1
|
Marcantonio E, Guazzetti D, Coppa C, Battistini L, Sartori A, Bugatti K, Provinciael B, Curti C, Contini A, Vermeire K, Zanardi F. The chiral 5,6-cyclohexane-fused uracil ring-system: A molecular platform with promising activity against SARS-CoV-2. Eur J Med Chem 2025; 286:117302. [PMID: 39884099 DOI: 10.1016/j.ejmech.2025.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
The recurrent global exposure to highly challenging viral epidemics, and the still limited spectrum of effective pharmacological options step on the accelerator towards the development of new antiviral medicines. In this work we explored the anti-SARS-CoV-2 potential of a recently launched chiral ring system based on the uracil scaffold fused to carbocycle rings. The asymmetric synthesis of two generations of chiral uracil-based compounds (overall 31 different products), and their in vitro cytotoxicity and antiviral screening against wild-type SARS-CoV-2 in U87.ACE cells allowed us to identify seven non-cytotoxic enantioenriched derivatives exhibiting in vitro EC50 in the 6-37 μM range. Among these compounds, bicyclic uracil 10 showed the best antiviral potency against SARS-CoV-2 (EC50 20A.EU2 = 7.41 μM and EC50 Omicron = 19.4 μM), combined with a favourable selectivity index. Additionally, it exhibited single-digit micromolar inhibition of the isolated SARS-CoV-2 RNA-dependent RNA polymerase (IC50 = 2.1 μM). Starting from a reported cryo-EM structure of RdRp, docking and molecular dynamics simulations were performed to rationalize possible binding modes of the active compounds. Interestingly, no inhibition of viral replication in cells was observed against a wide spectrum of human viruses, while some derivatives, and especially hit compound 10, exhibited specific low micromolar antiviral effect against β-coronavirus OC43. Collectively, these data indicate that this novel uracil-based ring system represents a valid starting point for further development of a new class of RdRp inhibitors to treat SARS-CoV-2 and, potentially, other β-coronavirus infections.
Collapse
Affiliation(s)
- Enrico Marcantonio
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Debora Guazzetti
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Crescenzo Coppa
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133, Milano, Italy
| | - Lucia Battistini
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Andrea Sartori
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Kelly Bugatti
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Becky Provinciael
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular, Structural and Translational Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Claudio Curti
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy.
| | - Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133, Milano, Italy.
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular, Structural and Translational Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Franca Zanardi
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy.
| |
Collapse
|
2
|
Pereira-Filho JL, Mendes AGG, Campos CDL, Moreira IV, Monteiro CRAV, Soczek SHDS, Fernandes ES, Carvalho RC, Monteiro-Neto V. A Comprehensive Review on the Antibacterial, Antifungal, Antiviral, and Antiparasitic Potential of Silybin. Antibiotics (Basel) 2024; 13:1091. [PMID: 39596784 PMCID: PMC11591437 DOI: 10.3390/antibiotics13111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Silybin, a flavonolignan extracted from the seeds of the plant species Silybum marianum (L.) Gaertn., has a variety of pharmacological activities, including antimicrobial activity against several microorganisms of clinical interest. This review analyzes the existing studies on silybin's antimicrobial activity and possible mechanisms of action. Silybin has been shown to inhibit the growth of Gram-positive and Gram-negative bacteria, as well as some fungi, viruses, and protozoa. In general, possible mechanisms of antimicrobial action include the inhibition of efflux pumps, prevention of biofilm formation, reduction of the expression of virulence factors, induction of apoptosis-like effects, and plasma membrane damage, as well as the inhibition of nucleic acid and protein synthesis. Silybin has been shown to have synergistic effects when combined with conventional antibiotics against both drug-sensitive and drug-resistant microorganisms. However, the low bioavailability observed for this flavonolignan has been a challenge to its clinical use. In this context, nanotechnology has been used to increase silybin's bioavailability while enhancing its antimicrobial activity. Furthermore, certain structural modifications have been able to enhance its antimicrobial activity in comparison to that of the natural molecule. Overall, this review provides insights into the scientific understanding of the mechanism of action of silybin and its desired properties for the effective treatment of infections.
Collapse
Affiliation(s)
- José Lima Pereira-Filho
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Amanda Graziela Gonçalves Mendes
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Carmem Duarte Lima Campos
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Israel Viegas Moreira
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Cinara Regina Aragão Vieira Monteiro
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Suzany Hellen da Silva Soczek
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.d.S.S.); (E.S.F.)
- Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.d.S.S.); (E.S.F.)
- Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Rafael Cardoso Carvalho
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| | - Valério Monteiro-Neto
- Centro de Ciências da Saúde, Universidade Federal do Maranhão—UFMA, São Luís 65080-805, MA, Brazil; (J.L.P.-F.); (A.G.G.M.); (C.D.L.C.); (I.V.M.); (C.R.A.V.M.); (R.C.C.)
| |
Collapse
|
3
|
Soliman SSM, Hamoda AM, Nayak Y, Mostafa A, Hamdy R. Novel compounds with dual inhibition activity against SARS-CoV-2 critical enzymes RdRp and human TMPRSS2. Eur J Med Chem 2024; 276:116671. [PMID: 39004019 DOI: 10.1016/j.ejmech.2024.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
COVID-19 caused major worldwide problems. The spread of variants and limited treatment encouraged the design of novel anti-SARS-CoV-2 compounds. A series of compounds RH1-23 were designed to dually target RNA-dependent RNA polymerase (RdRp) and transmembrane serine protease 2 (TMPRSS2). Compared to remdesivir, in vitro screening indicated the highest selectivity and potent activity of RH11-13 with half maximum inhibitory concentration (IC50) 3.9, 5.7, and 19.72 nM, respectively. RH11-12 showed superior inhibition activity against TMPRSS2 and RdRP with IC50 (1.7 and 4.2), and (6.1 and 4.42) nM, respectively. WaterMap analysis and molecular dynamics studies demonstrated the superior enzyme binding activity of RH11 and RH12. On Vero-E6 cells, RH11 and RH12 significantly inhibited the viral replication with 66 % and 63.2 %, and viral adsorption with 44 % and 65 %, alongside virucidal effect with 51.40 % and 90.5 %, respectively. Furthermore, the potent activity of RH12 was tested on TMPRSS2-expressing cells (Calu-3) compared to camostat. RH12 exhibited selectivity index (26.05) similar to camostat (28.01) and comparable to its SI on Vero-E6 cells (22.6). RH12 demonstrated also a significant inhibition of the viral adsorption on Calu-3 cells with 60 % inhibition at 30 nM. The designed compounds exhibited good physiochemical properties. These findings indicate a broad-spectrum antiviral efficacy of the designed compounds, particularly RH12, with a promise for further development.
Collapse
Affiliation(s)
- Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt; Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, 78227, United States
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
4
|
Zhang R, Yan H, Zhou J, Yan G, Liu X, Shang C, Chen Y. Improved fluorescence-based assay for rapid screening and evaluation of SARS-CoV-2 main protease inhibitors. J Med Virol 2024; 96:e29498. [PMID: 38436148 DOI: 10.1002/jmv.29498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health. In parallel with vaccines, efficacious antivirals are urgently needed. SARS-CoV-2 main protease (Mpro) is an attractive drug target for antiviral development owing to its key roles in virus replication and host immune evasion. Due to the limitations of currently available methods, the development of novel high-throughput screening assays is of the highest importance for the discovery of Mpro inhibitors. In this study, we first developed an improved fluorescence-based assay for rapid screening of Mpro inhibitors from an anti-infection compound library using a versatile dimerization-dependent red fluorescent protein (ddRFP) biosensor. Utilizing this assay, we identified MG-101 as a competitive Mpro inhibitor in vitro. Moreover, our results revealed that ensitrelvir is a potent Mpro inhibitor, but baicalein, chloroquine, ebselen, echinatin, and silibinin are not. Therefore, this robust ddRFP assay provides a faithful avenue for rapid screening and evaluation of Mpro inhibitors to fight against COVID-19.
Collapse
Affiliation(s)
- Rui Zhang
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Haohao Yan
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Jiahao Zhou
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Gangan Yan
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Xiaoping Liu
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yunyu Chen
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| |
Collapse
|
5
|
Zhou B, Chen D, Zhang T, Song C, Zhang X, Lin L, Huang J, Peng X, Liu Y, Wu G, Li J, Chen W. Recent advancements in the discovery of small-molecule non-nucleoside inhibitors targeting SARS-CoV-2 RdRp. Biomed Pharmacother 2024; 171:116180. [PMID: 38266622 DOI: 10.1016/j.biopha.2024.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 plays a pivotal role in the life cycle of the novel coronavirus and stands as a significant and promising target for anti-SARS-CoV-2 drugs. Non-nucleoside inhibitors (NNIs), as a category of compounds directed against SARS-CoV-2 RdRp, exhibit a unique and highly effective mechanism, effectively overcoming various factors contributing to drug resistance against nucleoside inhibitors (NIs). This review investigates various NNIs, including both natural and synthetic inhibitors, that closely interacting with the SARS-CoV-2 RdRp with valid evidences from in vitro and in silico studies.
Collapse
Affiliation(s)
- Bangdi Zhou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Dianming Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Tingyan Zhang
- School of Nusing, Gannan Medical University, Ganzhou 341000, PR China
| | - Chenggui Song
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Xianwu Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Leying Lin
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Jiuzhong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Yuanchang Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Gaorong Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Jingyuan Li
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Weiming Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
6
|
Rajak P, Ganguly A. In silico study unfolds inhibitory potential of epicatechin gallate against SARS-CoV-2 entry and replication within the host cell. MECHANOBIOLOGY IN MEDICINE 2023; 1:100015. [PMID: 40395636 PMCID: PMC12082139 DOI: 10.1016/j.mbm.2023.100015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 05/22/2025]
Abstract
Coronavirus disease-19 (COVID-19) is the ongoing pandemic affecting millions of people worldwide. Several vaccine candidates have been designed and developed for the causative virus, SARS-CoV-2. However high mutation rate in the viral genome and the emergence of new variants have challenged the effectiveness of these vaccines developed for previous strains. Hence, screening and identification of anti-SARS-CoV-2 agents having multi-target potency would be more impactful in the prevention of the disease. Epicatechin gallate (ECG) is a green tea polyphenol having various medicinal properties, including anti-oxidative and anti-inflammatory effects. However its role as anti-SARS-CoV-2 agent is not clear. Hence the present in silico study aims to investigate the binding potential of ECG with several proteins which are critical to SARS-CoV-2 entry and replication within the host cell. Molecular docking analyses have revealed that ECG could potentially block several amino acid residues of entry factors in host cells, spike protein, and many non-structural proteins through Hydrogen bonds and hydrophobic interactions. Such interactions with vital proteins could inhibit SARS-CoV-2 entry and its subsequent replication into the host. Therefore, ECG could be a potential therapeutic agent for the prevention of COVID-19. However, the findings of the present study demand further validation in animal models.
Collapse
Affiliation(s)
- Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
7
|
Rafiq A, Jabeen T, Aslam S, Ahmad M, Ashfaq UA, Mohsin NUA, Zaki MEA, Al-Hussain SA. A Comprehensive Update of Various Attempts by Medicinal Chemists to Combat COVID-19 through Natural Products. Molecules 2023; 28:4860. [PMID: 37375415 PMCID: PMC10305344 DOI: 10.3390/molecules28124860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The ongoing COVID-19 pandemic has resulted in a global panic because of its continual evolution and recurring spikes. This serious malignancy is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the outbreak, millions of people have been affected from December 2019 till now, which has led to a great surge in finding treatments. Despite trying to handle the pandemic with the repurposing of some drugs, such as chloroquine, hydroxychloroquine, remdesivir, lopinavir, ivermectin, etc., against COVID-19, the SARS-CoV-2 virus continues its out-of-control spread. There is a dire need to identify a new regimen of natural products to combat the deadly viral disease. This article deals with the literature reports to date of natural products showing inhibitory activity towards SARS-CoV-2 through different approaches, such as in vivo, in vitro, and in silico studies. Natural compounds targeting the proteins of SARS-CoV-2-the main protease (Mpro), papain-like protease (PLpro), spike proteins, RNA-dependent RNA polymerase (RdRp), endoribonuclease, exoribonuclease, helicase, nucleocapsid, methyltransferase, adeno diphosphate (ADP) phosphatase, other nonstructural proteins, and envelope proteins-were extracted mainly from plants, and some were isolated from bacteria, algae, fungi, and a few marine organisms.
Collapse
Affiliation(s)
- Ayesha Rafiq
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Tooba Jabeen
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Noor ul Amin Mohsin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
8
|
Gupta Y, Savytskyi OV, Coban M, Venugopal A, Pleqi V, Weber CA, Chitale R, Durvasula R, Hopkins C, Kempaiah P, Caulfield TR. Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Mol Aspects Med 2023; 91:101151. [PMID: 36371228 PMCID: PMC9613808 DOI: 10.1016/j.mam.2022.101151] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the first documented pandemic due to a coronavirus that continues to be a major health challenge. Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives for technology development and redefined public health needs and research agendas to fast-track innovations to be translated. Breakthroughs in computational biology peaked during the pandemic with renewed attention to making all cutting-edge technology deliver agents to combat the disease. The demand to develop effective treatments yielded surprising collaborations from previously segregated fields of science and technology. The long-standing pharmaceutical industry's aversion to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health crisis and pressures created by front-line researchers and providers. Effective vaccine development even at an unprecedented pace took more than a year to develop and commence trials. Now the emergence of variants and waning protections during the booster shots is resulting in breakthrough infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 has been structurally characterized and related host pathways have been extensively mapped out. The research community has addressed the druggability of a multitude of possible targets. This has been made possible due to existing technology for virtual computer-assisted drug development as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in this article, we are discussing advances in the drug discovery field related to target-based drug discovery and exploring the implications of known target-specific agents on COVID-19 therapeutic management. The current scenario calls for more personalized medicine efforts and stratifying patient populations early on for their need for different combinations of prognosis-specific therapeutics. We intend to highlight target hotspots and their potential agents, with the ultimate goal of using rational design of new therapeutics to not only end this pandemic but also uncover a generalizable platform for use in future pandemics.
Collapse
Affiliation(s)
- Yash Gupta
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Oleksandr V Savytskyi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; In Vivo Biosystems, Eugene, OR, USA
| | - Matt Coban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Vasili Pleqi
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Caleb A Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rohit Chitale
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA; The Council on Strategic Risks, 1025 Connecticut Ave NW, Washington, DC, USA
| | - Ravi Durvasula
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Prakasha Kempaiah
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of QHS Computational Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
9
|
Xu X, Chen Y, Lu X, Zhang W, Fang W, Yuan L, Wang X. An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges. Biochem Pharmacol 2022; 205:115279. [PMID: 36209840 PMCID: PMC9535928 DOI: 10.1016/j.bcp.2022.115279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 01/18/2023]
Abstract
The highly transmissible variants of SARS-CoV-2, the causative pathogen of the COVID-19 pandemic, bring new waves of infection worldwide. Identification of effective therapeutic drugs to combat the COVID-19 pandemic is an urgent global need. RNA-dependent RNA polymerase (RdRp), an essential enzyme for viral RNA replication, is the most promising target for antiviral drug research since it has no counterpart in human cells and shows the highest conservation across coronaviruses. This review summarizes recent progress in studies of RdRp inhibitors, focusing on interactions between these inhibitors and the enzyme complex, based on structural analysis, and their effectiveness. In addition, we propose new possible strategies to address the shortcomings of current inhibitors, which may guide the development of novel efficient inhibitors to combat COVID-19.
Collapse
Affiliation(s)
- Xiaoying Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yuheng Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinyu Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Wanlin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Wenxiu Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Luping Yuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xiaoyan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| |
Collapse
|
10
|
Musazadeh V, Karimi A, Bagheri N, Jafarzadeh J, Sanaie S, Vajdi M, Karimi M, Niazkar HR. The favorable impacts of silibinin polyphenols as adjunctive therapy in reducing the complications of COVID-19: A review of research evidence and underlying mechanisms. Biomed Pharmacother 2022; 154:113593. [PMID: 36027611 PMCID: PMC9393179 DOI: 10.1016/j.biopha.2022.113593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/11/2022] Open
Abstract
The proceeding pandemic of coronavirus disease 2019 is the latest global challenge. Like most other infectious diseases, inflammation, oxidative stress, and immune system dysfunctions play a pivotal role in the pathogenesis of COVID-19. Furthermore, the quest of finding a potential pharmaceutical therapy for preventing and treating COVID-19 is still ongoing. Silymarin, a mixture of flavonolignans extracted from the milk thistle, has exhibited numerous therapeutic benefits. We reviewed the beneficial effects of silymarin on oxidative stress, inflammation, and the immune system, as primary factors involved in the pathogenesis of COVID-19. We searched PubMed/Medline, Web of Science, Scopus, and Science Direct databases up to April 2022 using the relevant keywords. In summary, the current review indicates that silymarin might exert therapeutic effects against COVID-19 by improving the antioxidant system, attenuating inflammatory response and respiratory distress, and enhancing immune system function. Silymarin can also bind to target proteins of SARS-CoV-2, including main protease, spike glycoprotein, and RNA-dependent RNA-polymerase, leading to the inhibition of viral replication. Although multiple lines of evidence suggest the possible promising impacts of silymarin in COVID-19, further clinical trials are encouraged.
Collapse
Affiliation(s)
- Vali Musazadeh
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasim Bagheri
- Department of microbiology Islamic Azad University of medical science, Tehran, Iran
| | - Jaber Jafarzadeh
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Vajdi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mozhde Karimi
- Department of Immunology, Faculty ofMedical Sciences ,Tarbiat Modares University
| | - Hamid Reza Niazkar
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|