1
|
Zhang HL, Chang J, Sun CP, Huo ZP, Feng YL, Li PY, Jia YX, Hui SW, Zhu QM, Cai JY, He Y, Qiu F, Zhang J. Andrographolide and its sulfated metabolite alleviated DSS-induced inflammatory bowel disease through regulating inflammation and immune via MAPK/NLRP3 pathways and the balance of Th17/Treg cells. Mol Immunol 2025; 183:313-320. [PMID: 40441031 DOI: 10.1016/j.molimm.2025.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/30/2025] [Accepted: 05/14/2025] [Indexed: 06/11/2025]
Abstract
Inflammatory Bowel Disease (IBD), is a chronic illness characterized by severe abdominal pain, diarrhea, and weight loss, seriously diminishing patients' quality of life. Andrographolide (AND), a natural diterpenoid from Andrographis paniculata, and its sulfated metabolite, andrographolide sodium bisulfite (ASB), have showed potential anti-inflammatory effects. However, their mechanism in IBD remains elusive. This study investigated the impact of AND and its sulfated derivative ASB, on inflammatory responses in IBD. Our findings revealed that AND and ASB significantly reduced disease activity index (DAI) scores and enhanced intestinal barrier function in dextran sodium sulfate (DSS)-induced mice, thereby ameliorating the course of IBD. Furthermore, AND and ASB inhibited both the mitogen-activated protein kinase (MAPK) and NLRP3 pathways to reduce the release of inflammatory cytokines IL-6 and TNF-α. This mechanism was accompanied by a restoration of immune balance through the modulation of T-helper 17 (Th17) and regulatory T (Treg) cells. The ability of AND and ASB to mitigate chronic inflammation and maintain immune equilibrium presented a promising therapeutic approach for IBD management. These findings suggested that AND and ASB might provide novel therapeutic approaches for IBD, thereby warranting further investigation into their clinical efficacy for disease treatment and maintenance of remission.
Collapse
Affiliation(s)
- Hui-Lin Zhang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Jing Chang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Cheng-Peng Sun
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Zhi-Peng Huo
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China; State Key Laboratory of Chinese Medicine Modernization, Tasly Pharmaceutical Group Co. Ltd., Tianjin 300410, People's Republic of China
| | - Yan-Li Feng
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Peng-Yan Li
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Ya-Xue Jia
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Si-Wen Hui
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Qi-Meng Zhu
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Jin-Yong Cai
- State Key Laboratory of Chinese Medicine Modernization, Tasly Pharmaceutical Group Co. Ltd., Tianjin 300410, People's Republic of China
| | - Yi He
- State Key Laboratory of Chinese Medicine Modernization, Tasly Pharmaceutical Group Co. Ltd., Tianjin 300410, People's Republic of China.
| | - Feng Qiu
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Juan Zhang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| |
Collapse
|
2
|
Zhang H, Xu Z, Xu Z, Bian S, Qiao N, Wang X, Zhang M, Guo F, Cui Y, Zheng F, Liu J, Wu D, Xu H. The development of pyridazinone-based andrographolide derivatives as anti-cancer agents with the ability of inhibiting the TFAP4/Wnt/β-catenin signaling pathway. Bioorg Chem 2025; 160:108440. [PMID: 40215943 DOI: 10.1016/j.bioorg.2025.108440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/07/2025] [Accepted: 04/02/2025] [Indexed: 05/04/2025]
Abstract
Emerging evidence indicated that natural andrographolide and its derived compounds could exert anti-cancer effects on a broad range of cancer cells by several mechanisms of actions. However, the potent andrographolide derivatives with novel structures are needed and the comprehensive understanding of the underlying mechanisms of actions are still lacking. In this work, we reported the pyridazinone-based anti-cancer andrographolide derivative A61, which is superior to the widely-used anti-cancer drug 5-FU (around 5-fold more potent), it showed high potency to inhibit the growth and migration of a panel of cancer cells, in which the gastric cancer cells exhibited the highest drug sensitivity. Preliminary anti-cancer mechanistic studies indicated that A61 exerted its anti-gastric cancer effect by inducing cell apoptosis through intrinsic mitochondria-mediated pathways and arresting cell circle at S phase. Further exploration at the molecular level indicated that compound A61 may inhibit the transcriptional activity and nuclear localization of TFAP4 in gastric cancer cells by inhibiting the TFAP4/Wnt/β-catenin signaling pathway. For the first time, the TFAP4/Wnt/β-catenin signaling pathway was found to be responsible for the anti-cancer activity of andrographolide derivative. In addition, A61 was demonstrated to have significantly increased bioavailability in rats compared with andrographolide. This work provides pertinent information for the understanding of the anti-cancer mechanism by this class of compounds.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhihao Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhengyu Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shaopan Bian
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ning Qiao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaodi Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mingwei Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Fan Guo
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - You Cui
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Fanyu Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jia Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Di Wu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
3
|
Kang K, Zhang Y, Geng Y, Wang D, Zheng P. Andrographolide attenuates PM2.5-induced blood-brain barrier damage via antioxidant and PI3K/AKT/mTOR/NRF2 pathways. Int Immunopharmacol 2025; 157:114764. [PMID: 40339493 DOI: 10.1016/j.intimp.2025.114764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/18/2025] [Accepted: 04/27/2025] [Indexed: 05/10/2025]
Abstract
Fine particulate matter (PM2.5) may trigger ischemic cerebrovascular diseases, although the molecular mechanisms remain unclear. Andrographolide (AG), a Chinese herbal ingredient, exhibits anti-cancer, anti-inflammation, and anti-oxidation activities in many diseases. However, the efficacy of AG for treatment of cerebrovascular diseases remains unclear. This study evaluated the effects of PM2.5 on the blood-brain barrier (BBB) integrity and AG's efficacy, along with the underlying mechanisms. Cell viability, apoptosis, inflammatory responses, mitochondrial oxidative stress, and adenosine triphosphate levels, in addition to tight junction protein levels of brain microvascular endothelial cells (BMECs) were assessed following treatment with PM2.5, AG, and LY294002 (the PI3K inhibitor). Furthermore, the effects of AG on lung and brain tissue damage, systemic inflammation, BBB permeability, and ultrastructural changes were investigated in mice exposed to PM2.5. Results revealed that PM2.5 was cytotoxic to BMECs, and the mRNA sequencing suggested significant upregulation of the PI3K-AKT pathway. AG inhibited PM2.5-induced apoptosis and attenuated oxidative stress and inflammatory responses in BMECs. AG also ameliorated mitochondrial oxidative stress and barrier dysfunction by activation of the PI3K/AKT/mTOR and NRF2/HO-1 pathways. Moreover, molecular docking confirmed AG binding to the PI3K protein. In vivo experiments showed that AG alleviated PM2.5-induced lung and brain tissue damage and systemic inflammation, thereby improving disruption of the BBB and ultrastructural damage of vascular endothelial cells. These protective effects were reversed by LY294002. Overall, the protective effects of AG against PM2.5-induced BBB impairment were mainly associated with suppression of mitochondrial oxidative stress and activation of the PI3K/AKT/mTOR/NRF2 signaling.
Collapse
Affiliation(s)
- Kai Kang
- School of Public Health, Fudan University, Shanghai 200032, China; Department of Research and Surveillance Evaluation, Shanghai Municipal Center for Health Promotion, Shanghai 200040, China
| | - Yannan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, China
| | - Yang Geng
- Department of Research and Surveillance Evaluation, Shanghai Municipal Center for Health Promotion, Shanghai 200040, China
| | - Dapeng Wang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China.
| | - Pinpin Zheng
- School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Pantoja-Romero W, Lavín-Flores A, Morell G, Martínez M, Weiner BR, Coronas J. Solvent-Free Process for Preparing Metal-Organic Framework Composites Based on Carbon-Based Quantum Dots and Their Derivatives as Drug Delivery Systems for Andrographolide. Chemistry 2025:e202500655. [PMID: 40326208 DOI: 10.1002/chem.202500655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/07/2025]
Abstract
Andrographolide (ADG) was conjugated with MIL-53(Al), ZIF-8, carbon-based quantum dots (CBQDs) and doped carbon-based quantum dots (D-CBQDs) using high-pressure (0.3 GPa) contact. This solvent-free approach is environmentally friendly, energy-efficient, and time-saving, resulting in ADG-MOFs-CBQDs/D-CBQDs with physical properties comparable to those produced by traditional liquid phase encapsulation. The resulting nanocomposites were characterized using SEM, XRD, TGA, FT-IR, and 1H NMR. The results indicate that ADG was partly encapsulated within the metal-organic framework (MOF) pores, while another portion was bound externally to CBQD/D-CBQDs, as evidenced by distinct drug signals in each analysis. This green synthesis approach simplifies the conjugation process. It significantly enhances the drug solubility, as indicated by changes in hydrophobicity observed via 1H NMR, surpassing the improvements achieved by ADG encapsulation within MOFs alone. Additionally, in preliminary tests, the materials exhibited significant cytotoxicity against PC3 cells compared to ADG (25.05 ± 0.06 µg/mL) after 48 hours of exposure.
Collapse
Affiliation(s)
- Wenndy Pantoja-Romero
- Department of Chemistry, University of Puerto Rico at Rio Piedras Campus, 601 Av. Universidad, San Juan, San Juan, Puerto Rico
- Molecular Sciences Research Center, University of Puerto Rico at Rio Piedras Campus, 1390 C. Juan Ponce de León, San Juan, 00926, Puerto Rico
| | - Alexis Lavín-Flores
- Department of Chemistry, University of Puerto Rico at Rio Piedras Campus, 601 Av. Universidad, San Juan, San Juan, Puerto Rico
- Molecular Sciences Research Center, University of Puerto Rico at Rio Piedras Campus, 1390 C. Juan Ponce de León, San Juan, 00926, Puerto Rico
| | - Gerardo Morell
- Molecular Sciences Research Center, University of Puerto Rico at Rio Piedras Campus, 1390 C. Juan Ponce de León, San Juan, 00926, Puerto Rico
- Department of Physics, University of Puerto Rico at Rio Piedras Campus, 601 Av. Universidad, San Juan, San Juan, Puerto Rico
| | - Magaly Martínez
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, 00936-3027, Puerto Rico
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, 00925-253, Puerto Rico
| | - Brad R Weiner
- Department of Chemistry, University of Puerto Rico at Rio Piedras Campus, 601 Av. Universidad, San Juan, San Juan, Puerto Rico
- Molecular Sciences Research Center, University of Puerto Rico at Rio Piedras Campus, 1390 C. Juan Ponce de León, San Juan, 00926, Puerto Rico
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza, 50018, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza, 50018, Spain
| |
Collapse
|
5
|
Cai Y, Huang L, Hou Y, Pang P, Zhou Y, Zhang X, Long Y, Li H, Muhetaer H, Zhang M, Wu B. Molecular mechanisms of andrographolide-induced kidney injury and senescence via SIRT3 inhibition. Toxicol Appl Pharmacol 2025; 498:117306. [PMID: 40113098 DOI: 10.1016/j.taap.2025.117306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Andrographolide, a diterpene compound derived from the medicinal plant Andrographis paniculata, possesses anti-inflammatory, antioxidant, antitumor, and antiviral properties. Injectable formulations containing andrographolide, such as Potassium Sodium Dehydroandrographolide Succinate for Injection (PSDS), are widely used in clinical practice to treat various diseases, including upper respiratory tract infections. However, clinical reports have highlighted that andrographolide-based herbal injections may induce acute kidney injury and other renal adverse effects, thereby restricting its clinical application. Despite these concerns, the molecular mechanisms underlying andrographolide-induced nephrotoxicity remain poorly understood. In this study, we demonstrated that andrographolide induces inflammation and fibrosis in renal tubular epithelial cells and mouse kidneys. Notably, we identified for the first time that andrographolide promotes cellular senescence in renal tubular epithelial cells and mouse kidneys while downregulating the expression and enzymatic activity of SIRT3. Mechanistic investigations revealed that andrographolide mediates kidney injury and senescence through inhibition of the SIRT3/p53 signaling pathway. Furthermore, andrographolide was found to disrupt the interaction between SIRT3 and p53, resulting in increased acetylation of p53 and upregulation of its downstream target genes involved in inflammation, fibrosis, and senescence. These findings elucidate the molecular mechanisms of andrographolide-induced nephrotoxicity and provide a scientific basis for developing strategies to reduce its toxic effects.
Collapse
Affiliation(s)
- Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Liduan Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yanhong Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Peiwen Pang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ying Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiyin Long
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Huajian Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Halimulati Muhetaer
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Man Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Bo Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
6
|
Yang Y, Jiang B, Shi L, Wang L, Yang Y, Li Y, Zhang Y, Zhu Z, Zhang X, Liu X. The potential of natural herbal plants in the treatment and prevention of non-small cell lung cancer: An encounter between ferroptosis and mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119555. [PMID: 40015539 DOI: 10.1016/j.jep.2025.119555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine constitutes a substantial cultural and scientific resource for the Chinese nation, attracting considerable scholarly interest due to its intrinsic characteristics of "multi-component, multi-target, and multi-pathway" interactions. Simultaneously, it aligns accurately with the intricate and continuously evolving progression of non-small cell lung cancer (NSCLC). Furthermore, contemporary pharmacological studies indicate that natural herbaceous plants and their bioactive compounds exhibit a diverse array of biological activities, including antioxidant, anti-inflammatory, and anti-tumor effects, among others. Additionally, these substances have been demonstrated to possess a degree of safety, particularly in terms of exhibiting comparatively lower levels of toxicity to the liver and kidneys when contrasted with conventional Western medicine. Thus, the development of herbal plants, which includes both single herbs and composite formulations, as well as their bioactive constituents, through the targeted regulation of ferroptosis and mitophagy, presents substantial potential and instills considerable hope for individuals diagnosed with NSCLC. AIM OF THE REVIEW This review aims to conduct a critical analysis of the ethnopharmacological applications of natural herbaceous plants in relation to ferroptosis and mitophagy in NSCLC. The objective is to evaluate the potential advantages of prioritizing specific phytochemical constituents found in these plants, which may serve as novel therapeutic candidates informed by ethnobotanical knowledge. Additionally, this study seeks to enhance the current pharmacological applications of natural herbaceous plants. METHODS An investigation into natural herbal remedies for NSCLC was conducted, with a particular emphasis on the ferroptosis and mitophagy pathways. This study utilized traditional medical texts and ethnomedicinal literature as primary sources. Furthermore, relevant information related to ethnobotany, phytochemistry, and pharmacology is obtained from online databases, including PubMed and the China National Knowledge Infrastructure (CNKI), among others. "Traditional Chinese medicine compound preparations", "single herb extracts", "active compounds", "NSCLC", "ferroptosis", and "mitophagy" were used as keywords when searching the databases. Consequently, pertinent articles published in recent years were collected and analyzed. RESULTS Given the complex etiology of NSCLC, treatment strategies that concentrate exclusively on ferroptosis or mitophagy often demonstrate limitations. In this regard, the utilization of herbal plants offers unique benefits in the management of NSCLC. The rationale can be summarized within the following two dimensions: Firstly, due to the molecular mechanisms of ferroptosis and mitophagy involving multiple signaling pathways (including PINK1/Parkin, HMGB1, system Xc-/GPX4/GSH, FSP1/CoQ10/NAD (P) H, and so on), sometimes drugs with a single target are difficult to involve multiple pathways. Fortunately, there is an expanding body of evidence suggesting that various herbaceous plants and their bioactive compounds can affect multiple biological targets. Moreover, these compounds seem to interact with several targets associated with ferroptosis and mitophagy in NSCLC (such as NIX, BNIP3, FUNDC1, GPX4, FSP1, P53, Nrf2, LncRNA, and so on). Secondly, Herbaceous plants and their bioactive compounds have been shown to possess a favorable safety profile, particularly with respect to reduced hepatotoxicity and nephrotoxicity in comparison to conventional Western medicine. For example, Numerous compound formulations, such as Fangji Huangqi decoction, Mufangji decoction, Qiyu Sanlong decoction, and Fuzheng Kangai decoction, have been employed in China for millennia, and their clinical efficacy appears to be quite promising. Notably, In recent years, numerous researchers have sought to isolate active constituents from clinically effective compound formulations through the application of chemical methodologies. This endeavor has been driven by the necessity to tackle challenges related to complex ingredient compositions and sophisticated processing. These active compounds have been employed in cellular and animal studies to elucidate the molecular mechanisms underlying these formulations. CONCLUSIONS The Asian region has a long-standing historical tradition of employing natural herbaceous plants for traditional medicinal purposes. Phytochemical and pharmacological studies have shown that various compound preparations derived from traditional Chinese medicine, along with individual herb extracts and their active constituents, display a range of bioactive effects. These effects encompass anti-tumor, anti-inflammatory, antibacterial, and antioxidant properties, among others. Numerous traditional compound formulations originating from China have emerged as promising candidates for the development of pharmacological agents targeting NSCLC. It is noteworthy that a variety of compound formulations aimed at the ferroptosis and mitophagy pathways, which demonstrate unique therapeutic effects on NSCLC, are presently under extensive investigation by an increasing number of researchers. Therefore, it is imperative to consider in vitro mechanistic studies, in vivo pharmacological evaluations, and assessments of clinical efficacy. Furthermore, it is essential to conduct a comprehensive assessment of plant resources, implement quality control measures, and engage in toxicological research to ensure that the data is appropriate for further examination.
Collapse
Affiliation(s)
- Yujie Yang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Lijuan Shi
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Lili Wang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yaru Yang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yongyu Li
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yanmei Zhang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Zhongbo Zhu
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Xuhui Zhang
- Department of Pulmonary Diseases, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, 730030, China.
| | - Xiping Liu
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
7
|
Yu M, Du C, Ma Y, Ma Y, Li P, Xie X, Li M, Nie X, Liu Y, Hou Y, Miao S, Wang X, Xu J, Yang Y. The Platelet Activation Signaling Pathway Regulated by Fibrinogen and Homo-Gamma-Linolenic Acid (C20:3)-Associated Lipid Metabolism Is Involved in the Maintenance of Early Pregnancy in Chinese Native Yellow Cattle. Animals (Basel) 2025; 15:1219. [PMID: 40362034 PMCID: PMC12071009 DOI: 10.3390/ani15091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/08/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Identifying the specific factors secreted during early pregnancy is an effective method for pregnancy detection in cattle, helping to reduce empty pregnancies in the industry. To systematically investigate metabolic variations between early pregnancy and the estrous cycle and their relationship with pregnancy progression, this study utilized four-dimensional data-independent acquisition (4D-DIA) proteomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics to analyze serum samples collected from Chinese native yellow cattle at day 0 and day 21 post-mating, combining bioinformatics analysis with experimental validation. The platelet activation signaling pathway and angiogenesis-related proteins were significantly upregulated. Among them, fibrinogen alpha/beta/gamma chains (FG) exhibited notable differences, with their branched-chain protein FGB showing highly significant upregulation (p = 0.003, Log2FC = 2.167) and tending to increase gradually during early pregnancy, suggesting that FGB could be one of the important indicators of early pregnancy in Chinese native yellow cattle. Among the differential metabolites, 11-Deoxy prostaglandin F1α (p < 0.001, Log2FC = 1.563), Thromboxane B1 (p = 0.002, Log2FC = 3.335), and Homo-Gamma-Linolenic Acid (C20:3) (p = 0.018, Log2FC = 1.781) were also increased, indicating their involvement in the regulation of the platelet activation signaling pathway. The platelet activation signaling pathway plays a crucial role in maternal immune tolerance and placental vascularization, which are essential for embryo implantation and placental development. These findings indicate that FGB has the potential to be a valuable biomarker for early cattle pregnancy detection, thereby improving pregnancy diagnosis accuracy, reducing economic losses caused by undetected empty pregnancies and enhancing reproductive efficiency in the cattle industry. Undoubtedly, our research outcomes must be validated with future studies, and a larger sample size as well as the evaluation of the potential endocrine effects induced by the synchronized estrus treatment must be considered.
Collapse
Affiliation(s)
- Miao Yu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.Y.); (C.D.); (Y.M.); (Y.M.); (P.L.); (X.X.); (M.L.); (X.N.); (Y.L.); (Y.H.); (S.M.); (X.W.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Changzheng Du
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.Y.); (C.D.); (Y.M.); (Y.M.); (P.L.); (X.X.); (M.L.); (X.N.); (Y.L.); (Y.H.); (S.M.); (X.W.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Yabo Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.Y.); (C.D.); (Y.M.); (Y.M.); (P.L.); (X.X.); (M.L.); (X.N.); (Y.L.); (Y.H.); (S.M.); (X.W.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Yuqin Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.Y.); (C.D.); (Y.M.); (Y.M.); (P.L.); (X.X.); (M.L.); (X.N.); (Y.L.); (Y.H.); (S.M.); (X.W.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Pengfei Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.Y.); (C.D.); (Y.M.); (Y.M.); (P.L.); (X.X.); (M.L.); (X.N.); (Y.L.); (Y.H.); (S.M.); (X.W.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Xianguo Xie
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.Y.); (C.D.); (Y.M.); (Y.M.); (P.L.); (X.X.); (M.L.); (X.N.); (Y.L.); (Y.H.); (S.M.); (X.W.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Mengyuan Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.Y.); (C.D.); (Y.M.); (Y.M.); (P.L.); (X.X.); (M.L.); (X.N.); (Y.L.); (Y.H.); (S.M.); (X.W.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Xueyi Nie
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.Y.); (C.D.); (Y.M.); (Y.M.); (P.L.); (X.X.); (M.L.); (X.N.); (Y.L.); (Y.H.); (S.M.); (X.W.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Yueyang Liu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.Y.); (C.D.); (Y.M.); (Y.M.); (P.L.); (X.X.); (M.L.); (X.N.); (Y.L.); (Y.H.); (S.M.); (X.W.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Yuxin Hou
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.Y.); (C.D.); (Y.M.); (Y.M.); (P.L.); (X.X.); (M.L.); (X.N.); (Y.L.); (Y.H.); (S.M.); (X.W.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Shenao Miao
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.Y.); (C.D.); (Y.M.); (Y.M.); (P.L.); (X.X.); (M.L.); (X.N.); (Y.L.); (Y.H.); (S.M.); (X.W.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Xingping Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.Y.); (C.D.); (Y.M.); (Y.M.); (P.L.); (X.X.); (M.L.); (X.N.); (Y.L.); (Y.H.); (S.M.); (X.W.)
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jinrui Xu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.Y.); (C.D.); (Y.M.); (Y.M.); (P.L.); (X.X.); (M.L.); (X.N.); (Y.L.); (Y.H.); (S.M.); (X.W.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Yi Yang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.Y.); (C.D.); (Y.M.); (Y.M.); (P.L.); (X.X.); (M.L.); (X.N.); (Y.L.); (Y.H.); (S.M.); (X.W.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
8
|
Peng Y, Demidchik V, Li Y, Shen Z. Comparison of terpenoids in Nauclea officinalis and Paederia scandens and their anti-inflammatory effects on RAW264.7 macrophages. Fitoterapia 2025; 182:106411. [PMID: 39909359 DOI: 10.1016/j.fitote.2025.106411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/14/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Terpenoids are important components that exert pharmacological effects in Rubiaceae plants. In this study, two Rubiaceae plants, Nauclea officinalis and Paederia scandens, which are widely distributed in Hainan, China, were collected. The extracts of these two plants were obtained through boiling water extraction and analyzed using UHPLC-ESI-QE-Orbitrap-MS. By comparing with the mzCloud database, terpenoids with a matching rate of 85 % were identified. The results revealed that the aqueous extracts of N. officinalis mainly contain six pentacyclic triterpenoids, one diterpenoid, and one iridoid. The aqueous extracts of P. scandens contains one monoterpenoid, one diterpenoid, two pentacyclic triterpenes, and 4 iridoids. To verify the anti-inflammatory efficacy of the two extracts, in this study, they were added to the lipopolysaccharide (LPS)-induced RAW264.7 macrophages inflammation model. The results showed that the two extracts can reduce the secretion of proinflammatory cytokines IL-1β, IL-6, and TNF-α (p < 0.05) and the mortality rate of cell inflammation (p < 0.05) by inhibiting the activation of the NF-κB/NLRP3 pathway (p < 0.05). The study identified the terpenoids in N. officinalis and P. scandens and verified their anti-inflammatory effects in the RAW264.7 macrophages inflammation model.
Collapse
Affiliation(s)
- Yuxuan Peng
- Hainan College of Vocation and Technique, 95 Nanhai Ave., 570100 Haikou, China; Department of Plant Cell Biology and Bioengineering, Biology Faculty, Belarusian State University, 4 Independence Ave., 220030 Minsk, Belarus.
| | - Vadim Demidchik
- Institute of Experimental Botany, National Academy of Sciences of Belarus, 27 Botanichskaya St., 220072 Minsk, Belarus; International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
| | - Yan Li
- International Sakharov Environmental Institute, Belarusian State University, 15 Botanichskaya St., 220030 Minsk, Belarus
| | - Zhenguo Shen
- Hainan College of Vocation and Technique, 95 Nanhai Ave., 570100 Haikou, China.
| |
Collapse
|
9
|
Zhou D, Luo Y, Li F, Liu T, Mei Y, Li F, Hou X, Fu Z, Liu Z. Exploring the mechanisms of PANoptosis in osteoarthritis and the therapeutic potential of andrographolide through bioinformatics and single-cell analysis. Biol Direct 2025; 20:41. [PMID: 40165317 PMCID: PMC11956211 DOI: 10.1186/s13062-025-00629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease marked by the breakdown of cartilage, where apoptosis plays a key role. Although apoptosis-related genes in OA have been studied, a detailed analysis of PANoptosis-related genes and the search for therapeutic drugs remains limited. METHODS We performed a bioinformatics analysis combined with single-cell RNA sequencing to examine PANoptosis-related gene expression in OA cartilage. Key PANoptosis genes and critical cell populations involved in OA progression were identified. Drug prediction led to the selection of Andrographolide (AG), whose effects were validated through molecular docking, Western blotting, and qRT-PCR in chondrocyte models. RESULTS Several PANoptosis-related genes, including CASP8, TLR3, CASP1, and IL18, were significantly differentially expressed in OA. These genes are linked to processes such as apoptosis, pyroptosis, and the inflammasome complex. Pathway analysis revealed necroptosis, Toll-like receptor, and apoptosis signaling pathways as important in OA pathology. Single-cell analysis identified HomC, EC, and preHTC as key cell populations. AG was predicted to regulate PANoptosis genes, which was confirmed experimentally, demonstrating AG's potential to modulate key genes involved in cartilage degeneration. CONCLUSION This study highlights PANoptosis-related genes in OA and identifies Andrographolide as a promising therapeutic drug, offering new insights into OA treatment strategies.
Collapse
Affiliation(s)
- Daqian Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yingjin Luo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Fengjiang Li
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Tao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yongliang Mei
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Feilong Li
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xianghan Hou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Zhijiang Fu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Zongchao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
- Luzhou Longmatan District People's Hospital, Luzhou, Sichuan, China.
| |
Collapse
|
10
|
Xing A, Wang F, Liu J, Zhang Y, He J, Zhao B, Sun B. The prospect and underlying mechanisms of Chinese medicine in treating periodontitis. Chin J Nat Med 2025; 23:269-285. [PMID: 40122658 DOI: 10.1016/s1875-5364(25)60842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 03/25/2025]
Abstract
Inflammation represents a critical immune response triggered by cellular activities and inflammatory mediators following tissue damage. It plays a central role in the pathological progression of diverse diseases, including psychiatric disorders, cancer, and immunological conditions, rendering it an essential target for therapeutic intervention. Periodontitis, a prevalent oral inflammatory disease, is a leading cause of tooth loss and poses significant health challenges globally. Traditionally, inflammatory diseases such as periodontitis have been treated with systemic administration of synthetic chemicals. However, recent years have witnessed challenges, including drug resistance and microbial dysbiosis associated with these treatments. In contrast, natural products derived from Chinese medicine offer numerous benefits, such as high safety profiles, minimal side effects, innovative pharmacological mechanisms, ease of extraction, and multiple targets, rendering them viable alternatives to conventional antibiotics for treating inflammatory conditions. Numerous effective anti-inflammatory natural products have been identified in traditional Chinese medicine (TCM), including alkaloids, flavonoids, terpenoids, lignans, and other natural products that exhibit inhibitory effects on inflammation and are potential therapeutic agents. Several studies have confirmed the substantial anti-inflammatory and immunomodulatory properties of these compounds. This comprehensive review examines the literature on the anti-inflammatory effects of TCM-derived natural products from databases such as PubMed, Web of Science, and CNKI, focusing on terms like "inflammation", "periodontitis", "pharmacology", and "traditional Chinese medicine". The analysis systematically summarizes the molecular pharmacology, chemical composition, and biological activities of these compounds in inflammatory responses, alongside their mechanisms of action. This research seeks to deepen understanding of the mechanisms and biological activities of herbal extracts in managing inflammatory diseases, potentially leading to the development of promising new anti-inflammatory drug candidates. Future applications could extend to the treatment of various inflammatory conditions, including periodontitis.
Collapse
Affiliation(s)
- Aili Xing
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Feng Wang
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Jinzhong Liu
- Preventive Dentistry, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Yuan Zhang
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Jingya He
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Bin Zhao
- Periodontics, Hospital of Stomatologyl, Jilin University, Changchun 130021, China.
| | - Bin Sun
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China.
| |
Collapse
|
11
|
Wang X, Qin L, Ma L, Dai X, Huang G, Cao J. Benzylpiperazinyl Derivatives of Alepterolic Acid: Synthesis and Cytotoxic Evaluation. Chem Biodivers 2025; 22:e202401706. [PMID: 39440898 DOI: 10.1002/cbdv.202401706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Natural products play a significant role in the development of modern drugs. Alepterolic acid, a labdane-type diterpenoid firstly isolated from Aleuritopteris argentea (Gmél.) Fée, has been identified as a valuable template for the synthesis of potent anticancer agents by structural modification. In this study, a series of new derivatives was obtained by coupling alepterolic acid with benzylpiperazines. It was found that (3,4-dichlorobenzyl)piperazinyl alepterolic acid (compound 6p) displayed the highest level of toxicity against MCF-7 cell line, with an IC50 value of 8.31±0.67 μM. Further investigations demonstrated that compound 6p induced morphological changes in MCF-7 cells, inhibited proliferation in a time- and dose-dependent manner. Furthermore, western blot analysis revealed that compound 6p induced a significant increase in cleaved caspase-9, cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP) and Bax/Bcl-2 ratio in MCF-7 cells. All of these results confirmed that compound 6p induced endogenous apoptosis in MCF-7 cells. Conclusively, the findings suggest that the incorporation of benzylpiperazine to alepterolic acid represents a promising approach for the discovery of new drug candidates.
Collapse
Affiliation(s)
- Xin Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, 201418, P.R. China
| | - Li Qin
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China
| | - Lian Ma
- College of Life Sciences, Shanghai Normal University, Shanghai, 201418, P.R. China
| | - Xiling Dai
- College of Life Sciences, Shanghai Normal University, Shanghai, 201418, P.R. China
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China
| | - Jianguo Cao
- College of Life Sciences, Shanghai Normal University, Shanghai, 201418, P.R. China
| |
Collapse
|
12
|
Dai W, Deng L, He C, Fu X, Liu J, Wang GC, Yang J, Zhang YB, Xiao F, Wan QL. Crassifolin A prolongs lifespan and healthspan in Caenorhabditis elegans via activating autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119399. [PMID: 39890089 DOI: 10.1016/j.jep.2025.119399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Croton crassifolius Geiseler (C. crassifolius), commonly known as "Jiguxiang" in traditional Chinese medicine, is globally recognized for its ethnomedical applications in treating a spectrum of diseases. Crassifolin A (CA), a diterpenoid compound extracted from the roots of C. crassifolius, exhibits anti-herpes simplex virus (HSV), anti-viral and anti-angiogenic properties. AIM OF THE REVIEW This study aimed to explore the effects of CA on aging and the mechanisms involved. MATERIALS AND METHODS Utilizing Caenorhabditis elegans (C. elegans) as a model organism, we conducted a comprehensive survival analysis and evaluated aging-related phenotypes, including the period of fast body movement and body bending rates. To elucidate the molecular mechanisms of CA's impact on aging, we employed a multifaceted approach, including reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blotting, and fluorescence quantification of transgenic reporter strains. RESULTS Our findings demonstrated that CA significantly prolonged both the lifespan and healthspan of C. elegans. The survival benefits conferred by CA were found to correlate with the activation of several key aging-related signaling pathways, including insulin/insulin-like signaling pathway (IIS), dietary restriction (DR) pathway, and germline signaling pathway. Engagement of these pathways led to the activation of transcription factors DAF-16/FOXO, SKN-1/NRF2, HSF-1 and HLH-30/TFEB, as well as the nuclear receptor DAF-12. Consequently, this activation cascade prompted an upregulation of autophagy, a cellular process associated with the maintenance of cellular homeostasis and longevity. CONCLUSION Our study delineates novel mechanisms underlying anti-aging strategies, establishing a conceptual framework for the exploitation and advancement of traditional Chinese medicinal herbs as potential therapeutic agents in the fight against aging and its associated pathologies.
Collapse
Affiliation(s)
- Wenyu Dai
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lifeng Deng
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chenyang He
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaoxia Fu
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jing Liu
- Neurology Department, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Guo-Cai Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University, Guangzhou, 510632, China
| | - Jing Yang
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yu-Bo Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University, Guangzhou, 510632, China.
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qin-Li Wan
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
13
|
Liu Y, Chen J, Li X, Fan Y, Peng C, Ye X, Wang Y, Xie X. Natural products targeting RAS by multiple mechanisms and its therapeutic potential in cancer: An update since 2020. Pharmacol Res 2025; 212:107577. [PMID: 39756556 DOI: 10.1016/j.phrs.2025.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
RAS proteins, as pivotal signal transduction molecules, are frequently mutated and hyperactivated in various human cancers, closely associated with tumor cell proliferation, survival, and metastasis. Despite extensive research on RAS targeted therapies, developing effective RAS inhibitors remains a significant challenge. Natural products, endowed with unique chemical structures and diverse biological activities through long-term natural selection, have emerged as a vital resource for discovering novel RAS-targeted therapeutic drugs. This review focuses on the latest advancements in targeting RAS with natural products and categorizes these natural products based on their mechanisms of action. Additionally, we discuss the challenges faced by these natural products during clinical translation, including issues related to pharmacokinetics. Strategies such as combination therapy, structural optimization, and drug delivery systems are anticipated to enhance efficacy and overcome these challenges.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China.
| | - Jie Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaochun Ye
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China
| | - Yingshuang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China.
| |
Collapse
|
14
|
Wu Z, Shi J, Zhang Y, Shi R, Guo Q, Zhang J, Lu B, Huang Z, Ji L. Uncovering the pharmacological mechanism and the main herbal medicine contributing to the efficacy of Xiaoyanlidan Tablet (XYLDT) in treating cholestatic liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119163. [PMID: 39613007 DOI: 10.1016/j.jep.2024.119163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoyanlidan Tablet (XYLDT) is a Chinese patent medicine consisted of three traditional Chinese medicines (TCMs) including Andrographis Herba (AH), Linearstripe Rabdosia Herba (LRH) and Picrasmae Ramulus et Folium (PRF). In Chinese traditional medicine theory, XYLDT has the "heat-clearing, dampness-dispelling and gallbladder function promoting" properties, and was widely used in the clinic for decades to treat pain in the subcostal region or bitter taste in the mouth, which were induced by liver-gallbladder dampness-heat. Meanwhile, it was also used for the therapy of acute cholecystitis and cholangitis. AIM OF THE STUDY To explore the mechanism of XYLDT in alleviating the alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury (CLI), and to find out which TCM consisted in XYLDT contributed the most to the therapeutic efficacy of XYLDT. METHODS ANIT was orally given to mice to induce CLI in vivo. Each TCM in XYLDT alone, XYLDT-without one TCM or XYLDT was orally given to mice before or after ANIT administration. Serum biochemical indicators were measured by using commercial kits. Liver histopathology was observed. Clinical data analysis was used to predict molecules and signal pathways involved in the XYLDT-provided improvement on CLI, which was further verified by using RT-PCR and Western-blot assay. RESULTS The alleviation of XYLDT on ANIT-induced CLI was proved by the data of serum biochemical indicators and liver histological observation. Results from clinical data analysis indicated that XYLDT improved CLI via improving mitochondrial function, oxidative phosphorylation, oxidative stress. XYLDT reduced the ROS level, MDA content, and increased GSH content. Meanwhile XYLDT improved the level of Nrf2 into the nucleus and mRNA expression of Nqo1, Gclc, Gclm. Andrographis Herba was proved to be the most crucial for the XYLDT-provided therapeutic efficacy on CLI. Moreover, andrographolide and neoandrographolide, two main active compounds in Andrographis Herba, had the apparent anti-inflammatory ability in LPS-stimulated RAW264.7 cells. Andrographolide also promoted nuclear translocation activation of Nrf2 in antioxidant response elements (ARE)-luciferin transfected L-02 cells. CONCLUSION XYLDT alleviated the ANIT-induced CLI via improving oxidative stress and activated Nrf2-related signaling pathways. Andrographis Herba was important for the XYLDT-provided alleviation on CLI.
Collapse
Affiliation(s)
- Zeqi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jionghua Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruijia Shi
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingnan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
15
|
Chen X, Wang W, Zhang H, Liang N, Chen D, Li J, Ding W, He Z, Yuan Y, Chu C, Yang Z, Zhao H, Liu Z. Plant-derived natural compounds for the treatment of acute lung injury: A systematic review of their anti-inflammatory effects in animal models. Int Immunopharmacol 2025; 146:113807. [PMID: 39681064 DOI: 10.1016/j.intimp.2024.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUNDS AND AIMS Acute lung injury (ALI) is a complex pulmonary disease characterized by a severe inflammatory response. The management of ALI presents a formidable challenge due to the intricate nature of its inflammatory cascade. Numerous studies have highlighted the potential therapeutic benefits of plant-derived natural compounds (PNCs) in treating inflammatory diseases. Our study aims to provide robust current evidence regarding the anti-inflammatory effects and underlying molecular mechanisms of PNCs for ALI treatment. MATERIALS AND METHODS The systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the protocol was registered in PROSPERO (CRD42024468401). A comprehensive search was conducted in electronic databases including PubMed, Scopus, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), Chinese Scientific Journal database (VIP), Wanfang database, and China biomedical literature service system (SinoMed) up until November 2023. Preclinical studies published in both English and Chinese were included. RESULTS Our research encompassed 81 studies, comprising a total of 71 PNCs, including flavonoids, phenylpropanoids, terpenoids, polyphenols, alkaloids, saponins, glycosides, and miscellaneous compounds. This systematic review demonstrated that PNCs played a beneficial role on ALI by regulating the immune response and reducing the release of inflammatory mediators and cytokines. The molecular mechanisms were partially associated with the regulation of Th17/Treg responses, promotion of the polarization of M1-type macrophages to M2-type macrophages, induction of immune cell apoptosis, reversal of microbial dysbiosis in the lungs and the gut, epigenetic modification, and the modulation of inflammatory pathways, including NF-κB, MAPK, TLR4/MyD88, NLRP3/Caspase-1, TGF-β/Smad, Nrf2/HO-1, Rho/ROCK, TLR7/MyD88, and PI3K/AKT, thereby alleviating inflammatory responses and lung damage. CONCLUSION The therapeutic effects of PNCs on ALI are mediated through the modulation of immunity and inflammatory pathways. In light of their potential, PNCs represent a promising pharmacological intervention for the treatment of ALI.
Collapse
Affiliation(s)
- Xiangyun Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenlai Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongrui Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Ning Liang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Danni Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiawang Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Ding
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhanzhan He
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yulu Yuan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ce Chu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhen Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Hongxia Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhenhong Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
16
|
Chen C, Lan L, Xu K. Remimazolam Combined with Andrographolide Improve Postoperative Cognitive Dysfunction in Rats after Cardiopulmonary Bypass through the AMPK/SIRT1 Signaling Pathway. J Integr Neurosci 2025; 24:25665. [PMID: 39862006 DOI: 10.31083/jin25665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 01/27/2025] Open
Abstract
INTRODUCTION The effects of remimazolam (Re) in combination with andrographolide (AP) on learning, memory, and motor abilities in rats following cardiopulmonary bypass (CPB) surgery were studied. METHODS We hypothesized that the combination of Re and AP could improve postoperative cognitive dysfunction (POCD) in rats after CPB by modulating nervous system inflammation. Cognitive function was assessed using the Morris Water Maze test, and the concentrations of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) in serum were measured by enzyme-linked immunosorbent assay (ELISA). Apoptosis was evaluated using western blotting and the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining assay. RESULTS The results indicated that both Re and AP independently improved cognitive function in rats after CPB and inhibited the secretion of inflammatory factors and apoptosis in hippocampal tissues. Combined administration of Re and AP enhanced the alleviation of POCD compared with monotherapy. The adenosine monophosphate-activated protein kinase/silent information regulator of transcription 1 (AMPK/SIRT1) signaling pathway was activated by the combination of Re and AP. CONCLUSIONS Collectively, the combination of Re and AP treatment significantly improves POCD in rats after CPB through activation of the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Chong Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, 310009 Hangzhou, Zhejiang, China
| | - Lixia Lan
- Department of Anesthesia, Lishui Maternal and Child Health Center, 323000 Lishui, Zhejiang, China
| | - Kai Xu
- Department of Anesthesia, Hangzhou Plastic Surgery Hospital, 310000 Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Xu H, Lan S, Lin S, Wang A, Luo Y, Wang J, Yang Z. Exploring the Active Constituents of Andrographis paniculata in Protecting the Skin Barrier and the Synergistic Effects with Collagen XVII. Antioxidants (Basel) 2025; 14:118. [PMID: 39857452 PMCID: PMC11763326 DOI: 10.3390/antiox14010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Andrographis paniculata is mainly used to treat skin inflammations, wounds, and infections. In this study, Andrographis Herba, the aerial part of the plant, was proven to increase the viability of UVB-damaged HaCat cells and reduce reactive oxygen species levels. The chemical composition of Andrographis Herba extract (AHE) was analyzed using UPLC-Q-TOF-MS, and diterpene lactones were identified as its primary constituents. Then, the fraction of diterpene lactones was prepared and exhibited similar effects to AHE. AHE, its diterpene lactones component, and its representative constituent andrographolide all decreased the expression of IL-1β, IL-6, and CDKN1A. Furthermore, the protective effects of AHE and its active ingredients on UVB-damaged epidermal stem cells were investigated. Notably, the combined treatment with andrographolide and collagen XVII enhanced the viability of UVB-damaged epidermal stem cells, increased the expression of stemness markers integrin β1 and p63, and decreased the expression of the differentiation marker keratin 10. This combination demonstrated significant synergy in maintaining skin homeostasis, which provides evidences for the development of skin-protective products.
Collapse
Affiliation(s)
- Heng Xu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (H.X.); (S.L.); (A.W.); (Y.L.)
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Shiying Lan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (H.X.); (S.L.); (A.W.); (Y.L.)
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Simin Lin
- Proya Cosmetics Co., Ltd., Hangzhou 310023, China; (S.L.); (J.W.)
| | - Anjing Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (H.X.); (S.L.); (A.W.); (Y.L.)
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Yuanlin Luo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (H.X.); (S.L.); (A.W.); (Y.L.)
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Jing Wang
- Proya Cosmetics Co., Ltd., Hangzhou 310023, China; (S.L.); (J.W.)
| | - Zhenzhong Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (H.X.); (S.L.); (A.W.); (Y.L.)
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| |
Collapse
|
18
|
Kumar A, Agrawal M, Murti Y, Behl S, Kumar S, Chaudhary H, Singh K, Saha S, Rastogi S. Safeguarding Neuronal Integrity: Unveiling Possible Role of NFκB in the Neuroprotective Efficacy of Andrographolide Contrary to Aluminium Chloride-induced Neurotoxicity and Associated Spatial Memory Impairments in Rats. Cent Nerv Syst Agents Med Chem 2025; 25:157-168. [PMID: 38778607 DOI: 10.2174/0118715249284798240509052913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE The current study was structured to evaluate the neuroprotective properties of andrographolide in the context of aluminum chloride (AlCl3)-induced neurotoxicity, along with its concurrent impact on spatial memory impairment in Wistar rats. The present investigation elucidated the biochemical and neurobehavioral outcomes of andrographolide treatment in rats, emphasizing the areas of the brain associated with memory, i.e., the cortex and the hippocampus. MATERIALS AND METHODS Prolonged dosing of AlCl3(7 mg/kg) intraperitoneally for 10 days exhibited a substantial enhancement in the values of oxidative stress markers associated with a reduction in the concentrations of antioxidant enzymes within the brain. The selection of andrographolide doses (1, 2, and 3 mg/kg) was grounded in precedent safety and toxicity investigations, with subsequent oral administration. The evaluation of behavioral parameters, specifically spatial memory, was conducted through the utilization of the Radial Eight Arm Maze (RAM) test. On the concluding day of the experiment, the assessment encompassed biochemical parameter analysis and histological scrutiny of the brain tissue. RESULTS The oral dosing of andrographolide at 1, 2, and 3 mg/kg, in conjunction with AlCll3 effectively mitigated the behavioral deficits induced by aluminum exposure. Notably, a significant suppression of NFκB was uncovered in the rats treated with andrographolide. Furthermore, histopathological examinations of the cortex and hippocampus of rat brains provided corroborative evidence, demonstrating that andrographolide substantially alleviated the toxic impact of AlCll3, thereby maintaining the typical histoarchitectural arrangement of these regions. CONCLUSION These findings collectively suggest that andrographolide holds the potential to counteract memory impairment instigated by aluminum toxicity, accomplished through the modulation of NFκB activity and the amelioration of the adverse consequences of AlCll3 exposure.
Collapse
Affiliation(s)
- Abhitinder Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| | - Mohit Agrawal
- School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Simran Behl
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | | | - Hema Chaudhary
- School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Kuldeep Singh
- Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Sunam Saha
- Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Sameer Rastogi
- School of Pharmacy, Noida International University, Greater Noida, UP, India
| |
Collapse
|
19
|
Dai W, Wu J, Li K, Xu Y, Wang W, Xiao W. Andrographolide: A promising therapeutic agent against organ fibrosis. Eur J Med Chem 2024; 280:116992. [PMID: 39454221 DOI: 10.1016/j.ejmech.2024.116992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/07/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Fibrosis is the terminal pathology of chronic illness in many organs, marked by excessive accumulation of extracellular matrix proteins. These changes influence organ function, ultimately resulting in organ failure. Although significant progress has been achieved in comprehending the molecular pathways responsible for fibrosis in the last decades, effective and approved clinical therapies for the condition are still lacking. Andrographolide is a diterpenoid isolated and purified mainly from the aboveground parts of the Andrographis paniculata plant, which possesses good effects of purging heat, detoxifying, antibacterial and anti-inflammatory. In-depth research has gradually confirmed the anticancer, antioxidant, antiviral and other effects of Andro so that it can play a preventive and therapeutic role in various diseases. Over the past few years, an increasing number of research findings have indicated that Andro exerts antifibrotic effects in various organs by acting on transforming growth factor-β/small mother against decapentaplegic protein, mitogen-activated protein kinases, nuclear factor-E2-related factor 2, nuclear factor kappa-B and other signalling molecules to inhibit inflammation, oxidative stress, epithelial-mesenchymal transition, fibroblast activation and collagen buildup. This review presents a compilation of findings regarding the antifibrotic impact of Andro in tissue and cell models in vitro and in vivo. Emphasis is placed on the potential therapeutic benefits of Andro in diseases related to organ fibrosis. Existing studies and cutting-edge technologies on Andro pharmacokinetics, toxicity and bioavailability are briefly discussed to provide evidence for accelerating its clinical conversion and adoption.
Collapse
Affiliation(s)
- Wei Dai
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Jiabin Wu
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Ke Li
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Yingying Xu
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Research Institute for Biology and Medicine, Hunan University of Medicine, Huaihua 418000, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
20
|
Sun R, Chu J, Li P. Inflammasomes and idiopathic inflammatory myopathies. Front Immunol 2024; 15:1449969. [PMID: 39723212 PMCID: PMC11668653 DOI: 10.3389/fimmu.2024.1449969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
Idiopathic inflammatory myopathies (IIM) are a group of systemic autoimmune diseases characterized by muscle weakness and elevated serum creatine kinase levels. Recent research has highlighted the role of the innate immune system, particularly inflammasomes, in the pathogenesis of IIM. This review focuses on the role of inflammasomes, specifically NLRP3 and AIM2, and their associated proteins in the development of IIM. We discuss the molecular mechanisms of pyroptosis, a programmed cell death pathway that triggers inflammation, and its association with IIM. The NLRP3 inflammasome, in particular, has been implicated in muscle fiber necrosis and the subsequent release of damage-associated molecular patterns (DAMPs), leading to inflammation. We also explore the potential therapeutic implications of targeting the NLRP3 inflammasome with inhibitors such as glyburide and MCC950, which have shown promise in reducing inflammation and improving muscle function in preclinical models. Additionally, we discuss the role of caspases, particularly caspase-1, in the canonical pyroptotic pathway associated with IIM. The understanding of these mechanisms offers new avenues for therapeutic intervention and a better comprehension of IIM pathophysiology.
Collapse
Affiliation(s)
- Rui Sun
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jiyan Chu
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Ping Li
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
21
|
Songvut P, Boonyarattanasoonthorn T, Nuengchamnong N, Junsai T, Kongratanapasert T, Supannapan K, Khemawoot P. Enhancing oral bioavailability of andrographolide using solubilizing agents and bioenhancer: comparative pharmacokinetics of Andrographis paniculata formulations in beagle dogs. PHARMACEUTICAL BIOLOGY 2024; 62:183-194. [PMID: 38351624 PMCID: PMC10868414 DOI: 10.1080/13880209.2024.2311201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
CONTEXT The therapeutic potential of andrographolide is hindered by its poor oral bioavailability and unpredictable pharmacokinetics, primarily due to its limited water solubility. OBJECTIVE This work aimed to enhance the solubility and pharmacokinetics of andrographolide, a bioactive compound in Andrographis paniculata (Burm. f.) Nees (Acanthaceae), using solubilizing agents and a bioenhancer. MATERIALS AND METHODS Four groups of beagles were compared: (1) A. paniculata powder alone (control), (2) A. paniculata powder with 50% weight/weight (w/w) β-cyclodextrin solubilizer, (3) A. paniculata powder with 1% w/w sodium dodecyl sulfate (SDS) solubilizer, and (4) A. paniculata powder co-administered with 1% w/w SDS solubilizer and 10% piperine bioenhancer. All groups received a consistent oral dose of 3 mg/kg of andrographolide, administered both as a single dose and multiple doses over seven consecutive days. RESULTS Thirteen chemical compounds were identified in A. paniculata powder, including 7 diterpenoids, 5 flavonoids, and 1 phenolic compound. A. paniculata co-administration with either 50% w/w β-cyclodextrin or 1% w/w SDS, alone or in combination with 10% w/w piperine, significantly increased systemic andrographolide exposure by enhancing bioavailability (131.01% to 196.05%) following single and multiple oral co-administration. Glucuronidation is one possible biotransformation pathway for andrographolide, as evidenced by the excretion of glucuronide conjugates in urine and feces. CONCLUSION The combination of solubilizing agents and a bioenhancer improved the oral bioavailability and pharmacokinetics of andrographolide, indicating potential implications for A. paniculata formulations and clinical therapeutic benefits. Further investigation in clinical studies is warranted.
Collapse
Affiliation(s)
- Phanit Songvut
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
| | | | - Nitra Nuengchamnong
- Science Laboratory Center, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Thammaporn Junsai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | - Teetat Kongratanapasert
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | | | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| |
Collapse
|
22
|
Ningsih S, Kusumastuti SA, Nuralih N, Fajriawan AA, Permatasari D, Yunianto P, Ramadhan D, Wulandari MT, Firdausi N, Nurhadi N, Giarni R, Agustini K, Wibowo AE, Rosidah I, Rengganis TN, Ngatinem N, Subiantoro AH, Supriyono A. Andrographis paniculata (Burm. f.) Nees extract ameliorates insulin resistance in the insulin-resistant HepG2 cells via GLUT2/IRS-1 pathway. Arch Physiol Biochem 2024; 130:779-789. [PMID: 37878369 DOI: 10.1080/13813455.2023.2273221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Hyperglycaemia is one condition related to inflammation leading to insulin signalling impairment. This study was conducted to investigate the insulin sensitivity improvement of Sambiloto (Andrographis paniculata (Burm. f.)) Nees extract in insulin resistance-induced HepG2 (IR-HepG2) cells by stimulating insulin sensitivities and inhibiting inflammatory response. Sambiloto extract at 2 µg/mL revealed glucose uptake stimulation and up-regulating GLUT-2 and IRS-1 gene expression, and inhibited pro-inflammatory cytokine IL-6 gene expression in IR-HepG2 cells. Phytochemical analysis showed that the total phenolic level and andrografolide content of Sambiloto extract were 2.91 ± 0.04% and 1.95%, respectively. This result indicated that Sambiloto extract ameliorated insulin resistance in high glucose-induced IR-HepG2 cells via modulating the IRS-1/GLUT-2 pathway due to IL-6 inhibition. These findings suggested that Sambiloto extract had potency as an anti-inflammatory and insulin-resistance improvement in IR-HepG2 cells.
Collapse
Affiliation(s)
- Sri Ningsih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Siska Andrina Kusumastuti
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Nuralih Nuralih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Adam Arditya Fajriawan
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Devi Permatasari
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Prasetyawan Yunianto
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Donny Ramadhan
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Mayriska Tri Wulandari
- Research Center for Agroindustry, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Nisrina Firdausi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Nurhadi Nurhadi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Reni Giarni
- Research Center for Agroindustry, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Kurnia Agustini
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Agung Eru Wibowo
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Idah Rosidah
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Tiya Novlita Rengganis
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Ngatinem Ngatinem
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Agus Himawan Subiantoro
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Agus Supriyono
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| |
Collapse
|
23
|
Kongsomros S, Boonyarattanasoonthorn T, Phongphaew W, Kasorndorkbua C, Sunyakumthorn P, Im-Erbsin R, Lugo-Roman LA, Kongratanapasert T, Paha J, Manopwisedjaroen S, Kwankhao P, Supannapan K, Ngamkhae N, Srimongkolpithak N, Vivithanaporn P, Hongeng S, Thitithanyanont A, Khemawoot P. In vivo evaluation of Andrographis paniculata and Boesenbergia rotunda extract activity against SARS-CoV-2 Delta variant in Golden Syrian hamsters: Potential herbal alternative for COVID-19 treatment. J Tradit Complement Med 2024; 14:598-610. [PMID: 39850600 PMCID: PMC11752117 DOI: 10.1016/j.jtcme.2024.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 01/25/2025] Open
Abstract
The ongoing COVID-19 pandemic has triggered extensive research, mainly focused on identifying effective therapeutic agents, specifically those targeting highly pathogenic SARS-CoV-2 variants. This study aimed to investigate the in vivo antiviral efficacy and anti-inflammatory activity of herbal extracts derived from Andrographis paniculata and Boesenbergia rotunda, using a Golden Syrian hamster model infected with Delta, a representative variant associated with severe COVID-19. Hamsters were intranasally inoculated with the SARS-CoV-2 Delta variant and orally administered either vehicle control, B. rotunda, or A. paniculata extract at a dosage of 1000 mg/kg/day. Euthanasia was conducted on days 1, 3, and 7 post-inoculation, with 4 animals per group. The results demonstrated that oral administration of A. paniculata extract significantly alleviated both lethality and infection severity compared with the vehicle control and B. rotunda extract. However, neither extract exhibited direct antiviral activity in terms of reducing viral load in the lungs. Nonetheless, A. paniculata extract treatment significantly reduced IL-6 protein levels in the lung tissue (7278 ± 868.4 pg/g tissue) compared to the control (12,495 ± 1118 pg/g tissue), indicating there was a decrease in local inflammation. This finding is evidenced by the ability of A. paniculata extract to reduce histological lesions in the lungs of infected hamsters. Furthermore, both extracts significantly decreased IL-6 and IP-10 mRNA expression in peripheral blood mononuclear cells of infected hamsters compared to the control group, suggesting systemic anti-inflammatory effects occurred. In conclusion, A. paniculata extract's potential therapeutic application for SARS-CoV-2 arises from its observed capacity to lessen inflammatory cytokine concentrations and mitigate lung pathology.
Collapse
Affiliation(s)
- Supasek Kongsomros
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| | - Tussapon Boonyarattanasoonthorn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| | - Wallaya Phongphaew
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Chaiyan Kasorndorkbua
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Piyanate Sunyakumthorn
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, 10400, Thailand
| | - Rawiwan Im-Erbsin
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, 10400, Thailand
| | - Luis A. Lugo-Roman
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, 10400, Thailand
| | - Teetat Kongratanapasert
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Jiraporn Paha
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Pakakrong Kwankhao
- Chao Phya Abhaibhubejhr Hospital Foundation, Prachinburi, 25000, Thailand
| | | | - Nittaya Ngamkhae
- Chao Phya Abhaibhubejhr Hospital Foundation, Prachinburi, 25000, Thailand
| | - Nitipol Srimongkolpithak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | | | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| |
Collapse
|
24
|
Hu J, Li Y, Xie X, Song Y, Yan W, Luo Y, Jiang Y. The therapeutic potential of andrographolide in cancer treatment. Biomed Pharmacother 2024; 180:117438. [PMID: 39298908 DOI: 10.1016/j.biopha.2024.117438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Cancer poses a substantial global health challenge, necessitating the widespread use of chemotherapy and radiotherapy. Despite these efforts, issues like resistance development and severe side effects remain. As such, the search for more effective alternatives is critical. Andrographolide, a naturally occurring compound, has recently gained attention for its extensive biological activities. This review explores the role of andrographolide in cancer therapy, especially focusing on the molecular mechanisms that drive its anti-tumor properties. It also examines innovative methods to enhance andrographolide's bioavailability, thus boosting its effectiveness against cancer. Notably, andrographolide has potential for use in combination with various clinical drugs, and both preclinical and clinical studies provide strong evidence supporting its broader anticancer applications. Additionally, this paper proposes future research directions for andrographolide's anti-cancer effects and discusses the challenges in its clinical usage along with current research efforts to address these issues. In summary, this review underscores andrographolide's potential roles and contributes to the development of improved cancer treatment strategies.
Collapse
Affiliation(s)
- Jiaxuan Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yi Li
- Department of Anesthesiology, Ganzhou Key Laboratory of Anesthesiology, Ganzhou Key Laboratory of Osteoporosis Research, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xin Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yunlei Song
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Wenjing Yan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yumao Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
25
|
Yang K, Ruan M, Li X, Han Y, Li Q, Chen J, Liang Q, Xu H, Li N. Andrographolide promotes lymphangiogenesis and lymphatic vessel remodeling to alleviate secondary lymphedema. Biochem Biophys Res Commun 2024; 723:150179. [PMID: 38820623 DOI: 10.1016/j.bbrc.2024.150179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Lymphedema, a prevalent, multifaceted, and chronic ailment, is mainly managed through physical manipulation and suffers from a lack of specific pharmacological treatments. Secondary lymphedema is mainly caused by impaired lymphatic drainage. Therapeutic lymphangiogenesis is a promising strategy in the treatment of lymphedema. Andrographolide, a natural product from Andrographis paniculata, is unknown whether andrographolide promotes lymphangiogenesis to improve secondary lymphedema. By using the murine tail lymphedema model, we demonstrated that andrographolide can reduce the thickness of subcutaneous tissue in the mice's tail and enhance lymphatic drainage. Moreover, immunofluorescence staining showed that the number of capillary lymphatic vessels in the ANDRO25 group was significantly more than that in the ANDRO50 and Model groups. Near-infrared lymphography images showed that highlighted sciatic lymph nodes could be seen in the ANDRO25 and ANDRO50 groups. In vitro, andrographolide could promote the proliferation and migration of LEC. In conclusion, andrographolide enhanced the recovery of lymphatic vessels, and promoted lymphatic drainage in the murine tail lymphedema model by promoting the proliferation of lymphatic endothelial cells, thereby reducing the symptoms of lymphedema. This suggested andrographolide may be used as a potential therapeutic drug or medical food ingredient to help patients with secondary lymphedema.
Collapse
Affiliation(s)
- Kunru Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
| | - Ming Ruan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
| | - Xuanru Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
| | - Yunxi Han
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
| | - Qiang Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
| | - Jinman Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
| |
Collapse
|
26
|
Ding LF, Hu M, Song LD, Wang QH, Zhao QY, Feng WY, Wu XD. Labdane-type diterpenoids with cytotoxic and anti-inflammatory activities from the aerial parts of Hypoestes purpurea (L.) R. Br. Fitoterapia 2024; 177:106096. [PMID: 38936672 DOI: 10.1016/j.fitote.2024.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Two new ent-labdane diterpenoids, hypoestesins A-B (1-2) and five new labdane diterpenoids, hypopurolides H-L (3-7), were isolated from the aerial parts of Hypoestes purpurea. All of the structures were fully determined based on extensive analysis of 1H, 13C, 2D NMR, and HRESIMS data. The absolute configurations of 1-3 was established through comparing the experimental and calculated ECD curves and the structure of 5 was confirmed by single crystal X-ray diffraction experiment. Compounds 5-7 were unusual C23 labdane diterpenoids having a γ-acetonyl-α, β-unsaturated γ-lactone unit and each assigned as C-15 epimeric mixture. Furthermore, cytotoxic and anti-inflammatory activities of 3-7 were evaluated. The results showed that 3 had remarkable cytotoxic activity against HL-60, A549, SMMC-7721, MDA-MB-231, and SW480 cancer cell lines with IC50 values ranging from 2.35 to 17.06 μM. Compound 4 showed moderate cytotoxic activity against HL-60 and SMMC-7721 cancer cell lines with IC50 values of 15.12 ± 0.53 and 12.92 ± 0.60 μM, respectively. Furthermore, compound 4 was also found to exhibit inhibitory activity against NO production in RAW 264.7 macrophages with IC50 values of 23.56 ± 0.99 μM, compared to the positive control L-NMMA with an IC50 value of 41.11 ± 1.34 μM.
Collapse
Affiliation(s)
- Lin-Fen Ding
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; College of Modern Biomedical Industry,Kunming Medical University, Kunming 650500, China
| | - Ming Hu
- Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650504, China
| | - Liu-Dong Song
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Qiu-Hua Wang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Qiu-Ye Zhao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Wei-Yang Feng
- School of Basic Medical Science, Kunming Medical University, Kunming 650500, China.
| | - Xing-De Wu
- Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650504, China.
| |
Collapse
|
27
|
Zhang L, Li X, Wang R, Han X. Lemierre's syndrome complicating multiple organ failure caused by Fusobacterium necrophorum subsp. funduliforme F1260: Case report and review. Diagn Microbiol Infect Dis 2024; 109:116375. [PMID: 38796934 DOI: 10.1016/j.diagmicrobio.2024.116375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
We described a case of a 24-year-old man with multiple organ failure caused by Fusobacterium necrophorum subsp. funduliforme F1260. This is the first described case of Lemierre's syndrome with multiple organ failure due to F. necrophorum subsp. funduliforme F1260 in an adult in China. Our study highlights that there may be a risk of misdiagnosis based solely on typical manifestations of internal jugular vein thrombophlebitis, metastatic lesions, and F. necrophorum isolated from blood cultures or normally sterile sites. Clinicians should be cognizant of the potential utility of metagenomic next-generation sequencing in facilitating early pathogen detection in severe infections, thus enabling timely and appropriate administration of antibiotics to reduce mortality rates and improve prognosis.
Collapse
Affiliation(s)
- Lizhong Zhang
- Department of Laboratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China.
| | - Xiaoyan Li
- Shanghai Pudong New District Zhoupu Hospital, Shanghai 200120, China
| | - Ruixue Wang
- Department of Laboratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Xiaonan Han
- School of Medicine, Jianghan University, Wuhan 430056, China
| |
Collapse
|
28
|
Luo J, Guo M, Xie K, Han TL, Ai S. Metabolomic analysis of Agkistrodon haly venom poisoning mouse treatment by Jidesheng snake pill based on GC-MS. Front Pharmacol 2024; 15:1419609. [PMID: 39148553 PMCID: PMC11324443 DOI: 10.3389/fphar.2024.1419609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Snakebites are acute systemic toxic diseases caused by snake venom entering the body through wounds. Failure to use antivenom immediately and difficulty in obtaining antivenoms are frequently responsible for worsening disease. Traditional Chinese medicine is commonly used to supplement and replace antivenom in treating snakebites. The Jidesheng snake pill (JDS) is a widely used traditional Chinese medicine that has achieved good clinical therapeutic effects; however, its mechanism remains unclear. Therefore, metabolomics techniques were employed to explore the pathophysiological mechanisms of JDS treatment of Agkistrodon halys (Ah) snake venom-poisoned mice. Methods The Ah group mouse model was established by intramuscular injection of Ah venom into the hind legs of the mice. The Ah venom + JDS group model was established using JDS after the affected area was treated with Ah venom. Hematoxylin and eosin (HE) staining was used to evaluate the severity of gastrocnemius injury. Quantitative polymerase chain reaction (qPCR) was utilized to detect the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), muscle-specific creatine kinase (CKM), thrombin antithrombin complex (TAT), and tumor necrosis factor-alpha (TNF-α). Gas chromatography-mass spectrometry (GC-MS) was performed with multivariate statistical analysis to provide new insights into the global metabolic profile of Ah venom-poisoned mice. Results HE staining revealed increased red cell necrosis, local hemorrhage, and neutrophil infiltration in the Ah venom group than in the control group. Several compounds were identified, including lipids, amino acids, peptides, and organooxygen. Eighty differential metabolites were screened between the control group and the Ah venom group, and 24 were screened between the Ah venom and JDS groups. The mechanism of Ah venom poisoning in mice may involve aminoacyl-tRNA biosynthesis, various amino acid metabolism disorders, tricarboxylic acid circulation disorders, and abnormal fatty acid metabolism. JDS may reduce symptoms by affecting long-chain fatty acid and amino acid metabolism and promoting nicotinamide-nicotinamide metabolism. Conclusion Our results suggest that metabolomics has huge prospects for elucidating the pathophysiology of Agkistrodon haly venom poisoning and therapeutic mechanisms of JDS.
Collapse
Affiliation(s)
- Jie Luo
- Emergency Department, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Minkang Guo
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Xie
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Shanmu Ai
- Emergency Department, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| |
Collapse
|
29
|
Qin Y, Li W, Liu J, Wang F, Zhou W, Xiao L, Zhou P, Wu F, Chen X, Xu S, Liu L, Xiao X, Zhang D. Andrographolide ameliorates sepsis-induced acute lung injury by promoting autophagy in alveolar macrophages via the RAGE/PI3K/AKT/mTOR pathway. Int Immunopharmacol 2024; 139:112719. [PMID: 39032470 DOI: 10.1016/j.intimp.2024.112719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Autophagy in alveolar macrophages (AMs) is an important mechanism for maintaining immune homeostasis and normal lung tissue function, and insufficient autophagy in AMs may mediate the development of sepsis-induced acute lung injury (SALI). Insufficient autophagy in AMs and the activation of the NLRP3 inflammasome were observed in a mouse model with SALI induced by cecal ligation and puncture (CLP), resulting in the release of a substantial quantity of proinflammatory factors and the formation of SALI. However, after andrographolide (AG) intervention, autophagy in AMs was significantly promoted, the activation of the NLRP3 inflammasome was inhibited, the release of proinflammatory factors and pyroptosis were suppressed, and SALI was then ameliorated. In the MH-S cell model stimulated with LPS, insufficient autophagy was discovered to promote the overactivation of the NLRP3 inflammasome. AG was found to significantly promote autophagy, inhibit the activation of the NLRP3 inflammasome, and attenuate the release of proinflammatory factors. The primary mechanism of AG promoting autophagy was to inhibit the activation of the PI3K/AKT/mTOR pathway by binding RAGE to the membrane. In addition, it inhibited the activation of the NLRP3 inflammasome to ameliorate SALI. Our findings suggest that AG promotes autophagy in AMs through the RAGE/PI3K/AKT/mTOR pathway to inhibit the activation of the NLRP3 inflammasome, remodel the functional homeostasis of AMs in SALI, and exert anti-inflammatory and lung-protective effects. It has also been the first to suggest that RAGE is likely a direct target through which AG regulates autophagy, providing theoretical support for a novel therapeutic strategy in sepsis.
Collapse
Affiliation(s)
- Yuping Qin
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Wenjuan Li
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jinglun Liu
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Fenglin Wang
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Wushuang Zhou
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Linlin Xiao
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Pengfei Zhou
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Fan Wu
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoying Chen
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Shan Xu
- Department of Emergency, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Lei Liu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoqiu Xiao
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Dan Zhang
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
30
|
Low M, Suresh H, Zhou X, Bhuyan DJ, Alsherbiny MA, Khoo C, Münch G, Li CG. The wide spectrum anti-inflammatory activity of andrographolide in comparison to NSAIDs: A promising therapeutic compound against the cytokine storm. PLoS One 2024; 19:e0299965. [PMID: 39018291 PMCID: PMC11253928 DOI: 10.1371/journal.pone.0299965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024] Open
Abstract
The challenges of the COVID-19 pandemic have highlighted an increasing clinical demand for safe and effective treatment options against an overzealous immune defence response, also known as the "cytokine storm". Andrographolide is a naturally derived bioactive compound with promising anti-inflammatory activity in many clinical studies. However, its cytokine-inhibiting activity, in direct comparison to commonly used nonsteroidal anti-inflammatory drugs (NSAIDs), has not been extensively investigated in existing literature. The anti-inflammatory activities of andrographolide and common NSAIDs, such as diclofenac, aspirin, paracetamol and ibuprofen were measured on lipopolysaccharide (LPS) and interferon-γ induced RAW264.7 cells. The levels of PGE2, nitric oxide (NO), TNF-α & LPS-induced release of pro-inflammatory cytokines on differentiated human macrophage THP-1 cells were measured against increasing concentrations of andrographolide and aforementioned NSAIDs. The associated mechanistic pathway was examined on NFκB using flow cytometry on the human endothelial-leukocyte adhesion molecule (ELAM9) (E-selectin) transfected RAW264.7 cells with green fluorescent protein (GFP). Andrographolide exhibited broad and potent anti-inflammatory and cytokine-inhibiting activity in both cell lines by inhibiting the release of IL-6, TNF-α and IFN-γ, which are known to play a key role in the etiology of cytokine storm and the pathogenesis of inflammation. In comparison, the tested NSAIDs demonstrated weak or no activity against proinflammatory mediators except for PGE2, where the activity of andrographolide (IC50 = 8.8 μM, 95% CI = 7.4 to 10.4 μM) was comparable to that of paracetamol (IC50 = 7.73 μM, 95% CI = 6.14 to 9.73 μM). The anti-inflammatory action of andrographolide was associated with its potent downregulation of NFκB. The wide-spectrum anti-inflammatory activity of andrographolide demonstrates its therapeutic potential against cytokine storms as an alternative to NSAIDs.
Collapse
Affiliation(s)
- Mitchell Low
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Harsha Suresh
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | | | - Cheang Khoo
- Wentworth Institute of Higher Education, Surry Hills, Sydney, Australia
| | - Gerald Münch
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| |
Collapse
|
31
|
Bangay G, Brauning FZ, Rosatella A, Díaz-Lanza AM, Domínguez-Martín EM, Goncalves B, Hussein AA, Efferth T, Rijo P. Anticancer diterpenes of African natural products: Mechanistic pathways and preclinical developments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155634. [PMID: 38718637 DOI: 10.1016/j.phymed.2024.155634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The African continent is home to five biodiversity hotspots, boasting an immense wealth of medicinal flora, fungi and marine life. Diterpenes extracted from such natural products have compelling cytotoxic activities that warrant further exploration for the drug market, particularly in cancer therapy, where mortality rates remain elevated worldwide. PURPOSE To demonstrate the potential of African natural products on the global stage for cancer therapy development and provide an in-depth analysis of the current literature on the activity of cancer cytotoxic diterpenes from African natural sources (to our knowledge, the first of its kind); not only to reveal the most promising candidates for clinical development, but to demonstrate the importance of preserving the threatened ecosystems of Africa. METHODS A comprehensive search by means of the PRISMA strategy was conducted using electronic databases, namely Web of Science, PubMed, Google Scholar and ScienceDirect. The search terms employed were 'diterpene & mechanism & cancer' and 'diterpene & clinical & cancer'. The selection process involved assessing titles in English, Portuguese and Spanish, adhering to predefined eligibility criteria. The timeframe for inclusion spanned from 2010 to 2023, resulting in 218 relevant papers. Chemical structures were visualized using ChemDraw 21.0, PubChem was utilized to search for CID numbers. RESULTS Despite being one of the richest biodiverse zones in the world, African natural products are proportionally underreported compared to Asian countries or otherwise. The diterpenes andrographolide (Andrographis paniculata), forskolin (Coleus forskohlii), ent-kauranes from Isodon spp., euphosorophane A (Euphorbia sororia), cafestol & kahweol (Coffea spp.), macrocylic jolkinol D derivatives (Euphorbia piscatoria) and cyathane erinacine A (Hericium erinaceus) illustrated the most encouraging data for further cancer therapy exploration and development. CONCLUSIONS Diterpenes from African natural products have the potential to be economically significant active pharmaceutical and medicinal ingredients, specifically focussed on anticancer therapeutics.
Collapse
Affiliation(s)
- Gabrielle Bangay
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Florencia Z Brauning
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Andreia Rosatella
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ana María Díaz-Lanza
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Eva María Domínguez-Martín
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Bruno Goncalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Patricia Rijo
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
32
|
Messire G, Rollin P, Gillaizeau I, Berteina-Raboin S. Synthetic Modifications of Andrographolide Targeting New Potential Anticancer Drug Candidates: A Comprehensive Overview. Molecules 2024; 29:2884. [PMID: 38930949 PMCID: PMC11206892 DOI: 10.3390/molecules29122884] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
This review collects the synthetic modifications performed on andrographolide, a natural molecule derived from Andrographis paniculata, for oncology applications. Various pharmacomodulations were carried out, and the products were tested on different cancer cell lines. The impact of these modifications was analyzed with the aim of mapping the positions essential for activity to facilitate future research in this field. However, this study makes it clear that, in addition to structural modifications of the molecule, which can result in varying degrees of effectiveness in targeting interactions, the lipophilic capacity of the structures obtained through hemisynthesis is of significant importance.
Collapse
Affiliation(s)
| | | | | | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique (ICOA), Université d’Orléans, UMR-CNRS 7311, BP 6759, rue de Chartres, 45067 Orléans, Cedex 2, France; (G.M.); (P.R.); (I.G.)
| |
Collapse
|
33
|
Yang T, Cao T, Yang X, Wang G, Li Y. Elucidation of the key therapeutic targets and potential mechanisms of Andrographolide multi-targets against osteoarthritis via network pharmacological analysis and experimental validation. Gene 2024; 911:148351. [PMID: 38462021 DOI: 10.1016/j.gene.2024.148351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Our purpose is to unveil Andrographolide's potential multi-target and multi-mechanism therapeutic effects in treating OA via systematic network pharmacological analysis and cell experimental validation. MATERIALS AND METHODS Initially, we gathered data from Andrographolide and OA-related databases to obtain information on Andrographolide's biological properties and the targets linked with OA. We developed a bioinformatic network about Andrographolide and OA, whereby we analyzed the network to identify potential therapeutic targets and mechanisms of action of Andrographolide. Subsequently, we used molecular docking to analyze the binding sites of Andrographolide to the target proteins. At the same time, SDF-1 was used to construct an OA cell model to verify the therapeutic effect of Andrographolide on OA and its effect on target proteins. RESULTS Our experimental results show that Andrographolide has excellent pharmaceutical properties, by Lipinski's rules for drugs, suggesting that this compound can be considered to have a high therapeutic potential in drug development. 233 targets were preliminarily investigated, the mechanisms through which Andrographolide targets OA primarily involve the TNF signaling pathway, PI3K-AKT signaling pathway, IL-17 signaling pathway, and TLR signaling pathway. These mechanisms target OA by influencing immune and inflammatory responses in the joints, regulating apoptosis to prevent chondrocyte death. Finally, TNF-α, STAT3, TP53, IL-6, JUN, IL-1β, HIF-1α, TGF-β1, and AKT1 were identified as 9 key targets of Andrographolide anti-OA. In addition, our molecular docking analyzes with cell experimental validation further confirm the network pharmacology results. According to our molecular docking results, Andrographolide can bind to all the hub target proteins and has a good binding ability (binding energy < -5 kcal/mol), with the strongest binding affinity to AKT1 of -9.2 kcal/ mol. The results of cell experiments showed that Andrographolide treatment significantly increased the cell viability and the expression of COL2A1 and ACAN proteins. Moreover, 30 μM Andrographolide significantly reversed SDF-1-induced increases in the protein expression of TNF-α, STAT3, TP53, IL-6, JUN, IL-1β, HIF-1α, and TGF-β1, and decreases in the protein expression of AKT1. CONCLUSION This study provides a comprehensive understanding of the potential therapeutic targets and mechanisms of action of Andrographolide in OA treatment. Our findings suggest that Andrographolide is a promising candidate for drug development in the management of OA.
Collapse
Affiliation(s)
- Tengyun Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Tingting Cao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xianguang Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Guoliang Wang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yanlin Li
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
34
|
Luo Y, Zhang G, Hu C, Huang L, Wang D, Chen Z, Wang Y. The Role of Natural Products from Herbal Medicine in TLR4 Signaling for Colorectal Cancer Treatment. Molecules 2024; 29:2727. [PMID: 38930793 PMCID: PMC11206024 DOI: 10.3390/molecules29122727] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The toll-like receptor 4 (TLR4) signaling pathway constitutes an intricate network of protein interactions primarily involved in inflammation and cancer. This pathway triggers intracellular signaling cascades, modulating transcription factors that regulate gene expression related to immunity and malignancy. Previous studies showed that colon cancer patients with low TLR4 expression exhibit extended survival times and the TLR4 signaling pathway holds a significant role in CRC pathogenesis. In recent years, traditional Chinese medicines (TCMs) have garnered substantial attention as an alternative therapeutic modality for CRC, primarily due to their multifaceted composition and ability to target multiple pathways. Emerging evidence indicates that specific TCM products, such as andrographolide, rosmarinic acid, baicalin, etc., have the potential to impede CRC development through the TLR4 signaling pathway. Here, we review the role and biochemical processes of the TLR4 signaling pathway in CRC, and natural products from TCMs affecting the TLR4 pathway. This review sheds light on potential treatment strategies utilizing natural TLR4 inhibitors for CRC, which contributes to the advancement of research and accelerates their clinical integration into CRC treatment.
Collapse
Affiliation(s)
- Yan Luo
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Guochen Zhang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Chao Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Lijun Huang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Zhejie Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumei Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| |
Collapse
|
35
|
Li Q, Lu H, Ruan Y, Geng Y, Zhao Z, Liu Y, Feng L, Guo W. Andrographolide suppresses SARS-CoV-2 infection by downregulating ACE2 expression: A mechanistic study. Antivir Ther 2024; 29:13596535241259952. [PMID: 38873947 DOI: 10.1177/13596535241259952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the receptor that enables SARS-CoV-2 to invade host cells. Previous studies have reported that reducing ACE2 expression may have an anti-SARS-CoV-2 effect. In this study, we constructed a pGL4.10-F2-ACE2 vector with double luciferase genes (firefly and Renilla luciferase) under the control of the ACE2 promoter and used it to screen compounds from Chinese traditional medicinal herbs (CTMHs) that can inhibit ACE2 transcription in human cells. We transfected HEK293T cells with pGL4.10-F2-ACE2 and treated them with CTMH compounds and then measured fluorescence to evaluate the indirect inhibition of ACE2 transcription. Out of 37 compounds tested, andrographolide demonstrated a dose-dependent inhibition of ACE2 transcription. We further confirmed by RT-qPCR and Western blot assays that andrographolide also reduced ACE2 expression in BEAS-2B cells in a dose-dependent manner. Moreover, pseudovirus infection assays in BEAS-2B cells demonstrated that andrographolide can inhibit SARS-CoV-2 infection in a dose-dependent manner. These results suggest that andrographolide has potential anti-SARS-CoV-2 activity and could be a candidate drug for COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Qing Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Donguan, China
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongmei Lu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Donguan, China
| | - Yongdui Ruan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Donguan, China
| | - Yuxuan Geng
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zuguo Zhao
- School of Basic Medicine, Guangdong Medical University, Donguan, China
| | - Ying Liu
- Department of Pharmacy, DongGuan SongShan Lake Tung Wah Hospital, DongGuan, China
| | - Long Feng
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wentao Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Donguan, China
- School of Basic Medicine, Guangdong Medical University, Donguan, China
| |
Collapse
|
36
|
Ye C, Zhang B, Tang Z, Zheng C, Wang Q, Tong X. Synergistic action of Hedyotis diffusa Willd and Andrographis paniculata in Nasopharyngeal Carcinoma: Downregulating AKT1 and upregulating VEGFA to curb tumorigenesis. Int Immunopharmacol 2024; 132:111866. [PMID: 38603854 DOI: 10.1016/j.intimp.2024.111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVE Nasopharyngeal carcinoma (NPC) remains a challenging cancer to treat. This study investigates the molecular mechanisms of Hedyotis diffusa Willd (HDW) combined with Andrographis paniculata (AP) in treating NPC. METHODS Key compounds and target genes in HDW and AP were analyzed using network pharmacology. Protein-protein interaction (PPI) networks were constructed with STRING and visualized using Cytoscape. MCODE identified critical clusters, while DAVID facilitated GO and KEGG analyses. In vivo and in vitro experiments evaluated HDW-AP effects on NPC, including tumor volume, weight, Ki-67 expression, cell apoptosis, migration, invasion, cell cycle distribution, and DNA damage. RESULTS The database identified 495 NPC-related genes and 26 compounds in the HDW-AP pair, targeting 165 genes. Fifty-eight potential therapeutic genes were found, leading to 18 key targets. KEGG analysis revealed a significant impact on 78 pathways, especially cancer pathways. Both in vivo and in vitro tests showed HDW-AP inhibited NPC cell proliferation, migration, invasion, and induced apoptosis. Mechanistically, this was achieved through AKT1 downregulation and VEGFA upregulation. CONCLUSION The combination of HDW and AP targets 16 key genes to impede the development of NPC, primarily by modulating AKT1 and VEGFA pathways.
Collapse
Affiliation(s)
- Chengyu Ye
- Department of Radiotherapy, Wenzhou Central Hospital & The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Baofan Zhang
- Second Department of Oncology, Wenzhou Central Hospital, Wenzhou 325000, PR China
| | - Zhongjie Tang
- Second Department of Oncology, Wenzhou Central Hospital, Wenzhou 325000, PR China
| | - Cuiping Zheng
- Department of Tumor Hematology, Wenzhou Central Hospital, Wenzhou 325000, PR China
| | - Qiongzhang Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Xiangmin Tong
- Department of Hematology, the Affiliated Hangzhou First People's Hospital, westlake University School of Medicine, Hangzhou, 310006, P.R. China.
| |
Collapse
|
37
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
38
|
Barbosa H, Espinoza GZ, Amaral M, de Castro Levatti EV, Abiuzi MB, Veríssimo GC, Fernandes PDO, Maltarollo VG, Tempone AG, Honorio KM, Lago JHG. Andrographolide: A Diterpenoid from Cymbopogon schoenanthus Identified as a New Hit Compound against Trypanosoma cruzi Using Machine Learning and Experimental Approaches. J Chem Inf Model 2024; 64:2565-2576. [PMID: 38148604 DOI: 10.1021/acs.jcim.3c01410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
American Trypanosomiasis, also known as Chagas disease, is caused by the protozoan Trypanosoma cruzi and exhibits limited options for treatment. Natural products offer various structurally complex metabolites with biological activities, including those with anti-T. cruzi potential. The discovery and development of prototypes based on natural products frequently display multiple phases that could be facilitated by machine learning techniques to provide a fast and efficient method for selecting new hit candidates. Using Random Forest and k-Nearest Neighbors, two models were constructed to predict the biological activity of natural products from plants against intracellular amastigotes of T. cruzi. The diterpenoid andrographolide was identified from a virtual screening as a promising hit compound. Hereafter, it was isolated from Cymbopogon schoenanthus and chemically characterized by spectral data analysis. Andrographolide was evaluated against trypomastigote and amastigote forms of T. cruzi, showing IC50 values of 29.4 and 2.9 μM, respectively, while the standard drug benznidazole displayed IC50 values of 17.7 and 5.0 μM, respectively. Additionally, the isolated compound exhibited a reduced cytotoxicity (CC50 = 92.8 μM) against mammalian cells and afforded a selectivity index (SI) of 32, similar to that of benznidazole (SI = 39). From the in silico analyses, we can conclude that andrographolide fulfills many requirements implemented by DNDi to be a hit compound. Therefore, this work successfully obtained machine learning models capable of predicting the activity of compounds against intracellular forms of T. cruzi.
Collapse
Affiliation(s)
- Henrique Barbosa
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo 09210-180, Brazil
| | | | - Maiara Amaral
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, Brazil
| | | | | | - Gabriel Correa Veríssimo
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Minas Gerais, 31270-901, Brazil
| | | | | | | | - Kathia Maria Honorio
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo 09210-180, Brazil
- School of Arts, Science, and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | | |
Collapse
|
39
|
Wang W, Zhang ZQ, Zhang YC, Wu YQ, Yang Z, Zheng YZ, Lu JH, Tu PF, Zeng KW. Cayratia albifolia C.L.Li exerts anti-rheumatoid arthritis effect by inhibiting macrophage activation and neutrophil extracellular traps (NETs). Chin Med 2024; 19:42. [PMID: 38444022 PMCID: PMC10913656 DOI: 10.1186/s13020-024-00910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Cayratia albifolia C.L.Li (CAC), commonly known as "Jiao-Mei-Gu" in China, has been extensively utilized by the Dong minority for several millennia to effectively alleviate symptoms associated with autoimmune diseases. CAC extract is believed to possess significant anti-inflammatory properties within the context of Dong medicine. However, an in-depth understanding of the specific pharmaceutical effects and underlying mechanisms through which CAC extract acts against rheumatoid arthritis (RA) has yet to be established. METHODS Twenty-four Sprague-Dawley rats were divided into four groups, with six rats in each group. To induce the collagen-induced arthritis (CIA) model, the rats underwent a process of double immunization with collagen and adjuvant. CAC extract (100 mg/kg) was orally administered to rats. The anti-RA effects were evaluated in CIA rats by arthritis score, hind paw volume and histopathology analysis. Pull-down assay was conducted to identify the potential targets of CAC extract from RAW264.7 macrophage lysates. Moreover, mechanism studies of CAC extract were performed by immunofluorescence assays, real-time PCR and Western blot. RESULTS CAC extract was found to obviously down-regulate hind paw volume of CIA rats, with diminished inflammation response and damage. 177 targets were identified from CAC extract by MS-based pull-down assay. Bioinformatics analysis found that these targets were mainly enriched in macrophage activation and neutrophils extracellular traps (NETs). Additionally, we reported that CAC extract owned significant anti-inflammatory activity by regulating PI3K-Akt-mTOR signal pathway, and inhibited NETosis in response to PMA. CONCLUSIONS We clarified that CAC extract significantly attenuated RA by inactivating macrophage and reducing NETosis via a multi-targets regulation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zai-Qi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 41800, China.
| | - Yi-Chi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yi-Qiang Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Zhe Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, SAR, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
40
|
Luo Z, Yin F, Wang X, Kong L. Progress in approved drugs from natural product resources. Chin J Nat Med 2024; 22:195-211. [PMID: 38553188 DOI: 10.1016/s1875-5364(24)60582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 04/02/2024]
Abstract
Natural products (NPs) have consistently played a pivotal role in pharmaceutical research, exerting profound impacts on the treatment of human diseases. A significant proportion of approved molecular entity drugs are either directly derived from NPs or indirectly through modifications of NPs. This review presents an overview of NP drugs recently approved in China, the United States, and other countries, spanning various disease categories, including cancers, cardiovascular and cerebrovascular diseases, central nervous system disorders, and infectious diseases. The article provides a succinct introduction to the origin, activity, development process, approval details, and mechanism of action of these NP drugs.
Collapse
Affiliation(s)
- Zhongwen Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fucheng Yin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaobing Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
41
|
Xu W, Wang H, Sun Q, Hua T, Bai J, Zhang Q, Liu Q, Ni X. TXNIP-NLRP3-GSDMD axis-mediated inflammation and pyroptosis of islet β-cells is involved in cigarette smoke-induced hyperglycemia, which is alleviated by andrographolide. ENVIRONMENTAL TOXICOLOGY 2024; 39:1415-1428. [PMID: 37987454 DOI: 10.1002/tox.24046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Epidemiologic surveys have indicated that cigarette smoking is an important risk factor for diabetes, but its mechanisms remain unclear. Andrographolide, an herb traditionally utilized in medicine, provides anti-inflammatory benefits for various diseases. In the present work, 265 patients with Type 2 diabetes (T2D) were investigated, and male C57BL/6 mice were exposed to cigareete smoke (CS) and/or to intraperitoneally injected andrographolide for 3 months. To elucidate the mechanism of CS-induced hyperglycemia and the protective mechanism of andrographolide, MIN6 cells were exposed to cigarette smoke extract (CSE) and/or to andrographolide. Our data from 265 patients with T2D showed that urinary creatinine and serum inflammatory cytokines (interleukin 6 (IL-6), IL-8, IL-1β, and tumor necrosis factor α (TNF-α)) increased with smoking pack-years. In a mouse model, CS induced hyperglycemia, decreased insulin secretion, and elevated inflammation and pyroptosis in β-cells of mice. Treatment of mice with andrographolide preserved pancreatic function by reducing the expression of inflammatory cytokines; the expression of TXNIP, NLRP3, cleaved caspase 1, IL-1β; and the N-terminal of gasdermin D (GSDMD) protein. For MIN6 cells, CSE caused increasing secretion of the inflammatory cytokines IL-6 and IL-1β, and the expression of TXNIP and pyroptosis-related proteins; however, andrographolide alleviated these changes. Furthermore, silencing of TXNIP showed that the blocking effect of andrographolide may be mediated by TXNIP. In sum, our results indicate that CS induces hyperglycemia through TXNIP-NLRP3-GSDMD axis-mediated inflammation and pyroptosis of islet β-cells and that andrographolide is a potential therapeutic agent for CS-induced hyperglycemia.
Collapse
Affiliation(s)
- Wenchao Xu
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, People's Republic of China
- Changzhou Center for Disease Control and Prevention, Changzhou Advanced Institute of Public Health, Nanjing Medical University, Changzhou, People's Republic of China
| | - Hailan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
- Environmental health effects and risk assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, People's Republic of China
| | - Qian Sun
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Tianqi Hua
- Changzhou Center for Disease Control and Prevention, Changzhou Advanced Institute of Public Health, Nanjing Medical University, Changzhou, People's Republic of China
| | - Jun Bai
- Environmental health effects and risk assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, People's Republic of China
| | - Qingbi Zhang
- Environmental health effects and risk assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, People's Republic of China
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xinye Ni
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, People's Republic of China
| |
Collapse
|
42
|
Pornpitchanarong C, Akkaramongkolporn P, Nattapulwat N, Opanasopit P, Patrojanasophon P. Development and Optimization of Andrographis paniculata Extract-Loaded Self-Microemulsifying Drug Delivery System Using Experimental Design Model. Pharmaceutics 2024; 16:166. [PMID: 38399227 PMCID: PMC10893082 DOI: 10.3390/pharmaceutics16020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The objectives of this study were to develop an optimized formulation for an Andrographis paniculata extract (AGPE)-loaded self-microemulsifying drug delivery system (SMEDDS) using an experimental design and evaluate the characteristics of the developed SMEDDS. The solubility of andrographolide (AGP) in various solvents was investigated. The pseudo-ternary phase was constructed to provide an optimal range for each component to form microemulsions (MEs). The formulation was optimized using an I-optimal design mixture type, where the physical stability, droplet size, polydispersity index, and zeta potential were examined. Soft capsules of the optimized AGPE-loaded SMEDDS were manufactured. The dissolution and ex vivo membrane permeation were studied. Oleic acid, Tween® 80, and PEG 400 were the best solubilizers for AGP. The promising surfactant to co-surfactant ratio to generate ME was 3:1. The optimized SMEDDS contained 68.998% Tween® 80, with 13.257% oleic acid and 17.745% PEG 400. The assayed content of AGP, uniformity of dosage unit, and stability complied with the expected specifications. The dissolution and membrane permeability of AGPE-loaded SMEDDS was significantly improved from the A. paniculata extract (p < 0.05). All in all, the developed optimized AGPE-loaded SMEDDS was proven to contain optimal composition and AGP content where a stable ME could spontaneously be formed with enhanced delivery efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (C.P.); (P.A.); (N.N.); (P.O.)
| |
Collapse
|
43
|
Tang D, Hu W, Fu B, Zhao X, You G, Xie C, Wang HY, Guo X, Zhang Q, Liu Z, Ye L. Gut microbiota-mediated C-sulfonate metabolism impairs the bioavailability and anti-cholestatic efficacy of andrographolide. Gut Microbes 2024; 16:2387402. [PMID: 39264803 PMCID: PMC11404609 DOI: 10.1080/19490976.2024.2387402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 09/14/2024] Open
Abstract
Cholestatic liver injury results from the accumulation of toxic bile acids in the liver, presenting a therapeutic challenge with no effective treatment available to date. Andrographolide (AP) has exhibited potential as a treatment for cholestatic liver disease. However, its limited oral bioavailability poses a significant obstacle to harnessing its potent therapeutic properties and restricts its clinical utility. This limitation is potentially attributed to the involvement of gut microbiota in AP metabolism. In our study, employing pseudo-germ-free, germ-free and strain colonization animal models, along with 16S rRNA and shotgun metagenomic sequencing analysis, we elucidate the pivotal role played by gut microbiota in the C-sulfonate metabolism of AP, a process profoundly affecting its bioavailability and anti-cholestatic efficacy. Subsequent investigations pinpoint a specific enzyme, adenosine-5'-phosphosulfate (APS) reductase, predominantly produced by Desulfovibrio piger, which catalyzes the reduction of SO42- to HSO3-. HSO3- subsequently interacts with AP, targeting its C=C unsaturated double bond, resulting in the formation of the C-sulfonate metabolite, 14-deoxy-12(R)-sulfo andrographolide (APM). Inhibition of APS reductase leads to a notable enhancement in AP bioavailability and anti-cholestatic efficacy. Furthermore, employing RNA sequencing analysis and farnesoid X receptor (FXR) knockout mice, our findings suggest that AP may exert its anti-cholestatic effects by activating the FXR pathway to promote bile acid efflux. In summary, our study unveils the significant involvement of gut microbiota in the C-sulfonate metabolism of AP and highlights the potential benefits of inhibiting APS reductase to enhance its therapeutic effects. These discoveries provide valuable insights into enhancing the clinical applicability of AP as a promising treatment for cholestatic liver injury.
Collapse
Affiliation(s)
- Dafu Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wanyu Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bingxuan Fu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaojie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Guoquan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Cong Xie
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Yu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xueni Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongqiu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
44
|
Kanokkangsadal P, Mingmalairak C, Mukkasombat N, Kuropakornpong P, Worawattananutai P, Khawcharoenporn T, Sakpakdeejaroen I, Davies NM, Itharat A. Andrographis paniculata extract versus placebo in the treatment of COVID-19: a double-blinded randomized control trial. Res Pharm Sci 2023; 18:592-603. [PMID: 39005565 PMCID: PMC11246112 DOI: 10.4103/1735-5362.389947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/17/2023] [Accepted: 09/18/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Andrographis paniculata (Burm.f.) Nees has been recommended to relieve symptoms and decrease the severity of COVID-19. The clinical study aimed to investigate the efficacy and safety of A. paniculata ethanolic extract (APE). Experimental approach The efficacy and safety of APE in asymptomatic or mildly symptomatic COVID-19 patients compared with placebo were investigated through a prospective, double-blind randomized control trial. Patients received APE containing 60 mg of andrographolide, three times a day for five days. WHO progression scale, COVID-19 symptoms, and global assessment evaluated the efficacy and adverse events, liver and renal functions were monitored for safety. Findings/Results 165 patients completed the study (83 patients in the APE group and 82 patients in the placebo group). The highest WHO progression scale was 4 and COVID-19 symptoms were significantly relieved on the last day of intervention in both groups, with no significant difference between groups. APE significantly relieved headache symptoms on day 1 and olfactory loss symptoms on day 2 compared to placebo. The global assessment showed that 80.7% of patients had total recovery after 5-day treatment with APE. Mild diarrhea was the most common side effect with a high dose that resolved within a few days. No hepatic or renal toxicity was associated with treatment. Conclusion and implications APE at 180 mg/day for 5 days did not reduce COVID-19 progression in asymptomatic or mildly afflicted COVID-19 patients, however, it shortened the symptoms of olfactory loss with no adverse effects over 5 days of use.
Collapse
Affiliation(s)
- Puritat Kanokkangsadal
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Center of Excellence on Applied Thai Traditional Medicine Research (CEATMR), Faculty of Medicine, Thammasat University, Klong Luang, Pathumthani 12120, Thailand
| | - Chatchai Mingmalairak
- Department of Surgery, Faculty of Medicine, Thammasat University, Pathumtani 12120, Thailand
| | - Nichamon Mukkasombat
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Center of Excellence on Applied Thai Traditional Medicine Research (CEATMR), Faculty of Medicine, Thammasat University, Klong Luang, Pathumthani 12120, Thailand
| | - Pranporn Kuropakornpong
- Center of Excellence on Applied Thai Traditional Medicine Research (CEATMR), Faculty of Medicine, Thammasat University, Klong Luang, Pathumthani 12120, Thailand
| | - Patsorn Worawattananutai
- Department of Applied Thai Traditional Medicine, Faculty of Allied Health Science, Burapha University, Chonburi, 20131, Thailand
| | - Thana Khawcharoenporn
- Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathumtani 12120, Thailand
| | - Intouch Sakpakdeejaroen
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Neal M. Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Arunporn Itharat
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Center of Excellence on Applied Thai Traditional Medicine Research (CEATMR), Faculty of Medicine, Thammasat University, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
45
|
Fan M, Jin C, Li D, Deng Y, Yao L, Chen Y, Ma YL, Wang T. Multi-level advances in databases related to systems pharmacology in traditional Chinese medicine: a 60-year review. Front Pharmacol 2023; 14:1289901. [PMID: 38035021 PMCID: PMC10682728 DOI: 10.3389/fphar.2023.1289901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
The therapeutic effects of traditional Chinese medicine (TCM) involve intricate interactions among multiple components and targets. Currently, computational approaches play a pivotal role in simulating various pharmacological processes of TCM. The application of network analysis in TCM research has provided an effective means to explain the pharmacological mechanisms underlying the actions of herbs or formulas through the lens of biological network analysis. Along with the advances of network analysis, computational science has coalesced around the core chain of TCM research: formula-herb-component-target-phenotype-ZHENG, facilitating the accumulation and organization of the extensive TCM-related data and the establishment of relevant databases. Nonetheless, recent years have witnessed a tendency toward homogeneity in the development and application of these databases. Advancements in computational technologies, including deep learning and foundation model, have propelled the exploration and modeling of intricate systems into a new phase, potentially heralding a new era. This review aims to delves into the progress made in databases related to six key entities: formula, herb, component, target, phenotype, and ZHENG. Systematically discussions on the commonalities and disparities among various database types were presented. In addition, the review raised the issue of research bottleneck in TCM computational pharmacology and envisions the forthcoming directions of computational research within the realm of TCM.
Collapse
Affiliation(s)
- Mengyue Fan
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ching Jin
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, United States
| | - Daping Li
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingshan Deng
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Yao
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongjun Chen
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu-Ling Ma
- Oxford Chinese Medicine Research Centre, University of Oxford, Oxford, United Kingdom
| | - Taiyi Wang
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Oxford Chinese Medicine Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
46
|
Zhan L, Su F, Li Q, Wen Y, Wei F, He Z, Chen X, Yin X, Wang J, Cai Y, Gong Y, Chen Y, Ma X, Zeng J. Phytochemicals targeting glycolysis in colorectal cancer therapy: effects and mechanisms of action. Front Pharmacol 2023; 14:1257450. [PMID: 37693915 PMCID: PMC10484417 DOI: 10.3389/fphar.2023.1257450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world, and it is prone to recurrence and metastasis during treatment. Aerobic glycolysis is one of the main characteristics of tumor cell metabolism in CRC. Tumor cells rely on glycolysis to rapidly consume glucose and to obtain more lactate and intermediate macromolecular products so as to maintain growth and proliferation. The regulation of the CRC glycolysis pathway is closely associated with several signal transduction pathways and transcription factors including phosphatidylinositol 3-kinases/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1), myc, and p53. Targeting the glycolytic pathway has become one of the key research aspects in CRC therapy. Many phytochemicals were shown to exert anti-CRC activity by targeting the glycolytic pathway. Here, we review the effects and mechanisms of phytochemicals on CRC glycolytic pathways, providing a new method of drug development.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangting Su
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhelin He
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiaoyan Chen
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiang Yin
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Jian Wang
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Yilin Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxia Gong
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
47
|
Kalamkar SD, Bose GS, Ghaskadbi S, Mittal S. Andrographolide and pterostilbene inhibit adipocyte differentiation by downregulating PPARγ through different regulators. Nat Prod Res 2023; 37:3145-3151. [PMID: 36373743 DOI: 10.1080/14786419.2022.2144850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Adipogenesis involves commitment of stem cells and their differentiation into mature adipocytes. It is tightly regulated by hormones, nutrients and adipokines. Many natural compounds are being tested for their anti-adipogenic activity which can be attributed to apoptosis induction in adipocytes, blocking adipocyte differentiation, or inhibiting intracellular triglyceride synthesis and accumulation. In this study, we have determined molecular mechanism of two phytocompounds: andrographolide (AN) and pterostilbene (PT) during differentiation of the human MSCs into adipocyte. Interestingly, AN upregulates miR27a, whereas, PT upregulated SIRT1 which inhibits the expression of PPARγ. Thus, our results clearly demonstrate that both AN and PT inhibited adipogenesis by blocking a surge of reactive oxygen species (ROS) during differentiation and inhibiting expression of crucial transcription factors like SREBP1c and PPARγ.
Collapse
Affiliation(s)
| | - Ganesh Suraj Bose
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Saroj Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Smriti Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
48
|
Tran QTN, Gan PXL, Liao W, Mok YK, Chai CLL, Wong WSF. Degradation of MK2 with natural compound andrographolide: A new modality for anti-inflammatory therapy. Pharmacol Res 2023; 194:106861. [PMID: 37480973 DOI: 10.1016/j.phrs.2023.106861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
The p38MAPK-MK2 signaling axis functions as an initiator of inflammation. Targeting the p38MAPK-MK2 signaling axis represents a direct therapeutic intervention of inflammatory diseases. We described here a novel role of andrographolide (AG), a small-molecule ent-labdane natural compound, as an inhibitor of p38MAPK-MK2 axis via MK2 degradation. AG was found to bind to the activation loop of MK2, located at the interface of the p38MAPK-MK2 biomolecular complex. This interaction disrupted the complex formation and predisposed MK2 to proteasome-mediated degradation. We showed that AG induced MK2 degradation in a concentration- and time-dependent manner and exerted its anti-inflammatory effects by enhancing the mRNA-destabilizing activity of tristetraprolin, thereby inhibiting pro-inflammatory mediator production (e.g., TNF-α, MCP-1). Administration of AG via intratracheal (i.t.) route to mice induced MK2 downregulation in lung alveolar macrophages, but not lung tissues, and prevented macrophage activation. Our study also demonstrated that the anti-inflammatory effects achieved by AG via MK2 degradation were more durable and sustained than that achieved by the conventional MK2 kinase inhibitors (e.g., PF-3644022). Taken together, our findings illustrated a novel mode of action of AG by modulating the p38MAPK-MK2 signaling axis and would pave the way for the development of a novel class of anti-inflammatory agents targeting MK2 for degradation by harnessing the privileged scaffold of AG.
Collapse
Affiliation(s)
- Quy T N Tran
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 117600, Singapore; Department of Pharmacy, Faculty of Science, National University of Singapore, 117543, Singapore; Drug Discovery and Optimization Platform (DDOP), Yong Loo Lin School of Medicine, National University Health System, 117600, Singapore
| | - Phyllis X L Gan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 117600, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 117600, Singapore; Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore
| | - Yu Keung Mok
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Christina L L Chai
- Department of Pharmacy, Faculty of Science, National University of Singapore, 117543, Singapore; Drug Discovery and Optimization Platform (DDOP), Yong Loo Lin School of Medicine, National University Health System, 117600, Singapore.
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 117600, Singapore; Drug Discovery and Optimization Platform (DDOP), Yong Loo Lin School of Medicine, National University Health System, 117600, Singapore; Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore.
| |
Collapse
|
49
|
Woo S, Marquez L, Crandall WJ, Risener CJ, Quave CL. Recent advances in the discovery of plant-derived antimicrobial natural products to combat antimicrobial resistant pathogens: insights from 2018-2022. Nat Prod Rep 2023; 40:1271-1290. [PMID: 37439502 PMCID: PMC10472255 DOI: 10.1039/d2np00090c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Covering: 2018 to 2022Antimicrobial resistance (AMR) poses a significant global health threat. There is a rising demand for innovative drug scaffolds and new targets to combat multidrug-resistant bacteria. Before the advent of antibiotics, infections were treated with plants chosen from traditional medicine practices. Of Earth's 374 000 plant species, approximately 9% have been used medicinally, but most species remain to be investigated. This review illuminates discoveries of antimicrobial natural products from plants covering 2018 to 2022. It highlights plant-derived natural products with antibacterial, antivirulence, and antibiofilm activity documented in lab studies. Additionally, this review examines the development of novel derivatives from well-studied parent natural products, as natural product derivatives have often served as scaffolds for anti-infective agents.
Collapse
Affiliation(s)
- Sunmin Woo
- Center for the Study of Human Health, Emory University, USA
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - William J Crandall
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - Caitlin J Risener
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - Cassandra L Quave
- Center for the Study of Human Health, Emory University, USA
- Department of Dermatology, Emory University School of Medicine, USA.
| |
Collapse
|
50
|
Affiliation(s)
- Alexander Panossian
- Phytomed AB, Västervik, Sweden
- EuroPharma USA Inc., Green Bay, WI, United States
| |
Collapse
|