1
|
Borda MG, Ramírez-Vélez R, Botero-Rodriguez F, Patricio-Baldera J, de Lucia C, Pola I, Barreto GE, Khalifa K, Bergland AK, Kivipelto M, Cederholm T, Zetterberg H, Ashton NJ, Ballard C, Siow R, Aarsland D. Anthocyanin supplementation in adults at risk for dementia: a randomized controlled trial on its cardiometabolic and anti-inflammatory biomarker effects. GeroScience 2025:10.1007/s11357-025-01669-8. [PMID: 40314845 DOI: 10.1007/s11357-025-01669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/15/2025] [Indexed: 05/03/2025] Open
Abstract
Anthocyanins are dietary flavonoids shown to have a therapeutic capacity to mitigate inflammation and oxidative stress. The present secondary analyses from the "Anthocyanins in People at Risk for Dementia Study" were aimed at (I) determining the intervention's effect on blood-based markers of cardiovascular disease and inflammation and (II) evaluating whether baseline factors such as age, sex, inflammation, or cardiometabolic score may moderate the intervention's effect on inflammatory status. This study was an ancillary, 24-week randomized, double-blind, placebo-controlled Phase II trial. Sub-sample participants (n = 99), aged 60-80 years with mild cognitive impairment or cardiometabolic disorders, were randomized to receive either 320 mg/day of anthocyanins or placebo. The biomarkers analyzed included inflammatory biomarker assessment (IL - 6, IL - 8, IL - 10, IL - 1b, TNF - α, IFN - γ), and C-reactive protein (CRP), as well as albumin, thrombocytes, cholesterol, LDL, HDL, and triglycerides, which were longitudinally compared between both groups. Baseline characteristics were balanced between the groups. ANCOVA analyses reveal 24-week differences favoring the anthocyanin treatment in LDL cholesterol levels (ƞp2 = 0.078; p = 0.015), cardiometabolic score (ƞp2 = 0.073; p = 0.021), CRP levels (ƞp2 = 0.417; p = 0.0001), IL - 6 (ƞp2 = 0.085; p = 0.015), IL - 1b (ƞp2 = 0.058; p = 0.037), and Inflam z-score 5 (ƞp2 = 0.059, p = 0.004). Moderation analysis demonstrated that the inflammatory score at baseline was a significant predictor of the effect of the intervention on the CRP levels. Anthocyanin supplementation reduces CRP and cardiovascular disease biomarkers in individuals at risk of dementia, especially when there is increased inflammation at baseline. ClinicalTrials.gov study identifier: NCT03419039.
Collapse
Affiliation(s)
- Miguel German Borda
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Helse Stavanger HF, Postboks 8100, 4068, Stavanger, Norway.
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.
- Centro de Investigación en Ciencias de La Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan Edo. de México, México.
| | - Robinson Ramírez-Vélez
- Navarrabiomed, IdiSNA, Hospital Universitario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Felipe Botero-Rodriguez
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Helse Stavanger HF, Postboks 8100, 4068, Stavanger, Norway
- SynaptIA - Inteligencia artificial para la investigación en salud mental, Bogotá, Colombia
- Centro de Memoria y Cognición Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Jonathan Patricio-Baldera
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Helse Stavanger HF, Postboks 8100, 4068, Stavanger, Norway
- Instituto de Investigación en Salud, Facultad de Ciencias de La Salud de La Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Chiara de Lucia
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Helse Stavanger HF, Postboks 8100, 4068, Stavanger, Norway
- Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Ilaria Pola
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Khadija Khalifa
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Helse Stavanger HF, Postboks 8100, 4068, Stavanger, Norway
| | - Anne Katrine Bergland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Helse Stavanger HF, Postboks 8100, 4068, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Cederholm
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, 62167, Uppsala, Sweden
- Theme Inflammation & Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK, Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas J Ashton
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Helse Stavanger HF, Postboks 8100, 4068, Stavanger, Norway
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Banner Alzheimer's Institute, University of Arizona, Phoenix, AZ, USA
| | - Clive Ballard
- Medical School, University of Exeter, University of Exeter, Exeter, UK
| | - Richard Siow
- Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Dag Aarsland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Helse Stavanger HF, Postboks 8100, 4068, Stavanger, Norway
- Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| |
Collapse
|
2
|
van Zyl E, Stead JDH, Peneycad C, Yauk CL, McKay BC. Activating transcription factor 4 plays a major role in shaping the transcriptional response to isoginkgetin in HCT116 cells. Sci Rep 2024; 14:22938. [PMID: 39358540 PMCID: PMC11447041 DOI: 10.1038/s41598-024-74391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Activating transcription factor 4 (ATF4) plays a central role in the integrated stress response (ISR) and one overlapping branch of the unfolded protein response (UPR). We recently reported that the splicing inhibitor isoginkgetin (IGG) induced ATF4 protein along with several known ATF4-regulated transcripts in a response that resembled the ISR and UPR. However, the contribution of ATF4-dependent and -independent transcriptional responses to IGG exposure was not known. Here we used RNA-sequencing in HCT116 colon cancer cells and an isogenic subline lacking ATF4 to investigate the contribution of ATF4 to IGG-induced changes in gene expression. Approximately 85% of the IGG-responsive DEGs in HCT116 cells were also differentially expressed in response to the ER stressor thapsigargin (Tg) and these were enriched for genes associated with the UPR and ISR. Most of these were positively regulated by IGG with impaired responses in the ATF4-deficient cells. Nonetheless, there were DEGs that responded similarly in both cell lines. The ATF4-independent IGG-induced DEGs included several metal responsive transcripts encoding metallothionines and a zinc transporter. Taken together, the predominant IGG response was ATF4-dependent in these cells and resembled the UPR and ISR while a second less prominent response involved the ATF4-independent regulation of metal responsive mRNAs.
Collapse
Affiliation(s)
- Erin van Zyl
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - John D H Stead
- Department of Neuroscience, Carleton University, Ottawa, On, Canada
| | - Claire Peneycad
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Bruce C McKay
- Department of Biology, Carleton University, Ottawa, ON, Canada.
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Rad EY, Saboori S, Tammam J, Thondre PS, Coe S. The effect of niacin on inflammatory markers and adipokines: a systematic review and meta-analysis of interventional studies. Eur J Nutr 2024; 63:2011-2024. [PMID: 38761279 PMCID: PMC11377601 DOI: 10.1007/s00394-024-03425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE Niacin (nicotinic acid), known for its lipid-modifying effects, has been explored for its potential anti-inflammatory properties and potential to affect adipokines secretion from adipose tissue. The aim of this systematic review and meta-analysis was to assess the effects of niacin on inflammatory markers and adipokines. METHODS A comprehensive search was conducted across five databases: PubMed, Scopus, Cochrane Library, Embase, and ISI Web of Science. Randomized controlled trials exploring the effects of niacin on inflammatory markers (CRP, IL-6, TNF-α) and adipokines (Adiponectin, Leptin) were included. Pooled effect sizes were analysed using a random-effects model, and additional procedures including subgroup analyses, sensitivity analysis and dose-response analysis were also performed. RESULTS From an initial 1279 articles, fifteen randomized controlled trials (RCTs) were included. Niacin administration demonstrated a notable reduction in CRP levels (SMD: -0.88, 95% CI: -1.46 to -0.30, p = 0.003). Subgroup analyses confirmed CRP reductions in trials with intervention durations ≤ 24 weeks, doses ≤ 1000 mg/day, and elevated baseline CRP levels (> 3 mg/l). The meta-analysis of IL-6 and TNF-α revealed significant TNF-α reductions, while IL-6 reduction did not reach statistical significance. Niacin administration also substantially elevated Adiponectin (SMD: 3.52, 95% CI: 0.95 to 6.1, p = 0.007) and Leptin (SMD: 1.90, 95% CI: 0.03 to 3.77, p = 0.04) levels. CONCLUSION Niacin treatment is associated with significant reductions in CRP and TNF-α levels, suggesting potential anti-inflammatory effects. Additionally, niacin positively influences adipokines, increasing Adiponectin and Leptin levels. These findings provide insights for future research and clinical applications targeting inflammation and metabolic dysregulation.
Collapse
Affiliation(s)
- Esmaeil Yousefi Rad
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford, OX3 0BP, UK
| | - Somayeh Saboori
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford, OX3 0BP, UK
| | - Jonathan Tammam
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford, OX3 0BP, UK
| | - Pariyarath Sangeetha Thondre
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford, OX3 0BP, UK
| | - Shelly Coe
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford, OX3 0BP, UK.
| |
Collapse
|
4
|
Mousavi SN, Nouri M, Yousefi Rad E, Kazemi R, Birjandi M, Coe S, Saboori S. Association between dietary phytochemical index and risk of benign prostatic hyperplasia: a case-control study. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:35. [PMID: 38429831 PMCID: PMC10905850 DOI: 10.1186/s41043-024-00531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Dietary intake of phytochemicals has been associated with a reduced risk of chronic diseases, but research on their relationship with benign prostatic hyperplasia (BPH) is limited. This case-control study aimed to investigate the association between a Dietary Phytochemical Index (DPI) and BPH risk in a Middle-Eastern population. METHODS The study recruited 112 BPH patients and 112 age-matched healthy controls (40-75 years) from Al-Zahra Hospital Clinic in Isfahan, Iran between 2021 and 2022. Dietary intake was assessed using a validated food-frequency questionnaire, and DPI was calculated as the ratio of energy intake from phytochemical-rich foods to total daily energy intake. Logistic regression analysis was performed, adjusting for potential confounders. RESULTS In the crude model, participants in the highest DPI tertile had a 70% lower odds of BPH compared to those in the lowest tertile (OR:0.3, 95% CI 0.15-0.61, P-trend = 0.001). After adjusting for confounders, this inverse association remained significant (OR:0.23, 95% CI 0.15-0.63, P-trend = 0.001). Participants with higher DPI consumed more whole grains (p = 0.02), nuts (p < 0.001), legumes (p = 0.02), fruits (p < 0.001), vegetables (p < 0.001), olives and oilve products (p = 0.02), and tomato and its products (p < 0.001) in their diet compared to the lowest tertile. However, red meat (p = 0.03) and refined grains (p < 0.001) were consumed in higher amounts in the lowest tertile compared to the highest DPI tertile. CONCLUSIONS This study demonstrates a protective association between DPI and BPH risk in the Middle-Eastern population. Encouraging higher intake of phytochemical-rich foods may help reduce the risk of BPH, highlighting the relevance of nutritional science in promoting prostate health.
Collapse
Affiliation(s)
- Seyedeh Neda Mousavi
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Nouri
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esmaeil Yousefi Rad
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Reza Kazemi
- Department of Urology, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Birjandi
- Nutritional Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shelly Coe
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Somayeh Saboori
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
- Nutritional Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
5
|
Mueller JK, Müller WE. Multi-target drugs for the treatment of cognitive impairment and fatigue in post-COVID syndrome: focus on Ginkgo biloba and Rhodiola rosea. J Neural Transm (Vienna) 2024; 131:203-212. [PMID: 38347175 PMCID: PMC10874325 DOI: 10.1007/s00702-024-02749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/20/2024] [Indexed: 02/18/2024]
Abstract
Cognitive impairment, depression and (mental) fatigue represent the most frequent neuropsychiatric symptoms of the post-COVID syndrome. Neuroinflammation, oxidative stress and mitochondrial dysfunction have been identified as common pathophysiological mechanisms underlying these symptoms. Attempts to treat post-COVID-associated cognitive impairment and fatigue with different drugs available for other diseases have not yet been successful. One probable explanation could be that these drugs work by one specific mechanism of action only and not in a broad multi-target way. Therefore, they will not address the broad pathophysiological spectrum possibly responsible for cognitive impairment, depression and fatigue in post-COVID syndrome. Notably, nearly all drugs currently under investigation for fatigue in post-COVID syndrome are rather addressing one single target instead of the several pathomechanisms underlying this condition. Contrary to this approach, herbal drugs often consist of many different ingredients with different pharmacological properties and pharmacological targets. Therefore, these drugs might be a promising approach for the treatment of the broad symptomatic presentation and the pathophysiological mechanisms of cognitive impairment and fatigue following a SARS-CoV-2 infection. Of these herbal drugs, extracts of Ginkgo biloba and Rhodiola rosea probably are the best investigated candidates. Their broad pharmacological spectrum in vitro and in vivo includes anti-oxidative, anti-inflammatory, antidepressant as well as properties reducing cognitive impairment and fatigue. In several studies, both drugs showed positive effects on physical and mental fatigue and impaired cognition. Moreover, depressive symptoms were also reduced in some studies. However, even if these results are promising, the data are still preliminary and require additional proof by further studies.
Collapse
Affiliation(s)
- Juliane K Mueller
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Frankfurt/M, Germany
| | - Walter E Müller
- Department of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt/M, Germany.
| |
Collapse
|
6
|
Ni Q, Zhu T, Wang W, Guo D, Li Y, Chen T, Zhang X. Green Synthesis of Narrow-Size Silver Nanoparticles Using Ginkgo biloba Leaves: Condition Optimization, Characterization, and Antibacterial and Cytotoxic Activities. Int J Mol Sci 2024; 25:1913. [PMID: 38339192 PMCID: PMC10856183 DOI: 10.3390/ijms25031913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Natural products derived from medicinal plants offer convenience and therapeutic potential and have inspired the development of antimicrobial agents. Thus, it is worth exploring the combination of nanotechnology and natural products. In this study, silver nanoparticles (AgNPs) were synthesized from the leaf extract of Ginkgo biloba (Gb), having abundant flavonoid compounds. The reaction conditions and the colloidal stability were assessed using ultraviolet-visible spectroscopy. X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to characterize the AgNPs. AgNPs exhibited a spherical morphology, uniform dispersion, and diameter ranging from ~8 to 9 nm. The FTIR data indicated that phytoconstituents, such as polyphenols, flavonoids, and terpenoids, could potentially serve as reducing and capping agents. The antibacterial activity of the synthesized AgNPs was assessed using broth dilution and agar well diffusion assays. The results demonstrate antibacterial effects against both Gram-positive and Gram-negative strains at low AgNP concentrations. The cytotoxicity of AgNPs was examined in vitro using the CCK-8 method, which showed that low concentrations of AgNPs are noncytotoxic to normal cells and promote cell growth. In conclusion, an environmentally friendly approach for synthesizing AgNPs from Gb leaves yielded antibacterial AgNPs with minimal toxicity, holding promise for future applications in the field of biomedicine.
Collapse
Affiliation(s)
- Qi Ni
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Ting Zhu
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Wenjie Wang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Dongdong Guo
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Yixiao Li
- School of Medicine, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| | - Tianyu Chen
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Xiaojun Zhang
- School of Medicine, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| |
Collapse
|
7
|
Morató X, Tartari JP, Pytel V, Boada M. Pharmacodynamic and Clinical Effects of Ginkgo Biloba Extract EGb 761 and Its Phytochemical Components in Alzheimer's Disease. J Alzheimers Dis 2024; 101:S285-S298. [PMID: 39422946 DOI: 10.3233/jad-231372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Extracts made from plants are complex mixtures of substances with varying compositions depending on the plant material and method of manufacture. This complexity makes it difficult for scientists and clinicians to interpret findings from pharmacological and clinical research. We performed a narrative review summarizing information on ginkgo biloba leaf extract, its composition, pharmacological data and clinical evidence supporting its administration for the treatment of Alzheimer's disease (AD). Medicinal products containing ginkgo biloba leaf extract which are manufactured in compliance with the requirements of the European Pharmacopoeia are approved as medicinal products for the treatment of dementia and related conditions by drug regulatory agencies in Europe, Asia and South America. As multicomponent mixtures, they may affect various targets in the pathogenesis of AD, the most common form of dementia. Pharmacodynamic studies demonstrate the effects of EGb 761 and individual constituents on various pathophysiological features of experimentally induced cognitive impairment and neurodegeneration that could contribute to its clinical efficacy. The safety and efficacy in the treatment of AD and cognitive decline has been studied in randomized, placebo-controlled clinical trials. Most of the studies that investigate the effects of ginkgo biloba extract (GbE) used the special extract EGb 761, which makes it the best-researched plant preparation worldwide. It is therefore the only herbal alternative to standard-of-care anti-dementia drugs. However, the mechanism of action has not been fully elucidated yet, and the clinical studies in AD show heterogeneity.
Collapse
Affiliation(s)
- Xavier Morató
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Speeckaert R, Bulat V, Speeckaert MM, van Geel N. The Impact of Antioxidants on Vitiligo and Melasma: A Scoping Review and Meta-Analysis. Antioxidants (Basel) 2023; 12:2082. [PMID: 38136202 PMCID: PMC10740621 DOI: 10.3390/antiox12122082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Reactive oxygen species (ROS) generated during melanogenesis make melanocytes particularly vulnerable to oxidative stress, influencing their survival and melanin synthesis. Oxidative stress, significantly present in vitiligo and recently also detected in melasma, triggers inflammatory cascades and melanogenesis, making antioxidants a promising therapeutic avenue. A systematic search was conducted on Embase and Pubmed to study the efficacy of antioxidants for treating vitiligo and/or melasma. Meta-analysis was performed to assess the difference in Melasma Severity Index (MASI) scores between baseline and follow-up. Various antioxidants like polypodium leucotomos, ginkgo biloba, catalase/superoxide dismutase, and vitamin E have potential in vitiligo. For melasma, vitamin C, silymarin, and niacinamide were among those showing promise in reducing pigmentation, with vitamin C displaying significant effects in meta-analysis. Different antioxidants improve both vitiligo and melasma, with an increased minimal erythema dose (MED) following UV exposure being significant for vitiligo and tyrosinase inhibition being crucial for melasma. However, the efficacy of individual antioxidants varies, and their exact mechanisms, especially in stimulating melanocyte proliferation and anti-inflammatory pathways, require further investigation to understand better and optimize their use.
Collapse
Affiliation(s)
- Reinhart Speeckaert
- Department of Dermatology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Vedrana Bulat
- Department of Dermatology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | | | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Ao L, Chen Z, Yin J, Leng Y, Luo Y, Fu X, Liu H, Liu X, Gao H, Xie C. Chinese herbal medicine and active ingredients for diabetic cardiomyopathy: molecular mechanisms regulating endoplasmic reticulum stress. Front Pharmacol 2023; 14:1290023. [PMID: 38027018 PMCID: PMC10661377 DOI: 10.3389/fphar.2023.1290023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is one of the serious microvascular complications of diabetes mellitus. It is often associated with clinical manifestations such as arrhythmias and heart failure, and significantly reduces the quality of life and years of survival of patients. Endoplasmic reticulum stress (ERS) is the removal of unfolded and misfolded proteins and is an important mechanism for the maintenance of cellular homeostasis. ERS plays an important role in the pathogenesis of DCM by causing cardiomyocyte apoptosis, insulin resistance, calcium imbalance, myocardial hypertrophy and fibrosis. Targeting ERS is a new direction in the treatment of DCM. A large number of studies have shown that Chinese herbal medicine and active ingredients can significantly improve the clinical outcome of DCM patients through intervention in ERS and effects on myocardial structure and function, which has become one of the hot research directions. Purpose: The aim of this review is to elucidate and summarize the roles and mechanisms of Chinese herbal medicine and active ingredients that have the potential to modulate endoplasmic reticulum stress, thereby contributing to better management of DCM. Methods: Databases such as PubMed, Web of Science, China National Knowledge Internet, and Wanfang Data Knowledge Service Platform were used to search, analyze, and collect literature, in order to review the mechanisms by which phytochemicals inhibit the progression of DCM by targeting the ERS and its key signaling pathways. Keywords used included "diabetic cardiomyopathy" and "endoplasmic reticulum stress." Results: This review found that Chinese herbs and their active ingredients can regulate ERS through IRE1, ATF6, and PERK pathways to reduce cardiomyocyte apoptosis, ameliorate myocardial fibrosis, and attenuate myocardial hypertrophy for the treatment of DCM. Conclusion: A comprehensive source of information on potential ERS inhibitors is provided in this review. The analysis of the literature suggests that Chinese herbal medicine and its active ingredients can be used as potential drug candidates for the treatment of DCM. In short, we cannot ignore the role of traditional Chinese medicine in regulating ERS and treating DCM, and look forward to more research and new drugs to come.
Collapse
Affiliation(s)
- Lianjun Ao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengtao Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jiacheng Yin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yulin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoke Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Chen C, Lv H, Shan L, Long X, Guo C, Huo Y, Lu L, Zhou Y, Liu M, Wu H, Zhu D, Han Y. Antiplatelet effect of ginkgo diterpene lactone meglumine injection in acute ischemic stroke: A randomized, double-blind, placebo-controlled clinical trial. Phytother Res 2023; 37:1986-1996. [PMID: 36609866 DOI: 10.1002/ptr.7720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/01/2022] [Accepted: 12/18/2022] [Indexed: 01/08/2023]
Abstract
This study was designed to evaluate antiplatelet effect and therapeutic effect of ginkgo diterpene lactone meglumine injection (GDLI) in acute ischemic stroke (AIS) patients. In this randomized, double-blind, placebo-controlled trial, we randomly assigned 70 inpatients within 48 hr after the onset of AIS to combination therapy with GDLI and aspirin (GDLI at a dose of 25 mg/d for 14 days plus aspirin at a dose of 100 mg/d for 90 days) or to placebo plus aspirin in a ratio of 1:1. Platelet function, the National Institute of Health Stroke Scale (NIHSS), and the modified Rankin Scale (mRS) were evaluated. A good outcome was defined as NIHSS scores decrease ≥5 or mRS scores decrease ≥2. Results showed that arachidonic acid induced maximum platelet aggregation rate (AA-MAR) and mean platelet volume (MPV) of the GDLI-aspirin group were much lower than that of the aspirin group (p = 0.013 and p = 0.034, respectively) after the 14-day therapy. The combination of GDLI and aspirin was superior to aspirin alone, and had significant impact on the good outcome at day 90 (ORadj 7.21 [95%CI, 1.03-50.68], p = 0.047). In summary, GDLI has antiplatelet effect and can improve the prognosis of AIS patients.
Collapse
Affiliation(s)
- Chunxiang Chen
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huihui Lv
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Shan
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xie Long
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yajing Huo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingdan Lu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinting Zhou
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haibo Wu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Desheng Zhu
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Le V, Sukhikh A, Larichev T, Ivanova S, Prosekov A, Dmitrieva A. Isolation of the Main Biologically Active Substances and Phytochemical Analysis of Ginkgo biloba Callus Culture Extracts. Molecules 2023; 28:1560. [PMID: 36838548 PMCID: PMC9966355 DOI: 10.3390/molecules28041560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The work reveals the results of studying the content of biologically active substances in samples of extracts of Ginkgo biloba callus cultures. Callus cultures grown in vitro on liquid nutrient media were the objects of the study. Considering various factors affecting the yield of the target components during extraction, the volume fraction of the organic modifier in the extracting mixture, the temperature factor, and the exposure time were identified as the main ones. The maximum yield of extractive substances (target biologically active substances with a degree of extraction of at least 50%) from the samples of callus culture extracts was detected at a ratio of extragent of 70% ethanol, a temperature of 50 °C, and exposure time of 6 h. Flavonoids, such as luteolin, quercetin, isoramentin, kaempferol, and amentoflavone, were isolated in the extract samples. As a result of column chromatography, fractions of individual biologically active substances (bilobalide, ginkgolide A, B, and C) were determined. The proposed schemes are focused on preserving the nativity while ensuring maximum purification from associated (ballast) components. Sorbents (Sephadex LH-20, poly-amide, silica gel) were used in successive stages of chromatography with rechromatography. The degree of purity of individually isolated substances was at least 95%.
Collapse
Affiliation(s)
- Violeta Le
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Kemerovo 650043, Russia
| | - Andrey Sukhikh
- Laboratory of Physico-Chemical Studies of Pharmacologically Active and Natural Compounds, Kemerovo State University, Kemerovo 650043, Russia
| | - Timothy Larichev
- Department of Fundamental and Applied Chemistry, Kemerovo State University, Kemerovo 650043, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Kemerovo 650043, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Kemerovo 650043, Russia
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Kemerovo 650043, Russia
| | - Anastasia Dmitrieva
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Kemerovo 650043, Russia
| |
Collapse
|
12
|
Liao M, Wang F, Huang L, Liu C, Dong W, Zhuang X, Yin X, Liu Y, Wang W. Effects of dietary Ginkgo biloba leaf extract on growth performance, immunity and environmental stress tolerance of Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108500. [PMID: 36572268 DOI: 10.1016/j.fsi.2022.108500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Ginkgo biloba leaf extract (GBE) has been extensively used in the treatment of diseases due to its anti-inflammatory, antioxidant, and immunomodulatory effects. In aquaculture, GBE is widely used as a feed additive, which is important to enhance the immunity of aquatic animals. The current study evaluated the effects of adding GBE to the diet of Penaeus vannamei (P. vannamei) under intensive aquaculture. The GBE0 (control group), GBE1, GBE2, and GBE4 groups were fed a commercial feed supplemented with 0.0, 1.0, 2.0, and 4.0 g/kg GBE for 21 days, respectively. The results showed that dietary GBE could alleviate hepatopancreas tissue damage and improve the survival rate of shrimp, and dietary 2 g/kg GBE could significantly increase the total hemocyte count (THC), the hemocyanin content, the antioxidant gene's expression, and the activity of their encoded enzymes in P. vannamei. Furthermore, transcriptome data revealed that immunity-related genes were upregulated in the GBE2 group compared with the GBE0 group after 21 days of culture. Drug metabolism-cytochrome P450, sphingolipid metabolism, linoleic acid metabolism, glycerolipid metabolism, fat digestion and protein digestion and absorption pathways were significantly enriched, according to KEGG results. Surprisingly, all of the above KEGG-enriched pathways were significantly upregulated. These findings demonstrated that supplementing P. vannamei with 2 g/kg GBE improved its environmental adaptability by improving immunity, lipid metabolism, and detoxification. In this study, a comprehensive evaluation of the effects of dietary GBE on the intensive aquaculture of P. vannamei was conducted to provide a reference for the healthy culture of P. vannamei.
Collapse
Affiliation(s)
- Meiqiu Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Feifei Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Lin Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Can Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wenna Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xueqi Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xiaoli Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
13
|
Kulić Ž, Lehner MD, Dietz GPH. Ginkgo biloba leaf extract EGb 761 ® as a paragon of the product by process concept. Front Pharmacol 2022; 13:1007746. [PMID: 36304165 PMCID: PMC9593214 DOI: 10.3389/fphar.2022.1007746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
It is an often-neglected fact that extracts derived from the very same plant can differ significantly in their phytochemical composition, and thus also in their pharmacokinetic and pharmacodynamic properties which are the basis for their clinical efficacy and safety. The Ginkgo biloba L. [Ginkgoaceae] special extract EGb 761® is one of the best-studied plant extracts in the world. In the present review, using that extract as a paradigm, we describe insights how climate, the harvest region, processing of the plant material, the drying process, the extraction solvents, and the details of the subsequent process steps substantially impact the quality and uniformity of the final extract. We highlight the importance of regulating active constituent levels and consistent reduction of undesired substances in herbal extracts. This is accomplished by a controlled production process and corresponding analytical specifications. In conclusion, since extracts derived from the same plant can have very different phytochemical compositions, results from pharmacological, toxicological and clinical studies gained with one specific extract cannot be extrapolated to other extracts that were generated using different production processes. We propose that the heterogenous nature of extracts should be meticulously considered when evaluating the efficacy and safety of plant-derived remedies.
Collapse
Affiliation(s)
- Žarko Kulić
- Preclinical Research and Development, Dr. Willmar Schwabe GmbH and Co., KG, Karlsruhe, Germany
| | - Martin D. Lehner
- Preclinical Research and Development, Dr. Willmar Schwabe GmbH and Co., KG, Karlsruhe, Germany
| | - Gunnar P. H. Dietz
- Global Medical Affairs, Dr. Willmar Schwabe GmbH and Co., KG, Karlsruhe, Germany
- University Medical Center, Göttingen, Germany
| |
Collapse
|