1
|
Li X, Huang X, Song K, Liu J, Jin Y, Li T, Zhang L, Zhang H. Qingre Sanjie Formula alleviates atherosclerosis by promoting LXR-α/ABCG5/G8-mediated reverse cholesterol transport and bile acid synthesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156691. [PMID: 40286749 DOI: 10.1016/j.phymed.2025.156691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Atherosclerosis is the leading cause of cardiovascular disease-related morbidity and mortality. The traditional Chinese medicine Qingre Sanjie Formula (QRSJF), composed of Prunellae Spica, Sargassum, Fritillariae Thunbergii Bulbus, Leonuri Herba, and Forsythiae Fructus, has shown efficacy in treating cardiovascular diseases, although its mechanisms are unclear. PURPOSE This study aimed to explore the protective effects of QRSJF against atherosclerosis and the mechanisms involved. METHODS The composition of QRSJF was analyzed using Ultra Performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry. An 8-week high-fat diet (HFD)-induced atherosclerosis model was established in ApoE-/- mice. Following model induction, mice received 12 weeks of QRSJF treatment at high- and low doses (3.16 and 1.58 g drug/kg/day, respectively) via oral gavage, while simvastatin (2.6 mg/kg/day) as the positive control. Various techniques, including biochemical assays, vascular ultrasonography, histopathology, untargeted metabolomics, and molecular biology techniques were utilized to evaluate therapeutic effects. The underlying mechanism was investigated in vitro using free fatty acids -induced HepG2 cells. RESULTS Both low- and high-dose QRSJF effectively attenuated dyslipidemia and decreased serum inflammatory cytokine levels in HFD-fed ApoE-/- mice. In addition, QRSJF alleviated atherosclerotic plaque formation, reduced arterial narrowing, and enhanced plaque stability. Plasma and liver metabolomic analyses further identified that ABC (ATP binding cassette) subfamily transporters and bile acid metabolism as key pathways through which QRSJF ameliorates atherosclerosis. QRSJF also alleviated liver lipid accumulation and increased the expression of liver proteins, including scavenger receptor class B type 1, low-density lipoprotein receptor, ABC subfamily A member 1, cholesterol 7α-hydroxylase (CYP7A1), ABC transporter G5/G8 (ABCG5/G8), bile salt output pump, and liver X receptor alpha (LXR-α). In vitro, QRSJF activated LXR-α expression in HepG2 cells, thereby enhancing the expression of the downstream targets, CYP7A1 and ABCG5/8, and reducing free fatty acid-induced lipid accumulation. Notably, the beneficial effects of QRSJF were abrogated by the LXR-α inhibitor GSK2033. CONCLUSION QRSJF improves dyslipidemia and reduces atherosclerotic plaque in ApoE-/- mice by activating the LXR-α/ABCG5/G8 pathway. This facilitates cholesterol transport to the liver and promotes bile acid synthesis and cholesterol excretion into the bile and intestine, thereby exerting anti-atherosclerotic effects.
Collapse
Affiliation(s)
- Xiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianglong Huang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Keyan Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinjie Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ya Jin
- Department of Pharmacology, Xinjiang Second Medical College, Karamay 834000, China
| | - Tianxiang Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lishuang Zhang
- Tianjin Binhai New Area Hospital of Traditional Chinese Medicine, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300450, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Yu L, Wang X, Lei Q, Liu Y, Li Z, Dai X, Song Z, He Y, Gao S, Yu C, Li L. Tongmai Yangxin pill alleviates myocardial ischemia/reperfusion injury by regulating mitochondrial fusion and fission through the estrogen receptor alpha/peroxisome proliferator-activated receptor gamma coactivator-1 alpha signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119639. [PMID: 40096900 DOI: 10.1016/j.jep.2025.119639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Tongmai Yangxin Pill (TMYX) is derived from the Zhigancao decoction recorded in Treatise on Cold Damage Disorders (Shang Han Lun) by Zhang Zhongjing during the Han dynasty. The prescription of TMYX reflects a therapeutic rationale and efficacy unique to traditional Chinese medicine. TMYX is clinically effective in alleviating myocardial ischemia-reperfusion injury (MI/RI). However, the precise active ingredients and underlying mechanisms remain unclear. AIM OF THE STUDY The primary objective of this study was to investigate the potential of TMYX in addressing MI/RI by activating the estrogen receptor ERα. We hypothesized that this action upregulates PGC-1α activity, subsequently promoting a balanced regulation of mitochondrial fusion and fission. MATERIALS AND METHODS UPLC-Q-TOF-MS/MS was used to identify the active components of TMYX. Subsequently, a network pharmacology approach was used to uncover the therapeutic targets and underlying pharmacological mechanisms through which TMYX mitigates MI/RI. Lastly, the anticipated outcomes were confirmed through in vivo and in vitro experimental validations. RESULTS Using UPLC-Q-TOF-MS/MS, we successfully identified 53 distinct compounds in TMYX. Network pharmacology analysis revealed 20 key TMYX targets associated with MI/RI. Enrichment studies using GO and KEGG analyses revealed that these targets were mainly associated with mitochondrial processes and estrogen signaling pathways. Both in vivo and in vitro studies confirmed that TMYX markedly improved mitochondrial function through the ERα/PGC-1α signaling cascade, leading to a reduction in the size of myocardial infarctions and the incidence of apoptosis. Notably, combining TMYX with siERα abolished the protective effect of TMYX on the mitochondria. CONCLUSION TMYX therapy can improve cardiac function in MI/RI. This effect is likely mediated by the ERα/PGC-1α signaling pathway. However, given the complex multi-component composition of traditional Chinese medicine formulas, additional studies are necessary to confirm the findings of this research.
Collapse
Affiliation(s)
- Lu Yu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Xu Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Qina Lei
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Yutong Liu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Zhu Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Xiangdong Dai
- Pharmaron Beijing Co., Ltd. (China), BDA, 6 Taihe Road, Beijing, 100176, China
| | - Zhihui Song
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Yuanyuan He
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Shan Gao
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Chunquan Yu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
3
|
Gu X, Du L, Lin R, Ding Z, Guo Z, Wei J, Li Y. How Advanced Is Nanomedicine for Atherosclerosis? Int J Nanomedicine 2025; 20:3445-3470. [PMID: 40125442 PMCID: PMC11928726 DOI: 10.2147/ijn.s508757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Advances in nanotechnology have opened new avenues for precision therapy, personalized medicine, and multifunctional theranostics in atherosclerosis (AS). This review provides a comprehensive overview of the role of nanoparticles (NPs) in precision medicine for AS, discussing their applications, challenges, and future prospects. The review first analyzes the current treatment landscape of AS and outlines potential biological targets for therapy. Various nanocarriers, including organic, inorganic, and hybrid systems, are evaluated for their therapeutic potential, with a focus on targeted drug delivery, anti-inflammatory therapy, vascular repair, plaque stabilization, and lipid clearance. Additionally, the review explores NP preparation methods, emphasizing strategies to enhance drug loading, stability, and controlled release. Finally, the translational challenges of NP-based therapies, including biocompatibility, large-scale production, regulatory hurdles, and clinical implementation, are critically analyzed. Future directions highlight the importance of interdisciplinary collaboration and technological innovation in advancing nanoparticle-based precision medicine for AS.
Collapse
Affiliation(s)
- Xiang Gu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ruifang Lin
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zehui Ding
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhihua Guo
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jiaming Wei
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
4
|
Yang W. Early Detection and One-Year Follow-Up of Subclavian Steal Syndrome Treated With Traditional Chinese Medicine: A Case Report. Clin Case Rep 2025; 13:e70147. [PMID: 39868403 PMCID: PMC11761398 DOI: 10.1002/ccr3.70147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
Subclavian steal syndrome (SSS) often goes undiagnosed because of its variable and subtle symptoms, highlighting the need for innovative diagnostic approaches. This case report explores the integration of traditional Chinese medicine (TCM) in both diagnosing and managing SSS, marking a pioneering contribution to the field. An 80-year-old woman with persistent dizziness, unresponsive to conventional treatments, underwent TCM pulse diagnosis, which revealed significant inter-arm pulse discrepancies. Subsequent Western imaging confirmed SSS. The patient was treated with Chinese herbal medicines (CHMs) targeting Qi deficiency and blood stasis, resulting in significant symptom improvement and a reduction in inter-arm systolic blood pressure disparities. Follow-up over 1 year showed sustained benefits. The integration of TCM pulse diagnosis, CHMs, and Western imaging highlights their complementary roles and potential as adjunctive therapies for managing SSS, offering a novel and comprehensive therapeutic strategy.
Collapse
Affiliation(s)
- Wen‐Chieh Yang
- Department of Traditional Chinese MedicineTaipei Veterans General Hospital Hsinchu BranchHsinchuTaiwan
| |
Collapse
|
5
|
Huang X, Feng R, Hu Q, Mao X, Zhou H. Contamination Status and Health Risk Assessment of 73 Mycotoxins in Four Edible and Medicinal Plants Using an Optimized QuEChERS Pretreatment Coupled with LC-MS/MS. Toxins (Basel) 2025; 17:52. [PMID: 39998069 PMCID: PMC11860848 DOI: 10.3390/toxins17020052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
The current status of multi-mycotoxin contamination in edible and medicinal plants demands urgent development of high-throughput analytical methods for mycotoxin detection. In this study, a reliable and sensitive method for the simultaneous analysis of 73 mycotoxins was established and successfully applied to detect mycotoxins in 260 samples of four dual-purpose plants (lotus seed, coix seed, licorice root, and dried tangerine peel). Sample preparation involved optimized QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction combined with liquid-liquid extraction purification, and an enhanced ion pair library was established to reduce matrix interference and improve the method's universality. Method validation demonstrated recovery rates ranging from 61.6% to 118.6% for all compounds, with relative standard deviations (RSDs) below 15%. The limits of detection (LODs) and quantification (LOQs) ranged from 0.25-12.25 μg/kg and 0.5-25 μg/kg, respectively. Based on the contamination analysis and health risk assessment using Margin of Exposure (MOE) and Hazard Index (HI) methods, we found that multi-mycotoxin contamination is highly prevalent in edible and medicinal plants, with different components being susceptible to invasion by distinct fungal genera. Seed-type plants showed high susceptibility to Aspergillus (53.3%) and Fusarium (22.2%) contamination, with MOE values below 10,000 for aflatoxins indicating potential health risks. Physical state and good storage conditions significantly influenced contamination levels, with fragmented samples showing substantially higher mycotoxin levels. Additionally, mycotoxins with associated biosynthetic metabolic pathways were frequently detected simultaneously in highly contaminated samples. Based on these findings, we recommend implementing strict moisture control during storage, maintaining intact product form where possible, and establishing comprehensive supplier qualification systems. This study provides valuable reference for monitoring mycotoxin contamination in similar plants.
Collapse
Affiliation(s)
| | | | | | | | - Heng Zhou
- Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| |
Collapse
|
6
|
Chang X, Feng X, Li S, Wang J, Liu P, Wang Y. Taoren Honghua Decoction alleviates atherosclerosis by inducing autophagy and inhibiting the PI3K-AKT signaling pathway to regulate cholesterol efflux and inflammatory responses. Int Immunopharmacol 2025; 144:113629. [PMID: 39577223 DOI: 10.1016/j.intimp.2024.113629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Taoren Honghua Decoction (THD) is a traditional Chinese formula known for enhancing blood circulation and demonstrating clinical efficacy in the treatment of cardiovascular and cerebrovascular diseases. However, the primary active components and the underlying mechanisms by which THD exerts its therapeutic effects on atherosclerosis (AS) remain insufficiently characterized. OBJECTIVE This study aims to systematically validate the protective effects of THD on AS and elucidate its potential molecular mechanisms through an integrative approach involving network pharmacology, in vivo, and in vitro experiments. METHODS The main active ingredients and corresponding targets of all traditional Chinese medicines in THD were collected from the TCSMP and BATMAN-TCM databases. Potential targets of AS were identified using the OMIM, DrugBank, DisGeNET, and CTD databases, and AS microarray gene data were obtained from the GEO database. A drug active ingredient-target relationship network and a PPI network were constructed using Cytoscape 3.9.2 software. The molecular functions of the core targets were annotated through GO and KEGG enrichment analyses to further elucidate the potential molecular mechanisms of THD's anti-AS effects. The ApoE-/-mouse AS model was constructed through a high-fat diet (HFD), and RAW264.7 macrophage model was induced with ox-LDL to further validate the results of network pharmacology. RESULTS Network pharmacology analysis revealed that the main five active ingredients of THD include quercetin, apigenin, luteolin, kaempferol, and tanshinone IIA. Subsequently, by analyzing the intersection genes of the main active ingredient targets of THD and the AS targets, a total of ten core targets were identified: TP53, PPARG, JUN, AKT1, INS, IL6, SIRT1, TNF, ESR1, and STAT3. These are considered the core targets of THD in the treatment of AS. The GO and KEGG enrichment analysis results indicate that THD may exert anti-AS effects by regulating lipid metabolism and the PI3K-AKT signaling pathway. In vivo and in vitro experiments showed that THD reduced circulating lipid levels, decreased intraplaque lipid accumulation, and increased intraplaque collagen fiber content in HFD-induced ApoE-/- mice. Additionally, THD reduced ox-LDL-induced macrophage-derived foam cell formation, inhibited the expression of inflammatory factors IL-6 and TNF-α, and promoted the expression of cholesterol efflux regulatory proteins PPARγ, ABCA1, and ABCG1. Notably, the autophagy inhibitor 3-MA reversed these effects, confirming that THD's action involves autophagy activation, evidenced by increased LC3II/I and decreased p62 levels. CONCLUSION This study demonstrates that THD exerts significant anti-AS effects through the inhibition of the PI3K/AKT signaling pathway and the activation of autophagy, thereby promoting cholesterol efflux and mitigating inflammation. By integrating network pharmacology with experimental validation, these findings provide a comprehensive understanding of THD's mechanisms in treating AS and offer a solid theoretical basis for its potential clinical application.
Collapse
Affiliation(s)
- Xindi Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoteng Feng
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sijin Li
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiarou Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yiru Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Shao CL, Meng WT, Wang YC, Liu JJ, Ning K, Hou XX, Guo HD. Regulating NETs contributes to a novel antiatherogenic effect of MTHSWD via inhibiting endothelial injury and apoptosis. Int Immunopharmacol 2024; 143:113368. [PMID: 39418732 DOI: 10.1016/j.intimp.2024.113368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
Neutrophil extracellular traps (NETs) are implicated in the occurrence and progression of atherosclerosis (AS), which can result in adverse cardiovascular events. We investigated the potential mechanism of action of Modified Taohong Siwu Decoction (MTHSWD) against AS based on its effect on NETs. A model of unstable plaque in AS was established by tandem stenosis (TS) of the right common carotid artery in ApoE-/- mice combined with a western diet (WD). The research found that MTHSWD reduced the weight of mice with AS to varying degrees, and significantly decreased the levels of plasma total cholesterol (TC) and triglycerides (TG). Meanwhile, we found that MTHSWD not only significantly improved cardiac EF, FS, cardiac hypertrophy, and ventricular remodeling, but also ameliorated the silent and depressed hypoactivity state caused by AS in ApoE-/- mice. Additionally, the study revealed that MTHSWD improved the severity of AS, protected the vascular structure, increased plaque stability and vessel patency. It also significantly reduced vascular cell apoptosis, platelet aggregation, and the presence of inflammatory cells such as neutrophils (NEUs), as well as the expression of neutrocyte elastase (NE) and myeloperoxidase (MPO), which are components of NETs. Subsequently, NEUs studies have shown that MTHSWD not only significantly reduces the dsDNA content of NETs, but also lowers the expression of NETs components NE and citH3. NETs treating the human umbilical vein endothelial cells (HUVECs) demonstrated that NETs differentially increased the protein expression of endothelial inflammatory adhesion factors CD62P, VCAM-1 and ICAM-1, while significantly decreasing the viability of HUVECs. Pharmacological treatment discovered that MTHSWD significantly improved HUVECs viability impaired by NETs, and promoted the growth and proliferation of endothelial cells. Furthermore, it significantly reduced early and late apoptosis of HUVECs caused by NETs, decreased the expression of pro-apoptotic proteins BAX and Cleaved-Caspase-3, and increased the expression of anti-apoptotic protein Bcl-2. Thus, study suggests that MTHSWD may improve body weight, lipid levels, cardiac function, vigour, and the severity of AS in ApoE-/- AS mice. The novel effect of MTHSWD against AS may be attributed to the inhibition of endothelial injury and apoptosis through the regulation of NETs. This, in turn, reduces the levels of platelets, inflammatory cells, and components of NETs in AS plaques, achieving a benign cycle that protects endothelial cells and vascular structure and function. This result provides some clues and evidence for studying the mechanism of action and clinical application of MTHSWD and its active ingredients against AS.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Extracellular Traps/drug effects
- Extracellular Traps/metabolism
- Humans
- Male
- Mice
- Human Umbilical Vein Endothelial Cells
- Mice, Inbred C57BL
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Neutrophils/drug effects
- Neutrophils/immunology
- Apolipoproteins E/genetics
- Mice, Knockout
- Disease Models, Animal
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/pathology
- Mice, Knockout, ApoE
- Cells, Cultured
Collapse
Affiliation(s)
- Chang-le Shao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wan-Ting Meng
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Chao Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Liu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin-Xin Hou
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hai-Dong Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
Lin Y, Yang M, Liu Q, Cai Y, Zhang Z, Xu C, Luo M. Apolipoprotein E Gene ε4 Allele is Associated with Atherosclerosis in Multiple Vascular Beds. Int J Gen Med 2024; 17:5039-5048. [PMID: 39512258 PMCID: PMC11542474 DOI: 10.2147/ijgm.s475771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024] Open
Abstract
Background Atherosclerosis is a systemic disease that can involve multiple vascular beds. The risk factors for atherosclerosis in multiple vascular beds remain unclear. Apolipoprotein E (APOE) is involved in inflammation and lipid deposition in the process of atherosclerosis. The objective of this study was to investigate whether APOE polymorphisms are associated with atherosclerosis in multiple vascular beds. Methods A total of 416 patients with atherosclerosis in single vascular bed and 658 patients with atherosclerosis in multiple vascular beds were included. APOE genotypes were detected and the differences of APOE genotypes between the groups were compared. Logistic regression analysis was performed to analyze the relationship between APOE genotypes and atherosclerosis in multiple vascular beds. Results APOE E3/E4 genotype frequency was lower in the patients with atherosclerosis in multiple vascular beds than that of patients with atherosclerosis in single vascular bed (11.4% vs 17.8%, P=0.004). There was no significant difference in age and gender distribution, proportion of history of smoking, alcohol consumption, hypertension, and diabetes mellitus between the two groups (all P>0.05), and among patients with different APOE alleles (all P>0.05). Logistic regression analysis indicated that APOE E3/E4 genotype (E3/E4 vs E3/E3: odds ratio (OR) 0.598, 95% confidence interval (CI): 0.419-0.854, P=0.005), and APOE ε4 allele (ε4 vs ε3: OR 0.630, 95% CI: 0.444-0.895, P=0.010) associated with atherosclerosis in multiple vascular beds. Conclusion APOE ε4 allele is associated with atherosclerosis in multiple vascular beds.
Collapse
Affiliation(s)
- Youni Lin
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Min Yang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Qifeng Liu
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Yufu Cai
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Zhouhua Zhang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Chongfei Xu
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Ming Luo
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| |
Collapse
|
9
|
Zhang Z, Gao J, Wang J, Mi Z, Li H, Dai Z, Pan Y, Dong J, Chen S, Lu S, Tan X, Chen H. Mechanism of Zhishi Xiebai Guizhi decoction to treat atherosclerosis: Insights into experiments, network pharmacology and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118466. [PMID: 38885915 DOI: 10.1016/j.jep.2024.118466] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhishi Xiebai Guizhi Decoction (ZSXBGZD) is a traditional herbal manuscript used to treat cardiovascular disease, including atherosclerosis and coronary heart disease. The decoction has demonstrated its capability to protect arteries and resist atherosclerosis. Its mechanisms for anti-atherosclerosis effect, nevertheless, remain unknown. AIMS OF THE STUDY The goal of the present study is to explore the effectiveness of ZSXBGZD acting on atherosclerosis and its key components based on experimental verification and network pharmacology analysis. MATERIALS AND METHODS The ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and databases were used to identify chemical components in ZSXBGZD. Network pharmacological analysis and molecular docking were implemented in order to reveal the possible therapeutic targets of ZSXBGZD. To form the model of atherosclerosis, we gave Apolipoprotein E knocked out mice a high-fat diet. H&E staining was performed to observe the effects of ZSXBGZD on atherosclerosis. Immunofluorescence and Western blot were used to investigate whether ZSXBGZD could affect autophagy, apoptosis, AGE-RAGE signaling pathway and other related mechanisms. RESULTS In total, 30 core compounds were screened through intersecting UPLC-Q-TOF-MS and the databases. The anti-atherosclerotic effect of ZSXBGZD might relate to the AGE-RAGE signaling pathway via network pharmacology analysis. ZSXBGZD could inhibit apoptosis, activate autophagy and ease inflammation by modifying AGE-RAGE signaling pathway to reduce the area of atherosclerotic plaque. CONCLUSION ZSXBGZD could treat atherosclerosis by regulating autophagy and apoptosis via adjusting the AGE-RAGE signaling pathway.
Collapse
Affiliation(s)
- Zhuojun Zhang
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Jin Gao
- School of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junpeng Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zishuo Mi
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haoyang Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhicen Dai
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Pan
- School of Public Administration, Hohai University, Nanjing, 210000, China
| | - Jiming Dong
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sihan Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shu Lu
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Xiaodong Tan
- Department of Cardiovascular, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, China.
| | - Hao Chen
- School of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
10
|
Jin Z, Liu M, Xie B, Wen W, Yan Y, Zhang Y, Li H, Shen Z, Jiang L, Gao M, Chen K, Zhao F. Generation of a medicine food homology formula and its likely mechanism in treatment of microvascular angina. Front Pharmacol 2024; 15:1404874. [PMID: 39281275 PMCID: PMC11401076 DOI: 10.3389/fphar.2024.1404874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Microvascular angina (MVA) is the most common cause of cardiac ischemic chest pain in patients without obstructive coronary artery disease (CAD) and lacks of effective treatment means. Medicine food homology (MFH) involves substances with both nutritional and medicinal qualities that have the potential to improve MVA symptoms as medicines, dietary supplements. However, research on MFH formula (MFHF) for MVA is not available. The study aims to generate a core MFHF for MVA through data mining and offer scientific backing for the utilization of edible medications in the prevention and alleviation of MVA. 11 databases were utilized to construct a database of MFH drugs, and the MFHF was generated through frequency analysis, association rule analysis, and clustering analysis. The composition of the formula is Codonopsis Radix, Astragali Radix, Platycodonis Radix, Persicae Semen, Glycyrrhizae Radix Et Rhizoma, Angelicae Sinensis Radix, and Allii Macrostemonis Bulbus. Through network pharmacology and molecular docking, we identified five major active components of MFHF: Adenosine, Nonanoic Acid, Lauric Acid, Caprylic Acid, and Enanthic Acid, along with nine core targets (NFKB1, ALB, AKT1, ACTB, TNF, IL6, ESR1, CASP3, and PTGS) for the improvement of MVA. These 5 active components have various biological activities, such as reducing oxidative stress, anti-inflammation, analgesia effect, inhibiting platelet aggregation, vasodilatation, vascular endothelial protection, and cardio-protection. GO and KEGG enrichment analyses revealed that MFHF mainly acted on the response to xenobiotic stimulus, integrative component of the plasma membrane, RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding, pathways in cancer, lipid and atherosclerosis, human cytomegalovirus infection, and the PI3K-Akt signaling pathway, which are the main pathogenesis of MVA.
Collapse
Affiliation(s)
- Zhidie Jin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingwang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Beili Xie
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Wen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Yan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yangfang Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haohao Li
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - ZhengYu Shen
- Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Lulian Jiang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Mengjie Gao
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Keji Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fuhai Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Zi-chang N, Xiao-ling H, Qi J, Ting L, Ming-hui O, Hao-ping M. Ginseng Radix et Rhizoma enhanced the effect of metoprolol in chronic heart failure by inhibiting autophagy in male C57BL/6J mice. PLoS One 2024; 19:e0301875. [PMID: 39141645 PMCID: PMC11324128 DOI: 10.1371/journal.pone.0301875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Ginseng Radix et Rhizoma (GS) is frequently used as an adjuvant therapy for patients with heart failure (HF). Metoprolol is widely used in patients with HF. However, there is no report on the combined effects of GS and metoprolol in patients with HF. OBJECTIVE This study investigated the combined effects of GS and metoprolol in male C57BL/6J mice with HF and the underlying mechanisms. MATERIALS AND METHODS We utilized a mouse myocardial HF model to measure the serum levels of creatine kinase (CK) and creatine kinase-MB form (CK-MB) using an automated biochemical analyzer. Lactate dehydrogenase (LDH) and cardiac troponin (cTnT) levels were determined using enzyme-linked immunosorbent assays. Autophagy of myocardial cells was evaluated using transmission electron microscopy, and changes in signal pathway proteins related to autophagy were analyzed by Western blotting. RESULTS GS combined with metoprolol improved heart function, reduced heart damage, and decreased serum levels of CK, CK-MB, LDH, and cTnT. The combination of GS and metoprolol decreased autophagy in myocardial cells by reducing the levels of autophagy-related proteins (LC3, p62, Beclin1, and Atg5) and increasing the ratios of p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR. CONCLUSION GS enhanced the anti-heart failure effect of metoprolol. Its mechanism of action might be related to the inhibition of autophagy mediated by the activation of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Niu Zi-chang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Han Xiao-ling
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Jin Qi
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Liu Ting
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Ouyang Ming-hui
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Mao Hao-ping
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| |
Collapse
|
12
|
Ren L, Peng H, Mu H, Li J, Zhou X, Zhang Y, Xuan Q, Zhang X, Dai X, Chen Y, Fan M, Mo F, Li B, Yan L, Zheng G. 28-day repeated-dose toxicity of orally administered Jinmao Jiedu granule in Sprague-Dawley rats. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124176. [PMID: 38870606 DOI: 10.1016/j.jchromb.2024.124176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
Jinmao Jiedu granule is a Chinese medicine preparation consisting of Actinidia valvata Dunn, Salvia chinensis Benth, Iphigenia indica Kunth, and chicken gizzard. For many years, it has been employed in adjuvant therapy for cancer, especially liver cancer. However, the potential toxicity of the granule has not been reported. The present study aimed to assess the repeated-dose toxicity of orally administered Jinmao Jiedu granules for Sprague-Dawley (SD) rats. SD rats were orally administered Jinmao Jiedu granules at doses of 2.85, 5.70, and 11.40 g/kg in a 28-day subchronic toxicity study. No adverse clinical signs associated with treatment were noted throughout the experiment. There were no treatment-related toxicity alterations in body weight, hematology, clinical biochemistry, urinalysis, necropsy, and histopathology in rats compared with the control group. The No Observed Adverse Effect Level (NOAEL) of the Jinmao Jiedu granule was higher than 11.40 g/kg/day in rats.
Collapse
Affiliation(s)
- Lijun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Hao Peng
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Hui Mu
- Department of Rehabilitation Medicine and Physiotherapy, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Jinfeng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Xibin Zhou
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Yanhong Zhang
- Shanghai Traditional Chinese Medicine Technology Company Limited, Shanghai 201203, China
| | - Qiwen Xuan
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiayan Zhang
- Department of Pharmacy, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiaoyu Dai
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Yun Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Minwei Fan
- Shanghai Traditional Chinese Medicine Technology Company Limited, Shanghai 201203, China
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Bai Li
- Department of Rehabilitation Medicine and Physiotherapy, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| | - Guoyin Zheng
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
13
|
Xu Q, Yu Z, Zhang M, Feng T, Song F, Tang H, Wang S, Li H. Danshen-Shanzha formula for the treatment of atherosclerosis: ethnopharmacological relevance, preparation methods, chemical constituents, pharmacokinetic properties, and pharmacological effects. Front Pharmacol 2024; 15:1380977. [PMID: 38910885 PMCID: PMC11190183 DOI: 10.3389/fphar.2024.1380977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Danshen-Shanzha Formula (DSF) is a well-known herbal combination comprising Radix Salvia Miltiorrhiza (known as Danshen in Chinese) and Fructus Crataegi (known as Shanzha in Chinese), It has been documented to exhibit considerable benefits for promoting blood circulation and removing blood stasis, and was used extensively in the treatment of atherosclerotic cardiac and cerebral vascular diseases over decades. Despite several breakthroughs achieved in the basic research and clinical applications of DSF over the past decades, there is a lack of comprehensive reviews summarizing its features and research, which hinders further exploration and exploitation of this promising formula. This review aims to provide a comprehensive interpretation of DSF in terms of its ethnopharmacological relevance, preparation methods, chemical constituents, pharmacokinetic properties and pharmacological effects. The related information on Danshen, Shanzha, and DSF was obtained from internationally recognized online scientific databases, including Web of Science, PubMed, Google Scholar, China National Knowledge Infrastructure, Baidu Scholar, ScienceDirect, ACS Publications, Online Library, Wan Fang Database as well as Flora of China. Data were also gathered from documentations, printed works and classics, such as the Chinese Pharmacopoeia, Chinese herbal classics, etc. Three essential avenues for future studies were put forward as follows: a) Develop and unify the standard preparation method of DSF as to achieve optimized pharmacological properties. b) Elucidate the functional mechanisms as well as the rationality and rule for the compatibility art of DSF by focusing on the clinic syndromes together with the subsequent development of preclinic study system in vitro and in vivo with consistent pathological features, pharmacokinetical behaviour and biomarkers. c) Perform more extensive clinical studies towards the advancement of mechanism-based on evidence-based medicine on the safety application of DSF. This review will provide substantial data support and broader perspective for further research on the renowned formula.
Collapse
Affiliation(s)
- Qiong Xu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Zhe Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Meng Zhang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
- School of Graduate Studies, Air Force Medical University, Xi’an, China
| | - Tian Feng
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Fan Song
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Haifeng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Siwang Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Hua Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| |
Collapse
|
14
|
Peng D, Zhuge F, Wang M, Zhang B, Zhuang Z, Zhou R, Zhang Y, Li J, Yu Z, Shi J. Morus alba L. (Sangzhi) alkaloids mitigate atherosclerosis by regulating M1/M2 macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155526. [PMID: 38564921 DOI: 10.1016/j.phymed.2024.155526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/01/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Atherosclerosis (AS) is an important cause of cardiovascular disease, posing a substantial health risk. Recognized as a chronic inflammatory disorder, AS hinges on the pivotal involvement of macrophages in arterial inflammation, participating in its formation and progression. Sangzhi alkaloid (SZ-A) is a novel natural alkaloid extracted from the mulberry branches, has extensive pharmacological effects and stable pharmacokinetic characteristics. However, the effects and mechanisms of SZ-A on AS remain unclear. PURPOSE To explore the effect and underlying mechanisms of SZ-A on inflammation mediated by macrophages and its role in AS development. METHODS Atherosclerosis was induced in vivo in apolipoprotein E-deficient mice through a high-fat and high-choline diet. We utilized macrophages and vascular endothelial cells to investigate the effects of SZ-A on macrophage polarization and its anti-inflammatory properties on endothelial cells in vitro. The transcriptomic analyses were used to investigate the major molecule that mediates cell-cell interactions and the antiatherogenic mechanisms of SZ-A based on AS, subsequently validated in vivo and in vitro. RESULTS SZ-A demonstrated a significant inhibition in vascular inflammation and alleviation of AS severity by mitigating macrophage infiltration and modulating M1/M2 macrophage polarization in vitro and in vivo. Moreover, SZ-A effectively reduced the release of the proinflammatory mediator C-X-C motif chemokine ligand (CXCL)-10, predominantly secreted by M1 macrophages. This reduction in CXCL-10 contributed to improved endothelial cell function, reduced recruitment of additional macrophages, and inhibited the inflammatory amplification effect. This ultimately led to the suppression of atherogenesis. CONCLUSION SZ-A exhibited potent anti-inflammatory effects by inhibiting macrophage-mediated inflammation, providing a new therapeutic avenue against AS. This is the first study demonstrating the efficacy of SZ-A in alleviating AS severity and offers novel insights into its anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Dandan Peng
- Department of Endocrinology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Mingwei Wang
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Binbin Zhang
- Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhenjie Zhuang
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Run Zhou
- College of Nursing, Hangzhou Normal University, Zhejiang, China
| | - Yuanyuan Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Zhenqiu Yu
- Guizhou Medical University, Guiyang, Guizhou, China; The Department of Hypertension, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Junping Shi
- Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou, Zhejiang, China; Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Yang C, Qu L, Wang R, Wang F, Yang Z, Xiao F. Multi-layered effects of Panax notoginseng on immune system. Pharmacol Res 2024; 204:107203. [PMID: 38719196 DOI: 10.1016/j.phrs.2024.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Recent research has demonstrated the immunomodulatory potential of Panax notoginseng in the treatment of chronic inflammatory diseases and cerebral hemorrhage, suggesting its significance in clinical practice. Nevertheless, the complex immune activity of various components has hindered a comprehensive understanding of the immune-regulating properties of Panax notoginseng, impeding its broader utilization. This review evaluates the effect of Panax notoginseng to various types of white blood cells, elucidates the underlying mechanisms, and compares the immunomodulatory effects of different Panax notoginseng active fractions, aiming to provide the theory basis for future immunomodulatory investigation.
Collapse
Affiliation(s)
- Chunhao Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Liping Qu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Rui Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Zhaoxiang Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Fengkun Xiao
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China.
| |
Collapse
|
16
|
Liu H, Li L, Lu R. ZIP transporters-regulated Zn 2+ homeostasis: A novel determinant of human diseases. J Cell Physiol 2024; 239:e31223. [PMID: 38530191 DOI: 10.1002/jcp.31223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
As an essential trace element for organisms, zinc participates in various physiological processes, such as RNA transcription, DNA replication, cell proliferation, and cell differentiation. The destruction of zinc homeostasis is associated with various diseases. Zinc homeostasis is controlled by the cooperative action of zinc transporter proteins that are responsible for the influx and efflux of zinc. Zinc transporter proteins are mainly categorized into two families: Zrt/Irt-like protein (SLC39A/ZIP) family and zinc transporter (SLC30A/ZNT) family. ZIP transporters contain 14 members, namely ZIP1-14, which can be further divided into four subfamilies. Currently, ZIP transporters-regulated zinc homeostasis is one of the research hotspots. Cumulative evidence suggests that ZIP transporters-regulated zinc homeostasis may cause physiological dysfunction and contribute to the onset and progression of diverse diseases, such as cancers, neurological diseases, and cardiovascular diseases. In this review, we initially discuss the structure and distribution of ZIP transporters. Furthermore, we comprehensively review the latest research progress of ZIP transporters-regulated zinc homeostasis in diseases, providing a new perspective into new therapeutic targets for treating related diseases.
Collapse
Affiliation(s)
- Huimei Liu
- Department of Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
| | - Lanfang Li
- Department of Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
17
|
Wang L, Huang S, Liang X, Zhou J, Han Y, He J, Xu D. Immuno-modulatory role of baicalin in atherosclerosis prevention and treatment: current scenario and future directions. Front Immunol 2024; 15:1377470. [PMID: 38698839 PMCID: PMC11063305 DOI: 10.3389/fimmu.2024.1377470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Atherosclerosis (AS) is recognized as a chronic inflammatory condition characterized by the accumulation of lipids and inflammatory cells within the damaged walls of arterial vessels. It is a significant independent risk factor for ischemic cardiovascular disease, ischemic stroke, and peripheral arterial disease. Despite the availability of current treatments such as statins, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and lifestyle modifications for prevention, AS remains a leading cause of morbidity and economic burden worldwide. Thus, there is a pressing need for the development of new supplementary and alternative therapies or medications. Huangqin (Scutellaria baicalensis Georgi. [SBG]), a traditional Chinese medicine, exerts a significant immunomodulatory effect in AS prevention and treatment, with baicalin being identified as one of the primary active ingredients of traditional Chinese medicine. Baicalin offers a broad spectrum of pharmacological activities, including the regulation of immune balance, antioxidant and anti-inflammatory effects, and improvement of lipid metabolism dysregulation. Consequently, it exerts beneficial effects in both AS onset and progression. This review provides an overview of the immunomodulatory properties and mechanisms by which baicalin aids in AS prevention and treatment, highlighting its potential as a clinical translational therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiangshan He
- Department of Traditional Chinese Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Danping Xu
- Department of Traditional Chinese Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
18
|
Liang Y, Fu J, Shi Y, Jiang X, Lu F, Liu S. Integration of 16S rRNA sequencing and metabolomics to investigate the modulatory effect of ginsenoside Rb1 on atherosclerosis. Heliyon 2024; 10:e27597. [PMID: 38500998 PMCID: PMC10945261 DOI: 10.1016/j.heliyon.2024.e27597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Background /aims: Atherosclerosis (AS) is the common pathological basis of a variety of cardiovascular diseases (CVD), and has become the main cause of human death worldwide, and the incidence is increasing and younger trend. Ginsenoside Rb1 (Rb1), an important monomer component of the traditional Chinese herb ginseng, known for its ability to improve blood lipid disorders and anti-inflammatory. In addition, Rb1 was proved to be an effective treatment for AS. However, the effect of Rb1 on AS remains to be elucidated. The aim of this study was to investigate the mechanisms of Rb1 in ameliorating AS induced by high-fat diet (HFD). Materials and methods In this study, we developed an experimental AS model in Sprague-Dawley rats by feeding HFD with intraperitoneal injection of vitamin D3. The potential therapeutic mechanism of Rb1 in AS rats was investigated by detecting the expression of inflammatory factors, microbiome 16S rRNA gene sequencing, short-chain fatty acids (SCFAs) targeted metabolomics and untargeted metabolomics. Results Rb1 could effectively alleviate the symptoms of AS and suppress the overexpression of inflammation-related factors. Meanwhile, Rb1 altered gut microbial composition and concentration of SCFAs characterized by Bacteroidetes, Actinobacteria, Lactobacillus, Prevotella, Oscillospira enrichment and Desulfovibrio depletion, accompanied by increased production of acetic acid and propionic acid. Moreover, untargeted metabolomics showed that Rb1 considerably improved faecal metabolite profiles, particularly arachidonic acid metabolism and primary bile acid biosynthesis. Conclusion Rb1 ameliorated the HFD-induced AS, and the mechanism is related to improving intestinal metabolic homeostasis and inhibiting systemic inflammation by regulating gut microbiota.
Collapse
Affiliation(s)
- Yuqin Liang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yunhe Shi
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xin Jiang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
19
|
Jing J, Guo J, Dai R, Zhu C, Zhang Z. Targeting gut microbiota and immune crosstalk: potential mechanisms of natural products in the treatment of atherosclerosis. Front Pharmacol 2023; 14:1252907. [PMID: 37719851 PMCID: PMC10504665 DOI: 10.3389/fphar.2023.1252907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory reaction that primarily affects large and medium-sized arteries. It is a major cause of cardiovascular disease and peripheral arterial occlusive disease. The pathogenesis of AS involves specific structural and functional alterations in various populations of vascular cells at different stages of the disease. The immune response is involved throughout the entire developmental stage of AS, and targeting immune cells presents a promising avenue for its treatment. Over the past 2 decades, studies have shown that gut microbiota (GM) and its metabolites, such as trimethylamine-N-oxide, have a significant impact on the progression of AS. Interestingly, it has also been reported that there are complex mechanisms of action between GM and their metabolites, immune responses, and natural products that can have an impact on AS. GM and its metabolites regulate the functional expression of immune cells and have potential impacts on AS. Natural products have a wide range of health properties, and researchers are increasingly focusing on their role in AS. Now, there is compelling evidence that natural products provide an alternative approach to improving immune function in the AS microenvironment by modulating the GM. Natural product metabolites such as resveratrol, berberine, curcumin, and quercetin may improve the intestinal microenvironment by modulating the relative abundance of GM, which in turn influences the accumulation of GM metabolites. Natural products can delay the progression of AS by regulating the metabolism of GM, inhibiting the migration of monocytes and macrophages, promoting the polarization of the M2 phenotype of macrophages, down-regulating the level of inflammatory factors, regulating the balance of Treg/Th17, and inhibiting the formation of foam cells. Based on the above, we describe recent advances in the use of natural products that target GM and immune cells crosstalk to treat AS, which may bring some insights to guide the treatment of AS.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Dai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaojun Zhu
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
20
|
Wei JM, Yuan H, Liu CX, Wang ZY, Shi M, Guo ZH, Li Y. The Chinese medicine Xin-tong-tai granule protects atherosclerosis by regulating oxidative stress through NOX/ROS/NF-κB signal pathway. Biomed Pharmacother 2023; 165:115200. [PMID: 37499459 DOI: 10.1016/j.biopha.2023.115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Xin-tong-tai Granule (XTTG), a traditional Chinese medicine, has been used to treat atherosclerosis (AS), but its mechanism is poorly understood. Intriguingly, oxidative stress has been recognized as vital factors in the treatment of atherosclerosis. PURPOSE This study aims to explore the potential mechanism of XTTG for treating AS. METHODS An in-vivo model of AS was established by feeding ApoE-/- mice with a high-fat diet (HFD), and the Human Aortic Vascular Smooth Muscle Cells (HAVSMCs) were induced by oxidized low-density lipoprotein (ox-LDL) in vitro. After treatment, the blood lipid levels and pathological aortic changes of each group were observed, and the cell proliferation and lipid droplet aggregation in each group were evaluated. The oxidative stress indicators such as malondialdehyde (MDA) and superoxide dismutase (SOD) levels and related NOX/ROS/NF-κB signaling pathway indicators were observed. RESULTS XTTG improved blood lipid levels and pathological aortic changes of ApoE-/- mice with HFD feeding, inhibited HAVSMCs proliferation and lipid droplet aggregation induced by ox-LDL, reduced MDA content, increased SOD content, inhibited NOX4 and p22phox protein expression, downregulated ROS content, inhibited IKK-α, IKK-β, NF-κB protein and mRNA expression and the phosphorylation of NF-κB. CONCLUSION XTTG can inhibit NOX/ROS/NF-κB signaling pathway, reduce damages caused by oxidative stress, and exert anti-AS effects.
Collapse
Affiliation(s)
- Jia-Ming Wei
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha 410208, China
| | - Hui Yuan
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha 410208, China
| | - Cheng-Xin Liu
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha 410208, China
| | - Zi-Yan Wang
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha 410208, China
| | - Min Shi
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha 410208, China
| | - Zhi-Hua Guo
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Changsha 410208, China.
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|