1
|
Loba-Pasternak W, Aksoy MO, Stuper-Szablewska K, Szwajkowska-Michalek L, Kolodziejski P, Szczerbal I, Nowacka-Woszuk J. The Effects of Peruvian maca ( Lepidium meyenii) Root Extract on In Vitro Cultured Porcine Fibroblasts and Adipocytes. Molecules 2025; 30:847. [PMID: 40005158 PMCID: PMC11858347 DOI: 10.3390/molecules30040847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Peruvian maca (Lepidium meyenii) is a plant known for its nutritional and medicinal properties whose use as a supplement in animal diets has attracted much interest. We studied the effects of powdered maca root extract on the growth potential of in vitro cultured porcine cells prior to its use as an additive in animal nutrition. Fibroblast cell viability (MTT), cell proliferation (BrdU), and apoptosis level (TUNEL) were measured for a range of extract doses (0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 7.0, and 10 mg/mL). Transcript levels of CCND1, MCM2, and PCNA genes as molecular markers of cell proliferation were also determined. Next, the effects of maca extract at 2 and 5 mg/mL on in vitro induced adipogenesis were evaluated over eight days of differentiation. The transcript levels of three adipocyte marker genes (CEBPA, PPARG, and FABPB4) were measured at days 0, 4, and 8 of adipose differentiation, and lipid droplet accumulation (BODIPY staining) was also noted. No cytotoxic effect was detected on fibroblast cell viability, and the inhibitory concentration (IC50) value was determined to be IC50 > 10 mg/mL. Doses of maca extract above 3 mg/mL decreased cell proliferation. The transcript level decreased in concentrations above 5 for the MCM2 and PCNA genes. For the CCND1 gene, the transcript level decreased when the greatest maca dose was used. In the in vitro adipogenesis experiment, it was found that the rate of lipid droplet formation increased on day 4 of differentiation for both doses, while decreased lipid droplet formation was observed on day 8 for 5 mg/mL of maca extract. Significant changes were seen in the mRNA level for CEBPA and PPARG on days 4 and 8, while the transcript of FABP4 increased only on day 8 at 2 mg/mL dose. It can be concluded that the addition of Peruvian maca in small doses (<3 mg/mL) has no negative effect on porcine fibroblast growth or proliferation, while 2 mg/mL of maca extract enhances adipocyte differentiation.
Collapse
Affiliation(s)
- Weronika Loba-Pasternak
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland; (W.L.-P.); (M.O.A.); (I.S.)
| | - Mehmet Onur Aksoy
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland; (W.L.-P.); (M.O.A.); (I.S.)
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland; (K.S.-S.); (L.S.-M.)
| | - Lidia Szwajkowska-Michalek
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland; (K.S.-S.); (L.S.-M.)
| | - Pawel Kolodziejski
- Department of Animal Physiology, Biochemistry, and Biostructure, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland;
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland; (W.L.-P.); (M.O.A.); (I.S.)
| | - Joanna Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland; (W.L.-P.); (M.O.A.); (I.S.)
| |
Collapse
|
2
|
Chen Y, Zhang C, Feng Y. Medicinal plants for the management of post-COVID-19 fatigue: A literature review on the role and mechanisms. J Tradit Complement Med 2025; 15:15-23. [PMID: 39807273 PMCID: PMC11725095 DOI: 10.1016/j.jtcme.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 01/16/2025] Open
Abstract
Background COVID-19 infection has a lasting impact on human health, which is known as post-COVID-19 conditions. Fatigue is one of the most commonly reported post-COVID-19 conditions. Management of fatigue in the post-COVID-19 era is necessary and emerging. The use of medicinal plants may provide a strategy for the management of post-COVID-19 fatigue. Methods A literature search has been conducted by using PubMed, Embase and Cochrane library databases is performed for studies published up to March 2024. Keywords, such as "post-COVID-19 conditions, persistent COVID-19 symptoms, chronic COVID-19, long-term sequelae, fatigue, post-COVID-19 fatigue, herbal plants, medicinal herbs, traditional Chinese medicine, pharmacological mechanisms, pharmacological actions" are thoroughly searched in Englsih and Chinese. This study reviews the pathophysiology of post-COVID-19 fatigue and potential herbal plants for managing post-COVID-19 fatigue. Results and conclusion Representative medicinal plants that have been extensively investigated by previous studies are presented in the study. Three common mechanisms among the most extensively studied for post-COVID-19 fatigue, with each mechanism having medicinal plants as an example. The latest clinical studies concerning the management of post-COVID-19 fatigue using medicinal plants have also been summarized. The study shows the potential for improving post-COVID-19 fatigue by consuming medicinal plants.
Collapse
Affiliation(s)
- Yuanyuan Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
3
|
Li X, Wen D, He Y, Liu Y, Han F, Su J, Lai S, Zhuang M, Gao F, Li Z. Progresses and Prospects on Glucosinolate Detection in Cruciferous Plants. Foods 2024; 13:4141. [PMID: 39767081 PMCID: PMC11675635 DOI: 10.3390/foods13244141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
This review provides a comprehensive summary of the latest international research on detection methods for glucosinolates in cruciferous plants. This article examines various analytical techniques, including high-performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS), enzyme-linked immunosorbent assay (ELISA), and capillary electrophoresis (CE), while highlighting their respective advantages and limitations. Additionally, this review delves into recent advancements in sample preparation, extraction, and quantification methods, offering valuable insights into the accurate and efficient determination of glucosinolate content across diverse plant materials. Furthermore, it underscores the critical importance of the standardization and validation of these methodologies to ensure reliable glucosinolate analyses in both scientific research and industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.)
| |
Collapse
|
4
|
Vera-López KJ, Davila-Del-Carpio G, Nieto-Montesinos R. Macamides as Potential Therapeutic Agents in Neurological Disorders. Neurol Int 2024; 16:1611-1625. [PMID: 39585076 PMCID: PMC11587492 DOI: 10.3390/neurolint16060117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024] Open
Abstract
Therapeutic treatment of nervous system disorders has represented one of the significant challenges in medicine for the past several decades. Technological and medical advances have made it possible to recognize different neurological disorders, which has led to more precise identification of potential therapeutic targets, in turn leading to research into developing drugs aimed at these disorders. In this sense, recent years have seen an increase in exploration of the therapeutic effects of various metabolites extracted from Maca (Lepidium meyenii), a plant native to the central alpine region of Peru. Among the most important secondary metabolites contained in this plant are macamides, molecules derived from N-benzylamides of long-chain fatty acids. Macamides have been proposed as active drugs to treat some neurological disorders. Their excellent human tolerance and low toxicity along with neuroprotective, immune-enhancing, and and antioxidant properties make them ideal for exploration as therapeutic agents. In this review, we have compiled information from various studies on macamides, along with theories about the metabolic pathways on which they act.
Collapse
Affiliation(s)
| | | | - Rita Nieto-Montesinos
- Escuela Profesional de Farmacía y Bioquímica, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (K.J.V.-L.); (G.D.-D.-C.)
| |
Collapse
|
5
|
Kasprzak D, Gaweł-Bęben K, Kukula-Koch W, Strzępek-Gomółka M, Wawruszak A, Woźniak S, Chrzanowska M, Czech K, Borzyszkowska-Bukowska J, Głowniak K, Matosiuk D, Orihuela-Campos RC, Jodłowska-Jędrych B, Laskowski T, Meissner HO. Lepidium peruvianum as a Source of Compounds with Anticancer and Cosmetic Applications. Int J Mol Sci 2024; 25:10816. [PMID: 39409148 PMCID: PMC11476809 DOI: 10.3390/ijms251910816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Lepidium peruvianum-an edible herbaceous biennial plant distributed in the Andes-has been used for centuries as food and as a natural medicine in treating hormonal disorders, as an antidepressant, and as an anti-osteoporotic agent. The presented study aims to prove its beneficial cosmetic and chemopreventive properties by testing the antiradical, whitening, cytotoxic, and anticancer properties of differently colored phenotypes that were extracted using three solvents: methanol, water, and chloroform, with the help of the chemometric approach to provide evidence on the impact of single glucosinolanes (seven identified compounds in the HPLC-ESI-QTOF-MS/MS analysis) on the biological activity of the total extracts. The tested extracts exhibited moderate antiradical activity, with the methanolic extract from yellow and grey maca phenotypes scavenging 49.9 ± 8.96% and 48.8% ± 0.44% of DPPH radical solution at a concentration of 1 mg/mL, respectively. Grey maca was the most active tyrosinase inhibitor, with 72.86 ± 3.42% of the enzyme activity calculated for the water extract and 75.66 ± 6.21% for the chloroform extract. The studies in cells showed no cytotoxicity towards the human keratinocyte line HaCaT in all studied extracts and a marked inhibition of cell viability towards the G361 melanoma cell line, which the presence of pent-4-enylglucosinolate, glucotropaeolin, and glucoalyssin in the samples could have caused. Given all biological activity tests combined, the three mentioned compounds were shown to be the most significant positive contributors to the results obtained, and the grey maca water extract was found to be the best source of the former compound among the tested samples.
Collapse
Affiliation(s)
- Dorota Kasprzak
- Department of Cosmetology, Faculty of Health Sciences, Wincenty Pol Academy of Applied Sciences in Lublin, Choiny 2 Street, 20-816 Lublin, Poland;
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Marcelina Strzępek-Gomółka
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Sylwia Woźniak
- Chair and Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 4a Chodzki Str., 20-93 Lublin, Poland; (S.W.); (D.M.)
| | - Marcelina Chrzanowska
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (M.C.); (J.B.-B.); (T.L.)
| | - Karolina Czech
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Julia Borzyszkowska-Bukowska
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (M.C.); (J.B.-B.); (T.L.)
| | - Kazimierz Głowniak
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Dariusz Matosiuk
- Chair and Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 4a Chodzki Str., 20-93 Lublin, Poland; (S.W.); (D.M.)
| | - Rita Cristina Orihuela-Campos
- Academic Department of Stomatology for Children and Adolescents, Integrated Faculties of Medicine, Stomatology and Nursing, Cayetano Heredia Peruvian University, Av. Honorio Delgado 430, Lima 15102, Peru;
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology, Medical University of Lublin, 11 Radziwiłłowska Str., 20-093 Lublin, Poland;
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (M.C.); (J.B.-B.); (T.L.)
| | - Henry O. Meissner
- Therapeutic Research, TTD International Pty Ltd., 39 Leopard Ave., Elanora, Gold Coast, QLD 4221, Australia;
| |
Collapse
|
6
|
Sun L, Yang B, Lin Y, Gao M, Yang Y, Cui X, Hao Q, Liu Y, Wang C. Dynamic bond crosslinked maca polysaccharide hydrogels with reactive oxygen species scavenging and antibacterial effects on infected wound healing. Int J Biol Macromol 2024; 276:133471. [PMID: 38942406 DOI: 10.1016/j.ijbiomac.2024.133471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
In this study, a polysaccharide fragment with antioxidant and reactive oxygen species (ROS) scavenging activities was extracted from Maca (Lepidium meyenii Walp.) and subjected to structural analyses. The fragment, characterized by the α-D-Glcp-(1 → terminal group of the main chain linked to the →4)-Glcp-(1 → end unit through an O-6 bond and the O-3 bond of 1-3-4Glcp, was modified by introducing dialdehyde structures on its glucose units. It was then crosslinked with N-carboxymethyl chitosan via the Schiff base reaction to create a multifunctional hydrogel with antibacterial and ROS scavenging properties. Polyvinyl alcohol was incorporated to form a double crosslinked gel network, and the addition of silver nanoparticles enhanced its antibacterial efficacy. This gel system can scavenge excess ROS, mitigate wound inflammation, eradicate harmful bacteria, and aid in the restoration of skin microecology. The multifunctional maca polysaccharide hydrogel shows significant potential as a medical dressing for the treatment of infected wounds.
Collapse
Affiliation(s)
- Liangliang Sun
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Boyuan Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yameng Lin
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Mingju Gao
- Wenshan University, Wenshan 663099, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qian Hao
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yuan Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
7
|
Tóth S, Szlávik MF, Mandel R, Fekecs F, Tusnády G, Vajda F, Varga N, Apáti Á, Bényei A, Paczal A, Kotschy A, Szakács G. Synthesis and Systematic Investigation of Lepidiline A and Its Gold(I), Silver(I), and Copper(I) Complexes Using In Vitro Cancer Models and Multipotent Stem Cells. ACS OMEGA 2024; 9:32226-32234. [PMID: 39072085 PMCID: PMC11270681 DOI: 10.1021/acsomega.4c05020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
The imidazole alkaloid lepidiline A from the root of Lepidium meyenii has a moderate to low in vitro anticancer effect. Our aim was to extend cytotoxicity investigations against a panel of cancer cells, including multidrug-resistant cancer cells, and multipotent stem cells. Lepidiline A is a N-heterocyclic carbene precursor, therefore a suitable ligand source for metal complexes. Thus, we synthesized lepidiline A and its copper(I), gold(I), and silver(I) complexes and tested them against ovarian, gastrointestinal, breast, and uterine cancer cells and bone marrow-derived and adipose-derived mesenchymal stem cells. Lepidiline A and its copper complex demonstrated moderate cytotoxicity, while silver and gold complexes exhibited significantly enhanced and consistent cytotoxicity against both cancer and stem cell lines. ABCB1 in the multidrug-resistant uterine sarcoma line conferred significant resistance against lepidiline A and the copper-lepidiline A complex, but not against the silver and gold complexes. Our results indicate that only the copper complex induced a significant and universal increase in the production of reactive oxygen species within cells. In summary, binding of metal ions to lepidiline A results in enhanced cytotoxicity with the nature of the metal ion playing a critical role in determining its properties.
Collapse
Affiliation(s)
- Szilárd Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Márton F. Szlávik
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Réka Mandel
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Fanni Fekecs
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
| | - Gábor Tusnády
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Flóra Vajda
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
- Doctoral
School of Molecular Medicine, Semmelweis
University, Budapest H-1089, Hungary
| | - Nóra Varga
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
- Creative
Cell Ltd., Puskas Tivadar
u. 13, Budapest H-1119, Hungary
| | - Ágota Apáti
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Attila Bényei
- Department
of Physical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Attila Paczal
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
| | - András Kotschy
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
| | - Gergely Szakács
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
- Center
for Cancer Research, Medical University
of Vienna, Spitalgasse 23, Vienna A-1090, Austria
| |
Collapse
|
8
|
Wu ZW, Peng XR, Liu XC, Wen L, Tao XY, Al-Romaima A, Wu MY, Qiu MH. The structures of two polysaccharides from Lepidium meyenii and their immunomodulatory effects via activating NF-κB signaling pathway. Int J Biol Macromol 2024; 269:131761. [PMID: 38663705 DOI: 10.1016/j.ijbiomac.2024.131761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/09/2024]
Abstract
Lepidium meyenii Walp., also known as the "Peruvian national treasure", is a popular functional food in the daily lives of Peruvian people due to its bioactive with main polysaccharides. However, studies on polysaccharides isolated from Lepidium meyenii were few. Two new highly heterogeneous polysaccharides, MCP-1a and MCP-2b, were isolated and purified from the tuber of Lepidium meyenii. The structure characterization revealed that MCP-1a primarily consisted of D-Glc and had a molecular weight of 6.6 kDa. Its backbone was composed of 1,4,6-α-D-Glc, while branches feature T-α-L-Ara, 1,5-α-L-Ara, and T-α-D-Glc attached to the O-6 positions. MCP-2b was a rare arabinogalactan with a molecular weight of 49.4 kDa. Interestingly, the backbone of MCP-2b was composed of 1,6-β-D-Gal, 1,3,6-β-D-Gal with a few 1,3-β-D-GlcpA-4-OMe units inserted. Side chains of MCP-2b were mainly composed of 1,3-β-D-Gal, T-β-D-Gal, T-α-L-Ara, 1,5-α-L-Ara, with trace amounts of 1,4-β-D-Glc and T-β-D-Glc. The bioactivity assay results revealed that MCP-1a and MCP-2b increased the release of NO, IL-1β, TNF-α, and IL-6 from RAW 264.7 cells at concentrations ranging from 50 μg/mL to 400 μg/mL. Furthermore, MCP-1a and MCP-2b could promote the expression of key transcription factors (IκB-α, p-IκB-α, p65, and p-p65) in the NF-κB pathway, indicating that MCP-1a and MCP-2b had potential immunomodulatory activities.
Collapse
Affiliation(s)
- Zhou-Wei Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Cui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Luan Wen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xin-Yu Tao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming-Yi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
9
|
Mekkawy MH, Abdou FY, Ali MM, Abd-ElRaouf A. A novel approach of using Maca root as a radioprotector in a rat testicular damage model focusing on GRP78/CHOP/Caspase-3 pathway. Arch Biochem Biophys 2024; 755:109963. [PMID: 38518815 DOI: 10.1016/j.abb.2024.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
PURPOSE Despite the effectiveness of ionizing radiation in treating cancer, it can damage healthy tissues in the vicinity. Due to the high radio-sensitivity of testicular tissues, radiation therapy may affect spermatogenesis, which may result in infertility. Hence, in this study testicular damage model is constructed to investigate the mitigation effect of Maca root powder and its potential radioprotective activity through both oxidative and endoplasmic reticulum (ER) stresses, besides the apoptotic pathway. METHODS Male albino rats were exposed to 6Gy of whole-body gamma radiation single dose. Maca root powder (1 g/kg b.wt./day, by oral gavage) was administered for a week before irradiation, then d-galactose (300 mg/kg, by oral gavage) and Maca daily for another week. RESULTS Gamma radiation and d-galactose revealed a significant decrease in serum testosterone, sperm count, and motility and higher percentage of the sperm head abnormality, while Maca root treatment maintained all sperm morphology parameters. Maca root treatment demonstrated a notable defense against radiation-induced oxidative stress and ameliorated malonaldehyde (MDA), reactive oxygen species (ROS), nitric oxide (NO), glutathione-S-transferase (GST) levels, reduced glutathione (GSH), oxidized glutathione (GSSG) and the ratio of GSH/GSSG in testis tissues. Exposure to gamma rays and d-galactose displayed a significant elevation in GRP78, CHOP, total caspase-3 as well as active (cleaved) caspase-3 levels, whereas treatment with Maca significantly reduced the ER and apoptotic markers levels. Also, Maca improved the histological changes of the disorganized seminiferous tubules induced by irradiation. CONCLUSION Our findings show for the first time that Maca has a protective effect on male reproductive damage induced by radiotherapy. Maca root reveals anti-apoptotic effect and protection against testicular damage via GRP78/CHOP/caspase-3 pathway.
Collapse
Affiliation(s)
- Mai H Mekkawy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Fatma Y Abdou
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Maha M Ali
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Amira Abd-ElRaouf
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
10
|
Le NTH, Foubert K, Theunis M, Naessens T, Bozdag M, Van Der Veken P, Pieters L, Tuenter E. UPLC-TQD-MS/MS Method Validation for Quality Control of Alkaloid Content in Lepidium meyenii (Maca)-Containing Food and Dietary Supplements. ACS OMEGA 2024; 9:15971-15981. [PMID: 38617670 PMCID: PMC11007719 DOI: 10.1021/acsomega.3c09356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 04/16/2024]
Abstract
Lepidium meyenii Walp. (Brassicaceae), also known as Maca or Peruvian ginseng, is a common ingredient in food supplements with many claimed health benefits, such as improved endurance, increased energy level, and enhanced sexual properties. Due to potential toxicity of its chemicals, including alkaloids, some regulatory authorities, e.g., in Belgium, Germany, the United States, expressed concerns about the safe consumption of Maca root. However, due to the lack of commercial standards, no established analytical method currently exists for this purpose. The current project focuses on the quantitative determination of potentially toxic alkaloids from Maca. The current study presents the first analytical method for quality control of alkaloid content in Maca-containing food and dietary supplements, assessing the presence of 11 major compounds belonging to three different classes, i.e., imidazole, β-carboline, and pyrrole alkaloids. An accurate, rapid, and sensitive UPLC-TQD-MS/MS method is reported, which was fully validated according to the International Council for Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) and SANTE/11312/2021 guidelines. To ensure the method's applicability and practicability in the absence of primary standards, validation of secondary standards (SSs) alongside primary standards (PSs) was also conducted for imidazole alkaloids. As a result, in Maca raw powder, total alkaloid content was found to vary from 418 to 554 ppm (mg/kg). Furthermore, all quantified imidazole alkaloids were ascertained to be the major alkaloids with the total content from 323 to 470 ppm in Maca raw powder, followed by the β-carboline and pyrrole alkaloids. It was also observed that the commercial preparation of finished products affects the total alkaloid content, evidenced by the large variation from 56 to 598 ppm. Ultimately, from a regulatory point of view, it seems advisible not to request the complete absence of the alkaloids but to impose a maximum level based on safety considerations. In addition to the analytical method, a low-cost, simple, and scalable synthetic scheme of macapyrrolins A, C, and G was reported for the first time.
Collapse
Affiliation(s)
- Ngoc-Thao-Hien Le
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Kenn Foubert
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Mart Theunis
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Tania Naessens
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Murat Bozdag
- Laboratory
of Medicinal Chemistry, Department of Pharmaceutical Sciences, University
of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Pieter Van Der Veken
- Laboratory
of Medicinal Chemistry, Department of Pharmaceutical Sciences, University
of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Luc Pieters
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Emmy Tuenter
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| |
Collapse
|
11
|
Mohamed SM, Shalaby MA, El-Shiekh RA, Bakr AF, Kamel S, Emam SR, El-Banna HA. Maca roots: A potential therapeutic in the management of metabolic disorders through the modulation of metabolic biochemical markers in rats fed high-fat high-carbohydrate diet. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117533. [PMID: 38056538 DOI: 10.1016/j.jep.2023.117533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maca root (Lepidium meyenii Walp.) is a Peruvian plant of the Brassicaceae family. Maca roots are popular food supplements used to treat a variety of ailments described traditionally as enhancing metabolic and health conditions. AIM OF THE STUDY Metabolic syndrome (MetS) has been the real scourge globally, affecting more than one-fourth of the global population. MetS causes the development of multi-organ illnesses, including altered blood cholesterol and sugar levels, oxidative stress, and hypertension. This study evaluated maca root total methanolic extract (MTE) as a potential nutraceutical to manage the complications of MetS. MATERIALS AND METHODS After the first 4 weeks of a high-fat high-carbohydrate diet (HFCD), streptozotocin (STZ) was injected in Wistar rats to induce the MetS model. Animals were treated orally with MTE at 100 mg/kg and 300 mg/kg for 4 weeks compared to metformin at 200 mg/kg after confirmation of diabetes. RESULTS One month of MTE supplementation in HFCD-fed rats remarkably decreased the elevation of blood glucose and lipids, improved liver function and insulin resistance, additionally it successfully restored the state of inflammatory and oxidative stress. The extract was standardized to contain total phenolics equal to 24.45 ± 0.96 μg Gallic acid/mg extract. CONCLUSIONS Our findings suggest that MTE improves MetS by reducing hyperglycemia, hyperlipidemia, inflammation, and oxidative stress. While also improving beta cell secretory functions, implying that MTE could be used as a balancing drug in the prevention and treatment of metabolic abnormalities linked to type 2 diabetes.
Collapse
Affiliation(s)
- Salma Mostafa Mohamed
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Mostafa Abbas Shalaby
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Alaa F Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt.
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Shimaa R Emam
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Hossny A El-Banna
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| |
Collapse
|
12
|
Ulloa del Carpio N, Alvarado-Corella D, Quiñones-Laveriano DM, Araya-Sibaja A, Vega-Baudrit J, Monagas-Juan M, Navarro-Hoyos M, Villar-López M. Exploring the chemical and pharmacological variability of Lepidium meyenii: a comprehensive review of the effects of maca. Front Pharmacol 2024; 15:1360422. [PMID: 38440178 PMCID: PMC10910417 DOI: 10.3389/fphar.2024.1360422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Maca (Lepidium meyenii), a biennial herbaceous plant indigenous to the Andes Mountains, has a rich history of traditional use for its purported health benefits. Maca's chemical composition varies due to ecotypes, growth conditions, and post-harvest processing, contributing to its intricate phytochemical profile, including, macamides, macaenes, and glucosinolates, among other components. This review provides an in-depth revision and analysis of Maca's diverse bioactive metabolites, focusing on the pharmacological properties registered in pre-clinical and clinical studies. Maca is generally safe, with rare adverse effects, supported by preclinical studies revealing low toxicity and good human tolerance. Preclinical investigations highlight the benefits attributed to Maca compounds, including neuroprotection, anti-inflammatory properties, immunoregulation, and antioxidant effects. Maca has also shown potential for enhancing fertility, combating fatigue, and exhibiting potential antitumor properties. Maca's versatility extends to metabolic regulation, gastrointestinal health, cardio protection, antihypertensive activity, photoprotection, muscle growth, hepatoprotection, proangiogenic effects, antithrombotic properties, and antiallergic activity. Clinical studies, primarily focused on sexual health, indicate improved sexual desire, erectile function, and subjective wellbeing in men. Maca also shows promise in alleviating menopausal symptoms in women and enhancing physical performance. Further research is essential to uncover the mechanisms and clinical applications of Maca's unique bioactive metabolites, solidifying its place as a subject of growing scientific interest.
Collapse
Affiliation(s)
- Norka Ulloa del Carpio
- Centro de Investigación Clínica de Medicina Complementaria—CICMEC, Gerencia de Medicina Complementaria, Seguro Social de Salud-EsSalud, Lima, Peru
| | - Diego Alvarado-Corella
- Bioactivity and Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose, Costa Rica
| | | | - Andrea Araya-Sibaja
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José, Costa Rica
| | - José Vega-Baudrit
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José, Costa Rica
| | - Maria Monagas-Juan
- United States Pharmacopeia (USP) Dietary Supplements and Herbal Medicines, Rockville, MD, United States
| | - Mirtha Navarro-Hoyos
- Bioactivity and Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose, Costa Rica
| | - Martha Villar-López
- Centro de Investigación Clínica de Medicina Complementaria—CICMEC, Gerencia de Medicina Complementaria, Seguro Social de Salud-EsSalud, Lima, Peru
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
13
|
Kang S, Ahn BO, Park MH, Lim ST, Lee E. Effects of Black Maca supplement on isokinetics muscular performance of elite women's handball players: placebo-controlled, crossover study. Food Nutr Res 2023; 67:10250. [PMID: 38187794 PMCID: PMC10770698 DOI: 10.29219/fnr.v67.10250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 01/09/2024] Open
Abstract
Background The aim of this study was to investigate the changes in isokinetic muscular performance among female adolescent elite handball athletes with the supplementation of Black Maca (BM). Methods Eight elite handball athletes were recruited for the present study. The intake capsules contained 2,500 mg of 100% concentrated BM extract and a placebo each, for 4 weeks. Isokinetic muscular performance and physical fitness were measured three times at 4-week intervals after the intake of BM and placebo, including baseline. Results The one-way Analysis of Variance (ANOVA) analysis showed a significant improvement in 20 m-shuttle run (P < 0.001), 30°/s flexor (P < 0.01), and 120°/s flexor (P < 0.01) in isokinetic muscle function of the trunk, and 180°/s right extensor (P < 0.05), 180°/s left extensor (P < 0.05), and 180°/s left flexor (P < 0.01) in isokinetic muscle function of the knee, after BM supplementation. Post-hoc analysis indicated that the BM group had significantly higher results compared to the baseline and placebo groups in terms of 20 m-shuttle run, 30°/s flexor and 120°/s flexor of the trunk, 180°/s right extensor, 180°/s left extensor, and 180°/s left flexor of the knee. Conclusion BM supplementation can have a positive effect on improving the performance of elite handball players who engage in high-intensity movements by enhancing their isokinetic muscle function and endurance.
Collapse
Affiliation(s)
- Sunghwun Kang
- Laboratory of Exercise Physiology, College of Art, Culture and Engineering, Kangwon National University, Gangwon-do, Republic of Korea
- Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University, Gangwon-do, Republic of Korea
| | - Byung-O Ahn
- Hambaek Low Firm, Seoul, Republic of Korea
- Republic of Korea Naval Academy, Gyeongsangnam-do, Republic of Korea
| | - Myeong-Hun Park
- Laboratory of Exercise Physiology, College of Art, Culture and Engineering, Kangwon National University, Gangwon-do, Republic of Korea
- Chanmacist, Seoul, Republic of Korea
| | - Seung-Taek Lim
- College of General Education, Kookmin University, Seoul, Republic of Korea
- Waseda Institute for Sport Sciences, Waseda University, Saitama, Japan
| | - Eunjae Lee
- Waseda Institute for Sport Sciences, Waseda University, Saitama, Japan
- Institute of Sports and Arts Convergence (ISAC), Inha University, Incheon, Republic of Korea
| |
Collapse
|
14
|
Cao F, Zhang H, Yan Y, Chang Y, Ma J. Extraction of polysaccharides from Maca enhances the treatment effect of 5-FU by regulating CD4 +T cells. Heliyon 2023; 9:e16495. [PMID: 37274637 PMCID: PMC10238885 DOI: 10.1016/j.heliyon.2023.e16495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
In our previous studies, we used a graded alcohol precipitation method to extract four maca polysaccharide components (MCP1, MCP2, MCP3, and MCP4) from maca with various molecular weights. Compared to other three components, MCP2 had stronger immunoregulatory abilities on CD4+T cells. To avoid the immunosuppressive effect of 5-fluorouracil (5-FU), maca polysaccharides in combination with 5-FU treatment were investigated in this study. The results show that 500 mg/kg and 1000 mg/kg MCP2 could significantly delay the growth of tumor and enhance the anti-tumor effect of 5-FU in vivo. Furthermore, MCP2 can partly recover the proliferation of CD4+T cells after being suppressed by 5-FU in vitro. Additionally, in order to explore the mechanism in which MCP2 acts on CD4+T cells, the MCP2 is marked with FITC fluorescence and synthesis MCP2-Tyr-FITC for the first time. Confocal microscope results show that MCP2-Tyr-FITC can directly bind to the surface of CD4+T cells. Together, our work demonstrates that maca polysaccharides could enhance the anti-tumor effect when combined with 5-FU by regulating CD4+T cells, suggesting a novel potential immunomodulator in tumor therapy.
Collapse
Affiliation(s)
- Fenghua Cao
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang 212000, China
| | - Hanyuan Zhang
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang 212000, China
| | - Ying Yan
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yi Chang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jie Ma
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
15
|
Adeyi OE, Somade OT, James AS, Adeyi AO, Ogbonna-Eze SN, Salako OQ, Makinde TV, Ajadi OM, Nosiru SA. Ferulic acid mitigates 2-methoxyethanol-induced testicular oxidative stress via combined downregulation of FoxO1, PTEN, and modulation of Nrf2-Hmox1-NQO1 signaling pathway in rats. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2023; 7:100257. [DOI: 10.1016/j.prmcm.2023.100257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Fu P, Luo S, Liu Z, Furuhara K, Tsuji T, Higashida H, Yokoyama S, Zhong J, Tsuji C. Oral Supplementation with Maca Improves Social Recognition Deficits in the Valproic Acid Animal Model of Autism Spectrum Disorder. Brain Sci 2023; 13:brainsci13020316. [PMID: 36831858 PMCID: PMC9954495 DOI: 10.3390/brainsci13020316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Autism spectrum disorder (ASD) is a congenital, lifelong neurodevelopmental disorder whose main symptom is impaired social communication and interaction. However, no drug can treat social deficits in patients with ASD, and treatments to alleviate social behavioral deficits are sorely needed. Here, we examined the effect of oral supplementation of maca (Lepidium meyenii) on social deficits of in utero-exposed valproic acid (VPA) mice, widely used as an ASD model. Although maca is widely consumed as a fertility enhancer and aphrodisiac, it possesses multiple beneficial activities. Additionally, it benefits learning and memory in experimental animal models. Therefore, the effect of maca supplementation on the social behavioral deficit of VPA mice was assessed using a social interaction test, a three-stage open field test, and a five-trial social memory test. The oral supplementation of maca attenuated social interaction behavior deficit and social memory impairment. The number of c-Fos-positive cells and the percentage of c-Fos-positive oxytocin neurons increased in supraoptic and paraventricular neurons of maca-treated VPA mice. These results reveal for the first time that maca is beneficial to social memory and that it restores social recognition impairments by augmenting the oxytocinergic neuronal pathways, which play an essential role in diverse social behaviors.
Collapse
Affiliation(s)
- Pinyue Fu
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa 920-8640, Japan
| | - Shuxin Luo
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Physiological Department, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Zhongyu Liu
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Physiological Department, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Kazumi Furuhara
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Takahiro Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa 920-8640, Japan
| | - Jing Zhong
- Physiological Department, Guangxi University of Chinese Medicine, Nanning 530011, China
- Correspondence: (J.Z.); or (C.T.); Tel.: +81-(0)-76-265-2458 (C.T.)
| | - Chiharu Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Correspondence: (J.Z.); or (C.T.); Tel.: +81-(0)-76-265-2458 (C.T.)
| |
Collapse
|
17
|
Deep Eutectic Solvent-Based Ultrasound-Assisted Strategy for Simultaneous Extraction of Five Macamides from Lepidium meyenii Walp and In Vitro Bioactivities. Foods 2023; 12:foods12020248. [PMID: 36673339 PMCID: PMC9858098 DOI: 10.3390/foods12020248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
This study aimed to develop an integrated approach of deep eutectic solvent-based ultrasound-assisted extraction (DES-UAE) to simultaneously extract five major bioactive macamides from the roots of Lepidium meyenii Walp. Ten different DESs containing choline chloride and selected hydrogen-bond donors were prepared and evaluated based on the extracted macamide content determination using high-performance liquid chromatography (HPLC). Choline chloride/1,6-hexanediol in a 1:2 molar ratio with 20% water exhibited the most promising extraction efficiencies under the optimized parameters verified using single-factor optimization as well as Box-Behnken design. Using the optimized DES-UAE method, the extraction efficiencies of the five macamides were up to 40.3% higher compared to those using the most favorable organic solvent petroleum ether and were also superior to those of the other extraction methods, such as heating and combination of heating and stirring. Furthermore, using the macroporous resin HPD-100, the recoveries of the five target macamides from the DES extraction reached 85.62-92.25%. The 20 μg/mL group of the five macamide extracts showed superior neuroprotective activity against PC12 cell injury than that of the positive drug nimodipine. The macamide extracts also showed higher NO inhibition in LPS-stimulated RAW264.7 cells. Thus, the developed approach was a green and potential alternative that can be used to extract bioactive macamide constituents from L. meyenii in the pharmaceutical and food industries.
Collapse
|
18
|
Screening, ACE-inhibitory mechanism and structure-activity relationship of a novel ACE-inhibitory peptide from Lepidium meyenii (Maca) protein hydrolysate. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Del Prete C, Calabria A, Longobardi V, Palumbo V, Merlo B, Iacono E, Tafuri S, Carotenuto D, Ciani F, Damiano S, Ciarcia R, Cocchia N. Effect of Aqueous Extract of Maca Addition to an Extender for Chilled Canine Semen. Animals (Basel) 2022; 12:ani12131638. [PMID: 35804537 PMCID: PMC9264857 DOI: 10.3390/ani12131638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The wide use of artificial insemination in dogs justifies the development of new strategies to prevent the reduction of fertilizing ability of stored semen. In recent years, the use of plant antioxidant supplementation has become increasingly popular. Maca (Lepidium meyenii) is an Andean edible root with antioxidant properties. The effectiveness of the oral supplementation of Maca in improving fresh semen quality and quantity and cooling or freezing ability has already been reported. This is the first in vitro study on the effects of aqueous extract of Maca on canine spermatozoa. The addition of low concentrations of aqueous extract of Maca to the canine chilled extender had positive effects only until 24 h of storage, increasing hyperactivation of sperm cells and preserving DNA integrity of spermatozoa in short-term storage. Meanwhile, a high concentration of Maca had an immediately deleterious effect on semen quality. Abstract Antioxidant supplementation has been proposed as a new strategy to improve the long-term preservation of semen. The aim of this study was to evaluate the effect of Maca supplementation of semen extender on quality-related canine semen parameters during cooling. Ejaculates from nine dogs were cooled for 7 days in the absence (control group) or in the presence of 10, 20 and 50 μL/mL of an aqueous extract of Maca. Sperm were evaluated for sperm viability, motility, DNA fragmentation and lipid peroxidation after 3 h, 24 h, 4 days and 7 days of storage. The addition of 10 μL/mL of Maca preserved sperm DNA and plasma membrane integrity at 3 h and increased sperm curvilinear velocity after 24 h. Treatment with 20 and 50 μL/mL of Maca increased the percentage of hyperactivated sperm after 3 h. Moreover, semen treated with 20 μL/mL of Maca decreased lipid peroxidation at 24 h. A significant reduction of sperm DNA and plasma membrane integrity as well as of kinetics parameters between 3 and 24 h of refrigerated storage with the higher concentration tested was observed. Although Maca was not able to protect canine semen with extended refrigeration storage time, it increased hyperactivation and preserved DNA integrity in short-term storage.
Collapse
Affiliation(s)
- Chiara Del Prete
- Department of Veterinary Medicine and Animal Productions, University of Naples ‘Federico II’, Via Federico Delpino 1, 80137 Naples, Italy; (A.C.); (V.L.); (V.P.); (S.T.); (F.C.); (S.D.); (R.C.); (N.C.)
- Correspondence: ; Tel.: +39-081-2536017
| | - Alfonso Calabria
- Department of Veterinary Medicine and Animal Productions, University of Naples ‘Federico II’, Via Federico Delpino 1, 80137 Naples, Italy; (A.C.); (V.L.); (V.P.); (S.T.); (F.C.); (S.D.); (R.C.); (N.C.)
| | - Valentina Longobardi
- Department of Veterinary Medicine and Animal Productions, University of Naples ‘Federico II’, Via Federico Delpino 1, 80137 Naples, Italy; (A.C.); (V.L.); (V.P.); (S.T.); (F.C.); (S.D.); (R.C.); (N.C.)
| | - Veronica Palumbo
- Department of Veterinary Medicine and Animal Productions, University of Naples ‘Federico II’, Via Federico Delpino 1, 80137 Naples, Italy; (A.C.); (V.L.); (V.P.); (S.T.); (F.C.); (S.D.); (R.C.); (N.C.)
| | - Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (B.M.); (E.I.)
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (B.M.); (E.I.)
| | - Simona Tafuri
- Department of Veterinary Medicine and Animal Productions, University of Naples ‘Federico II’, Via Federico Delpino 1, 80137 Naples, Italy; (A.C.); (V.L.); (V.P.); (S.T.); (F.C.); (S.D.); (R.C.); (N.C.)
| | - Domenico Carotenuto
- Facultad de Ciencias Biologicas, Universidad Nacional Mayor San Marcos (UNMSM), Avenida Universitaria 34, Lima 15081, Peru;
| | - Francesca Ciani
- Department of Veterinary Medicine and Animal Productions, University of Naples ‘Federico II’, Via Federico Delpino 1, 80137 Naples, Italy; (A.C.); (V.L.); (V.P.); (S.T.); (F.C.); (S.D.); (R.C.); (N.C.)
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples ‘Federico II’, Via Federico Delpino 1, 80137 Naples, Italy; (A.C.); (V.L.); (V.P.); (S.T.); (F.C.); (S.D.); (R.C.); (N.C.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples ‘Federico II’, Via Federico Delpino 1, 80137 Naples, Italy; (A.C.); (V.L.); (V.P.); (S.T.); (F.C.); (S.D.); (R.C.); (N.C.)
| | - Natascia Cocchia
- Department of Veterinary Medicine and Animal Productions, University of Naples ‘Federico II’, Via Federico Delpino 1, 80137 Naples, Italy; (A.C.); (V.L.); (V.P.); (S.T.); (F.C.); (S.D.); (R.C.); (N.C.)
| |
Collapse
|
20
|
The Distribution of Glucosinolates in Different Phenotypes of Lepidium peruvianum and Their Role as Acetyl- and Butyrylcholinesterase Inhibitors-In Silico and In Vitro Studies. Int J Mol Sci 2022; 23:ijms23094858. [PMID: 35563248 PMCID: PMC9101689 DOI: 10.3390/ijms23094858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to present the fingerprint of different Lepidium peruvianum tuber extracts showing glucosinolates-containing substances possibly playing an important role in preventinting dementia and other memory disorders. Different phenotypes of Lepidium peruvianum (Brassicaceae) tubers were analysed for their glucosinolate profile using a liquid chromatograph coupled with mass spectrometer (HPLC-ESI-QTOF-MS/MS platform). Qualitative analysis in 50% ethanolic extracts confirmed the presence of ten compounds: aliphatic, indolyl, and aromatic glucosinolates, with glucotropaeolin being the leading one, detected at levels between 0–1.57% depending on phenotype, size, processing, and collection site. The PCA analysis showed important variations in glucosinolate content between the samples and different ratios of the detected compounds. Applied in vitro activity tests confirmed inhibitory properties of extracts and single glucosinolates against acetylcholinesterase (AChE) (15.3–28.9% for the extracts and 55.95–57.60% for individual compounds) and butyrylcholinesterase (BuChE) (71.3–77.2% for the extracts and 36.2–39.9% for individual compounds). The molecular basis for the activity of glucosinolates was explained through molecular docking studies showing that the tested metabolites interacted with tryptophan and histidine residues of the enzymes, most likely blocking their active catalytic side. Based on the obtained results and described mechanism of action, it could be concluded that glucosinolates exhibit inhibitory properties against two cholinesterases present in the synaptic cleft, which indicates that selected phenotypes of L. peruvianum tubers cultivated under well-defined environmental and ecological conditions may present a valuable plant material to be considered for the development of therapeutic products with memory-stimulating properties.
Collapse
|
21
|
Todorova V, Ivanov K, Ivanova S. Comparison between the Biological Active Compounds in Plants with Adaptogenic Properties ( Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus and Panax ginseng). PLANTS (BASEL, SWITZERLAND) 2021; 11:64. [PMID: 35009068 PMCID: PMC8747685 DOI: 10.3390/plants11010064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND In the 1960s, research into plant adaptogens began. Plants with adaptogenic properties have rich phytochemical compositions and have been used by humanity since ancient times. However, it is not still clear whether the adaptogenic properties are because of specific compounds or because of the whole plant extracts. The aim of this review is to compare the bioactive compounds in the different parts of these plants. METHODS The search strategy was based on studies related to the isolation of bioactive compounds from Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus, and Panax ginseng. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. RESULTS This review includes data from 259 articles. The phytochemicals isolated from Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus, and Panax ginseng were described and classified in several categories. CONCLUSIONS Plant species have always played an important role in drug discovery because their effectiveness is based on the hundreds of years of experience with folk medicine in different nations. In our view, there is great potential in the near future for some of the phytochemicals found in these plants species to become pharmaceutical agents.
Collapse
Affiliation(s)
- Velislava Todorova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (K.I.); (S.I.)
| | | | | |
Collapse
|