals Against Chronic Obstructive Pulmonary Disease (COPD): Molecular Insights and Future Perspectives. Front Pharmacol 2022; 13:824132. [PMID: 35645819 PMCID: PMC9130824 DOI: 10.3389/fphar.2022.824132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 01/08/2023] Open
Abstract
Background: COPD (chronic obstructive pulmonary disease) is a serious health problem worldwide. Present treatments are insufficient and have severe side effects. There is a critical shortage of possible alternative treatments. Medicinal herbs are the most traditional and widely used therapy for treating a wide range of human illnesses around the world. In several countries, different plants are used to treat COPD. Purpose: In this review, we have discussed several known cellular and molecular components implicated in COPD and how plant-derived chemicals might modulate them. Methods: We have discussed how COVID-19 is associated with COPD mortality and severity along with the phytochemical roles of a few plants in the treatment of COPD. In addition, two tables have been included; the first summarizes different plants used for the treatment of COPD, and the second table consists of different kinds of phytochemicals extracted from plants, which are used to inhibit inflammation in the lungs. Conclusion: Various plants have been found to have medicinal properties against COPD. Many plant extracts and components may be used as novel disease-modifying drugs for lung inflammatory diseases.
Collapse
Affiliation(s)
- Sicon Mitra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Uttpal Anand
- CytoGene Research & Development LLP, Lucknow, Uttar Pradesh, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Mahipal S. Shekhawat
- Department of Plant Biology and Biotechnology, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
28
|
Dutta T, Anand U, Mitra SS, Ghorai M, Jha NK, Shaikh NK, Shekhawat MS, Pandey DK, Proćków J, Dey A. Phytotherapy for Attention Deficit Hyperactivity Disorder (ADHD): A Systematic Review and Meta-analysis. Front Pharmacol 2022; 13:827411. [PMID: 35592415 PMCID: PMC9110892 DOI: 10.3389/fphar.2022.827411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is commonly a neurodevelopmental behavioural disorder in children and adolescents. Mainly characterized by symptoms like lack of attention, hyperactivity, and impulsiveness, it can impact the overall mental development of the one affected. Several factors, both genetic and non-genetic, can be responsible for this disorder. Although several traditional treatment methods involve medication and other counselling techniques, they also come with different side effects. Hence, the choice is now shifting to alternative treatment techniques. Herbal treatments are considered one of the most popular complementary and alternative medicine (CAM) administered. However, issues related to the safety and efficacy of herbal remedies for the treatment of ADHD need to be investigated further. This study aims to find out the recent advancement in evidence-based use of herbal remedies for ADHD by a comprehensive and systematic review that depicts the results of the published works on herbal therapy for the disorder. The electronic databases and the references retrieved from the included studies present related randomized controlled trials (RCTs) and open-label studies. Seven RCTs involving children and adolescents diagnosed with ADHD met the inclusion criteria. There is a fair indication of the efficacy and safety of Melissa officinalis L., Bacopa monnieri (L.) Wettst., Matricaria chamomilla L., and Valeriana officinalis L. from the studies evaluated in this systematic review for the treatment of various symptoms of ADHD. Limited evidence was found for Ginkgo biloba L. and pine bark extract. However, various other preparations from other plants did not show significant efficacy. There is inadequate proof to strongly support and recommend the administration of herbal medicines for ADHD, but more research is needed in the relevant field to popularize the alternative treatment approach.
Collapse
Affiliation(s)
- Tusheema Dutta
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Uttpal Anand
- CytoGene Research & Development LLP, Lucknow, Uttar Pradesh, India
| | | | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Nusratbanu K. Shaikh
- Department of Pharmaceutical Chemistry, Smt N. M. Padalia Pharmacy College, Ahmedabad, India
| | - Mahipal S Shekhawat
- Department of Plant Biology and Biotechnology, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Lawspet, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, School of Biosciences, Lovely Professional University, Phagwara, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
29
|
Alagarasu K, Patil P, Kaushik M, Chowdhury D, Joshi RK, Hegde HV, Kakade MB, Hoti SL, Cherian S, Parashar D. In Vitro Antiviral Activity of Potential Medicinal Plant Extracts Against Dengue and Chikungunya Viruses. Front Cell Infect Microbiol 2022; 12:866452. [PMID: 35463636 PMCID: PMC9021897 DOI: 10.3389/fcimb.2022.866452] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Dengue and chikungunya are two important mosquito-borne infections which are known to occur extensively in tropical and subtropical areas. Presently, there is no treatment for these viral diseases. In vitro antiviral screening of 25 extracts prepared from the plants of Vitex negundo, Plumeria alba, Ancistrocladus heyneanus, Bacopa monnieri, Anacardium occidentale, Cucurbita maxima, Simarouba glauca, and Embelia ribes using different solvents and four purified compounds (anacardic acid, chloroquinone, glaucarubinone, and methyl gallate) were carried out for their anti-dengue virus (DENV) and anti-chikungunya virus (CHIKV) activities. Maximum nontoxic concentrations of the chloroform, methanol, ethyl acetate, petroleum ether, dichloromethane, and hydroalcoholic extracts of eight plants were used. The antiviral activity was assessed by focus-forming unit assay, quantitative real-time RT-PCR, and immunofluorescence assays. Extracts from Plumeria alba, Ancistrocladus heyneanus, Bacopa monnieri, and Cucurbita maxima showed both anti-DENV and CHIKV activity while extract from Vitex negundo showed only anti-DENV activity. Among the purified compounds, anacardic acid, chloroquinone and methyl gallate showed anti-dengue activity while only methyl gallate had anti-chikungunya activity. The present study had identified the plant extracts with anti-dengue and anti-chikungunya activities, and these extracts can be further characterized for finding effective phytopharmaceutical drugs against dengue and chikungunya.
Collapse
Affiliation(s)
- Kalichamy Alagarasu
- Dengue and Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, India
| | - Poonam Patil
- Dengue and Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, India
| | - Meenakshi Kaushik
- Department of Natural Product Chemistry, Indian Council of Medical Research (ICMR)-National Institute of Traditional Medicine, Belagavi, India
| | - Deepika Chowdhury
- Dengue and Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, India
| | - Rajesh K. Joshi
- Department of Natural Product Chemistry, Indian Council of Medical Research (ICMR)-National Institute of Traditional Medicine, Belagavi, India
| | - Harsha V. Hegde
- Department of Ethnomedicine, Indian Council of Medical Research (ICMR)-National Institute of Traditional Medicine, Belagavi, India
| | - Mahadeo B. Kakade
- Dengue and Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, India
| | - Sugeerappa Laxmanappa Hoti
- Ex-Director, Indian Council of Medical Research (ICMR)-National Institute of Traditional Medicine, Belagavi, India
| | - Sarah Cherian
- Dengue and Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, India
- *Correspondence: Sarah Cherian, ; Deepti Parashar,
| | - Deepti Parashar
- Dengue and Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, India
- *Correspondence: Sarah Cherian, ; Deepti Parashar,
| |
Collapse
|
30
|
Biotechnology for propagation and secondary metabolite production in Bacopa monnieri. Appl Microbiol Biotechnol 2022; 106:1837-1854. [PMID: 35218388 DOI: 10.1007/s00253-022-11820-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023]
Abstract
Bacopa monnieri (L.) Wettst. or water hyssop commonly known as "Brahmi" is a small, creeping, succulent herb from the Plantaginaceae family. It is popularly employed in Ayurvedic medicine as a nerve tonic to improve memory and cognition. Of late, this plant has been reported extensively for its pharmacologically active phyto-constituents. The main phytochemicals are brahmine, alkaloids, herpestine, and saponins. The saponins include bacoside A, bacoside B, and betulic acid. Investigation into the pharmacological effect of this plant has thrived lately, encouraging its neuroprotective and memory supporting capacity among others. Besides, it possesses many other therapeutic activities like antimicrobial, antioxidant, anti-inflammatory, gastroprotective properties, etc. Because of its multipurpose therapeutic potential, it is overexploited owing to the prioritization of natural remedies over conventional ones, which compels us to conserve them. B. monnieri is confronting the danger of extinction from its natural habitat as it is a major cultivated medico-botanical and seed propagation is restricted due to less seed availability and viability. The ever-increasing demand for the plant can be dealt with mass propagation through plant tissue culture strategy. Micropropagation utilizing axillary meristems as well as de novo organogenesis have been widely investigated in this plant which has also been explored for its conservation and production of different types of secondary metabolites. Diverse in vitro methods such as organogenesis, cell suspension, and callus cultures have been accounted for with the aim of production and/or enhancement of bacosides. Direct shoot-organogenesis was initiated in excised leaf and internodal explants without any exogenous plant growth regulator(s) (PGRs), and the induction rate was improved when exogenous cytokinins and other supplements were used. Moreover, biotechnological toolkits like Agrobacterium-mediated transformation and the use of mutagens have been reported. Besides, the molecular marker-based studies demonstrated the clonal fidelity among the natural and in vitro generated plantlets also elucidating the inherent diversity among the natural populations. Agrobacterium-mediated transformation system was mostly employed to optimize bacoside biosynthesis and heterologous expression of other genes. The present review aims at depicting the recent research outcomes of in vitro studies performed on B. monnieri which include root and shoot organogenesis, callus induction, somatic embryogenesis, production of secondary metabolites by in vitro propagation, acclimatization of the in vitro raised plantlets, genetic transformation, and molecular marker-based studies of clonal fidelity. KEY POINTS: • Critical and up to date records on in vitro propagation of Bacopa monnieri • In vitro propagation and elicitation of secondary metabolites from B. monnieri • Molecular markers and transgenic studies in B. monnieri.
Collapse
|
31
|
Murthy HN. Biotechnological production of bacosides from cell and organ cultures of Bacopa monnieri. Appl Microbiol Biotechnol 2022; 106:1799-1811. [PMID: 35201388 DOI: 10.1007/s00253-022-11834-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
Abstract
Bacopa monnieri (L.) Wettst. (BM), also known as 'Brahmi' or 'Water Hyssop', has been utilized as a brain tonic, memory enhancer, sensory organ revitalizer, cardiotonic, anti-anxiety, antidepressant and anticonvulsant agent in the Indian system of medicine Ayurveda for centuries. BM is beneficial in the treatment of Parkinson's disease, Alzheimer's disease, epileptic seizures and schizophrenia in recent pharmacological research. Dammarane-type triterpenoid saponins containing jujubogenin and pseudojujubogenin as aglycones, also known as bacosides, are the principal chemical ingredients identified and described from BM. Bacosides have been shown to have anti-ageing, anticancer, anticonvulsant, antidepressant, anti-emetic, anti-inflammatory and antibacterial properties in a variety of pre-clinical and clinical studies. The pharmaceutical industry's raw material comes from wild sources; nevertheless, the concentration of bacosides varies in different regions of the plants, as well as seasonal and genotypic variation. Cell and tissue cultures are appealing alternatives for the long-term manufacture of bioactive chemicals, and attempts to produce bacosides using in vitro cultures have been made. This review discusses the biotechnological approaches used to produce bacosides, as well as the limitations and future potential. KEY POINTS: • Bacosides extracted from Bacopa monnieri are important pharmaceutical compounds. • The current review provides insight into biotechnological interventions for the production of bacosides using in vitro cultures. • Highlights the prospects improvement of bacoside production through metabolic engineering.
Collapse
|
32
|
Faisal S, Jan H, Abdullah, Alam I, Rizwan M, Hussain Z, Sultana K, Ali Z, Uddin MN. In Vivo Analgesic, Anti-Inflammatory, and Anti-Diabetic Screening of Bacopa monnieri-Synthesized Copper Oxide Nanoparticles. ACS OMEGA 2022; 7:4071-4082. [PMID: 35155901 PMCID: PMC8829860 DOI: 10.1021/acsomega.1c05410] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In this work, an ecofriendly approach for biogenic production of copper oxide nanoparticles (CuO-NPs) was proposed by utilizing the Bacopa monnieri leaf extract as a reducing and stabilizing agent. The synthesis of CuO-NPs was instantly confirmed by a shift in the color of the copper solution from blue to dark gray. The use of UV-visible spectroscopy revealed a strong narrow peak at 535 nm, confirming the existence of monoclinic-shaped nanoparticles. The average size of CuO-NPs was 34.4 nm, according to scanning electron microscopy and transmission electron microscopy studies. The pristine crystalline nature of CuO-NPs was confirmed by X-ray diffraction. The monoclinic form of CuO-NPs with a crystallite size of 22 nm was determined by the sharp narrow peaks corresponding to 273, 541, 698, 684, and 366 Bragg's planes at different 2θ values. The presence of different reducing metabolites on the surface of CuO was shown by Fourier transform infrared analysis. The biological efficacy of CuO-NPs was tested against Helicobacter felis, Helicobacter suis, Helicobacter salomonis. and Helicobacter bizzozeronii. H. suis was the most susceptible strain with an inhibition zone of 15.84 ± 0.89 mm at 5 mg/mL of NPs, while the most tolerant strain was H. bizzozeronii with a 13.11 ± 0.83 mm of inhibition zone. In in vivo analgesic activity, CuO-NPs showed superior efficiency compared to controls. The maximum latency time observed was 7.14 ± 0.12 s at a dose level of 400 mg/kg after 90 min, followed by 5.21 ± 0.29 s at 400 mg/kg after 60 min, demonstrating 65 and 61% of analgesia, respectively. Diclofenac sodium was used as a standard with a latency time of 8.6 ± 0.23 s. The results observed in the rat paw edema assays showed a significant inhibitory activity of the plant-mediated CuO-NPs. The percentage inhibition of edema was 74% after 48 h for the group treated with CuO-NPs compared to the control group treated with diclofenac (100 mg/kg) with 24% edema inhibition. The solution of CuO-NPs produced 82% inhibition of edema after 21 days when compared with that of the standard drug diclofenac (73%). CuO-NPs vividly lowered glucose levels in STZ-induced diabetic mice, according to our findings. Blood glucose levels were reduced by about 33.66 and 32.19% in CuO-NP and (CuO-NP + insulin) groups of mice, respectively. From the abovementioned calculations, we can easily conclude that B. monnieri-synthesized CuO-NPs will be a potential antibacterial, anti-diabetic, and anti-inflammatory agent on in vivo and in vitro basis.
Collapse
Affiliation(s)
- Shah Faisal
- Institute
of Biotechnology and Microbiology, Bacha
Khan University, Charsadda 24460, KPK, Pakistan
| | - Hasnain Jan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei City 10617, Taiwan
| | - Abdullah
- Department
of Microbiology, Abdul Wali Khan University, Mardan 23200, KPK, Pakistan
| | - Ibrar Alam
- Nanoscience
and Nanotechnology, Faculty of Science, King Mongkut’s University of Technology, Thonburi, Bangkok 10140, Thailand
| | - Muhammad Rizwan
- Center
for Biotechnology and Microbiology University of Swat, Khyber Pakhtunkhwa 44000, Pakistan
| | - Zahid Hussain
- Center
for Biotechnology and Microbiology University of Swat, Khyber Pakhtunkhwa 44000, Pakistan
| | - Kishwar Sultana
- Center of
Biotechnology and Microbiology University of Peshawar, Peshawar 25000, KPK, Pakistan
| | - Zafar Ali
- Center
for Biotechnology and Microbiology University of Swat, Khyber Pakhtunkhwa 44000, Pakistan
| | - Muhammad Nazir Uddin
- Center
for Biotechnology and Microbiology University of Swat, Khyber Pakhtunkhwa 44000, Pakistan
| |
Collapse
|
33
|
Lorca C, Mulet M, Arévalo-Caro C, Sanchez MÁ, Perez A, Perrino M, Bach-Faig A, Aguilar-Martínez A, Vilella E, Gallart-Palau X, Serra A. Plant-derived nootropics and human cognition: A systematic review. Crit Rev Food Sci Nutr 2022; 63:5521-5545. [PMID: 34978226 DOI: 10.1080/10408398.2021.2021137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Substances with modulatory capabilities on certain aspects of human cognition have been revered as nootropics from the dawn of time. The plant kingdom provides most of the currently available nootropics of natural origin. Here, in this systematic review, we aim to provide state-of-the-art information regarding proven and unproven effects of plant-derived nootropics (PDNs) on human cognition in conditions of health and disease. Six independent searches, one for each neurocognitive domain (NCD), were performed in parallel using three independent scientific library databases: PubMed, Cochrane and Scopus. Only scientific studies and systematic reviews with humans published between January 2000 and November 2021 were reviewed, and 256 papers were included. Ginkgo biloba was the most relevant nootropic regarding perceptual and motor functions. Bacopa monnieri improves language, learning and memory. Withania somnifera (Ashwagandha) modulates anxiety and social-related cognitions. Caffeine enhances attention and executive functions. Together, the results from the compiled studies highlight the nootropic effects and the inconsistencies regarding PDNs that require further research.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2021.2021137.
Collapse
Affiliation(s)
- Cristina Lorca
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, Madrid, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - School of Medicine, University of Lleida (UdL), Lleida, Spain
- Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Mulet
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - School of Medicine, University of Lleida (UdL), Lleida, Spain
| | - Catalina Arévalo-Caro
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - School of Medicine, University of Lleida (UdL), Lleida, Spain
| | - M Ángeles Sanchez
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, Madrid, Spain
| | - Ainhoa Perez
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, Madrid, Spain
| | - María Perrino
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, Madrid, Spain
| | - Anna Bach-Faig
- FoodLab Research Group (2017SGR 83), Faculty of Health Sciences, Open University of Catalonia (UOC), Barcelona, Spain
- Food and Nutrition Area, Barcelona Official College of Pharmacists, Barcelona, Spain
| | - Alicia Aguilar-Martínez
- FoodLab Research Group (2017SGR 83), Faculty of Health Sciences, Open University of Catalonia (UOC), Barcelona, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata (HUIPM), Institut Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Universitat Rovira i Virgili (URV), Reus, Spain
- Centro de investigación Biomédica en Salud Mental CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Gallart-Palau
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - School of Medicine, University of Lleida (UdL), Lleida, Spain
- Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hospital Universitari Institut Pere Mata (HUIPM), Institut Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de investigación Biomédica en Salud Mental CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Serra
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, Madrid, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - School of Medicine, University of Lleida (UdL), Lleida, Spain
- Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
34
|
Bandopadhyay S, Anand U, Gadekar VS, Jha NK, Gupta PK, Behl T, Kumar M, Shekhawat MS, Dey A. Dioscin: A review on pharmacological properties and therapeutic values. Biofactors 2022; 48:22-55. [PMID: 34919768 DOI: 10.1002/biof.1815] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
Dioscin has gained immense popularity as a natural, bioactive steroid saponin, which offers numerous medical benefits. The growing global incidence of disease-associated morbidity and mortality continues to compromise human health, facilitating an increasingly urgent need for nontoxic, noninvasive, and efficient treatment alternatives. Natural compounds can contribute vastly to this field. Over recent years, studies have demonstrated the remarkable protective actions of dioscin against a variety of human malignancies, metabolic disorders, organ injuries, and viral/fungal infections. The successful usage of this phytocompound has been widely seen in medical treatment procedures under traditional Chinese medicine, and it is becoming progressively prevalent worldwide. This review provides an insight into the wide spectrum of pharmacological activities of dioscin, as reported and compiled in recent literature. The various novel approaches and applications of dioscin also verify the advantages exhibited by plant extracts against commercially available drugs, highlighting the potential of phytochemical agents like dioscin to be further incorporated into clinical practice.
Collapse
Affiliation(s)
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vijaykumar Shivaji Gadekar
- Zoology Department, Sangola College (affiliated to Punyashlok Ahilyadevi Holkar Solapur University), Solapur, Maharashtra, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
35
|
Morphometry and Stiffness of Red Blood Cells—Signatures of Neurodegenerative Diseases and Aging. Int J Mol Sci 2021; 23:ijms23010227. [PMID: 35008653 PMCID: PMC8745649 DOI: 10.3390/ijms23010227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Human red blood cells (RBCs) are unique cells with the remarkable ability to deform, which is crucial for their oxygen transport function, and which can be significantly altered under pathophysiological conditions. Here we performed ultrastructural analysis of RBCs as a peripheral cell model, looking for specific signatures of the neurodegenerative pathologies (NDDs)—Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), utilizing atomic force (AFM) and conventional optical (OM) microscopy. We found significant differences in the morphology and stiffness of RBCs isolated from patients with the selected NDDs and those from healthy individuals. Neurodegenerative pathologies’ RBCs are characterized by a reduced abundance of biconcave discoid shape, lower surface roughness and a higher Young’s modulus, compared to healthy cells. Although reduced, the biconcave is still the predominant shape in ALS and AD cells, while the morphology of PD is dominated by crenate cells. The features of RBCs underwent a marked aging-induced transformation, which followed different aging pathways for NDDs and normal healthy states. It was found that the diameter, height and volume of the different cell shape types have different values for NDDs and healthy cells. Common and specific morphological signatures of the NDDs were identified.
Collapse
|
36
|
Biswas P, Anand U, Ghorai M, Pandey DK, Jha NK, Behl T, Kumar M, Kumar R, Shekhawat MS, Dey A. Unravelling the promise and limitations of CRISPR/Cas system in natural product research: Approaches and challenges. Biotechnol J 2021; 17:e2100507. [PMID: 34882991 DOI: 10.1002/biot.202100507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022]
Abstract
An incredible array of natural products are produced by plants that serve several ecological functions, including protecting them from herbivores and microbes, attracting pollinators, and dispersing seeds. In addition to their obvious medical applications, natural products serve as flavouring agents, fragrances and many other uses by humans. With the increasing demand for natural products and the development of various gene engineering systems, researchers are trying to modify the plant genome to increase the biosynthetic pathway of the compound of interest or blocking the pathway of unwanted compound synthesis. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has had widespread success in genome editing due to the system's high efficiency, ease of use, and accuracy which revolutionized the genome editing system in living organisms. This article highlights the method of the CRISPR/Cas system, its application in different organisms including microbes, algae, fungi and also higher plants in natural product research, its shortcomings and future prospects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Protha Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, 144402, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Chandigarh, Punjab, 140401, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, 400019, India
| | - Radha Kumar
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, 605 008, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| |
Collapse
|
37
|
Datta S, Ramamurthy PC, Anand U, Singh S, Singh A, Dhanjal DS, Dhaka V, Kumar S, Kapoor D, Nandy S, Kumar M, Koshy EP, Dey A, Proćków J, Singh J. Wonder or evil?: Multifaceted health hazards and health benefits of Cannabis sativa and its phytochemicals. Saudi J Biol Sci 2021; 28:7290-7313. [PMID: 34867033 PMCID: PMC8626265 DOI: 10.1016/j.sjbs.2021.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabis sativa, widely known as 'Marijuana' poses a dilemma for being a blend of both good and bad medicinal effects. The historical use of Cannabis for both medicinal and recreational purposes suggests it to be a friendly plant. However, whether the misuse of Cannabis and the cannabinoids derived from it can hamper normal body physiology is a focus of ongoing research. On the one hand, there is enough evidence to suggest that misuse of marijuana can cause deleterious effects on various organs like the lungs, immune system, cardiovascular system, etc. and also influence fertility and cause teratogenic effects. However, on the other hand, marijuana has been found to offer a magical cure for anorexia, chronic pain, muscle spasticity, nausea, and disturbed sleep. Indeed, most recently, the United Nations has given its verdict in favour of Cannabis declaring it as a non-dangerous narcotic. This review provides insights into the various health effects of Cannabis and its specialized metabolites and indicates how wise steps can be taken to promote good use and prevent misuse of the metabolites derived from this plant.
Collapse
Affiliation(s)
- Shivika Datta
- Department of Zoology, Doaba College, Jalandhar, Punjab 144001, India
| | - Praveen C. Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore 560012, Karnataka, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore 560012, Karnataka, India
| | - Amritpal Singh
- Department of Oral and Maxillofacial Surgery, Indira Gandhi Government Dental College and Hospital, Amphala, Jammu 180012, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Vaishali Dhaka
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sanjay Kumar
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Manoj Kumar
- Department of Life Sciences, School of Natural Science, Central University of Jharkhand, Brambe, Ratu-Lohardaga Road Ranchi, Jharkhand 835205, India
| | - Eapen P. Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland
| | - Joginder Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
38
|
Paul S, Chakraborty S, Anand U, Dey S, Nandy S, Ghorai M, Saha SC, Patil MT, Kandimalla R, Proćków J, Dey A. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomed Pharmacother 2021; 143:112175. [PMID: 34649336 DOI: 10.1016/j.biopha.2021.112175] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Withania somnifera (L.) Dunal (Solanaceae) has been used as a traditional Rasayana herb for a long time. Traditional uses of this plant indicate its ameliorative properties against a plethora of human medical conditions, viz. hypertension, stress, diabetes, asthma, cancer etc. This review presents a comprehensive summary of the geographical distribution, traditional use, phytochemistry, and pharmacological activities of W. somnifera and its active constituents. In addition, it presents a detailed account of its presence as an active constituent in many commercial preparations with curative properties and health benefits. Clinical studies and toxicological considerations of its extracts and constituents are also elucidated. Comparative analysis of relevant in-vitro, in-vivo, and clinical investigations indicated potent bioactivity of W. somnifera extracts and phytochemicals as anti-cancer, anti-inflammatory, apoptotic, immunomodulatory, antimicrobial, anti-diabetic, hepatoprotective, hypoglycaemic, hypolipidemic, cardio-protective and spermatogenic agents. W. somnifera was found to be especially active against many neurological and psychological conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke, sleep deprivation, amyotrophic lateral sclerosis, attention deficit hyperactivity disorder, bipolar disorder, anxiety, depression, schizophrenia and obsessive-compulsive disorder. The probable mechanism of action that imparts the pharmacological potential has also been explored. However, in-depth studies are needed on the clinical use of W. somnifera against human diseases. Besides, detailed toxicological analysis is also to be performed for its safe and efficacious use in preclinical and clinical studies and as a health-promoting herb.
Collapse
Affiliation(s)
- Subhabrata Paul
- School of Biotechnology, Presidency University (2nd Campus), Kolkata 700156, West Bengal, India
| | - Shreya Chakraborty
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Swarnali Dey
- Department of Botany, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Suchismita Chatterjee Saha
- Department of Zoology, Nabadwip Vidyasagar College (Affiliated to the University of Kalyani), Nabadwip 741302, West Bengal, India
| | - Manoj Tukaram Patil
- Post Graduate Department of Botany, SNJB's KKHA Arts, SMGL Commerce and SPHJ Science College (Affiliated to Savitribai Phule Pune University), Chandwad, Nashik 423101, Maharashtra, India
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; Department of Biochemistry, Kakatiya Medical College, Warangal-506007, Telangana, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
39
|
Halder S, Anand U, Nandy S, Oleksak P, Qusti S, Alshammari EM, El-Saber Batiha G, Koshy EP, Dey A. Herbal drugs and natural bioactive products as potential therapeutics: A review on pro-cognitives and brain boosters perspectives. Saudi Pharm J 2021; 29:879-907. [PMID: 34408548 PMCID: PMC8363108 DOI: 10.1016/j.jsps.2021.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022] Open
Abstract
Memory, one of the most vital aspects of the human brain, is necessary for the effective survival of an individual. 'Memory' can be defined in various ways but in an overall view, memory is the retention of the information that the brain grasps. Different factors are responsible for the disbalance in the brain's hippocampus region and the acetylcholine level, which masters the memory and cognitive functions. Plants are a source of pharmacologically potent drug molecules of high efficacy. Recently herbal medicine has evolved rapidly, gaining great acceptance worldwide due to their natural origin and fewer side effects. In this review, the authors have discussed the mechanisms and pharmacological action of herbal bioactive compounds to boost memory. Moreover, this review presents an update of different herbs and natural products that could act as memory enhancers and how they can be potentially utilized in the near future for the treatment of severe brain disorders. In addition, the authors also discuss the differences in biological activity of the same herb and emphasize the requirement for a higher standardization in cultivation methods and plant processing. The demand for further studies evaluating the interactions of herbal drugs is mentioned.
Collapse
Affiliation(s)
- Swati Halder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, king Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M. Alshammari
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Eapen P. Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| |
Collapse
|