1
|
Wang C, Wang S, Wang Z, Han J, Jiang N, Qu L, Xu K. Andrographolide regulates H3 histone lactylation by interfering with p300 to alleviate aortic valve calcification. Br J Pharmacol 2024; 181:1843-1856. [PMID: 38378175 DOI: 10.1111/bph.16332] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Our previous studies have found that andrographolide (AGP) alleviates calcific aortic valve disease (CAVD), but the underlying mechanism is unclear. This study explores the molecular target and signal mechanisms of AGP in inhibiting CAVD. EXPERIMENTAL APPROACH The anti-calcification effects of the aortic valve with AGP treatment were evaluated by alizarin red staining in vitro and ultrasound and histopathological assessment of a high-fat (HF)-fed ApoE-/- mouse valve calcification model. A correlation between the H3 histone lactylation (H3Kla) and calcification was detected. Molecular docking and surface plasmon resonance (SPR) experiments were further used to confirm p300 as a target for AGP. Overexpression (oe) and silencing (si) of p300 were used to verify the inhibitory effect of AGP targeting p300 on the H3Kla in vitro and ex vivo. KEY RESULTS AGP significantly inhibited calcium deposition in valve interstitial cells (VICs) and ameliorated aortic valve calcification. The multi-omics analysis revealed the glycolysis pathway involved in CAVD, indicating that AGP interfered with lactate production by regulating lactate dehydrogenase A (LDHA). In addition, lactylation, a new post-translational modification, was shown to have a role in promoting aortic valve calcification. Furthermore, H3Kla and H3K9la site were shown to correlate with Runx2 expression inhibition by AGP treatment. Importantly, we found that p300 transferase was the molecular target of AGP in inhibiting H3Kla. CONCLUSIONS AND IMPLICATIONS Our findings, for the first time, demonstrated that AGP alleviates calcification by interfering with H3Kla via p300, which might be a powerful drug to prevent CAVD.
Collapse
Affiliation(s)
- Chunli Wang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shunshun Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zijun Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Juanjuan Han
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Nan Jiang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Linghang Qu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kang Xu
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
2
|
Liu Z, Wang K, Jiang C, Chen Y, Liu F, Xie M, Yim WY, Yao D, Qian X, Chen S, Shi J, Xu K, Wang Y, Dong N. Morusin Alleviates Aortic Valve Calcification by Inhibiting Valve Interstitial Cell Senescence Through Ccnd1/Trim25/Nrf2 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307319. [PMID: 38502885 PMCID: PMC11132047 DOI: 10.1002/advs.202307319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/21/2024] [Indexed: 03/21/2024]
Abstract
The senescence of aortic valve interstitial cells (VICs) plays a critical role in the progression of calcific aortic valve disease (CAVD). However, the precise mechanisms underlying the senescence of VICs remain unclear, demanding the identification of a novel target to mitigate this process. Previous studies have highlighted the anti-aging potential of morusin. Thus, this study aimed to explore the therapeutic potential of morusin in CAVD. Cellular experiments reveal that morusin effectively suppresses cellular senescence and cause a shift toward osteogenic differentiation of VICs in vitro. Mechanistically, morusin activate the Nrf2-mediated antiaging signaling pathway by downregulating CCND1 expression and aiding Keap1 degradation through Trim 25. This activation lead to the upregulated expression of antioxidant genes, thus reducing reactive oxygen species production and thereby preventing VIC osteogenic differentiation. In vivo experiments in ApoE-/- mice on a high-fat Western diet demonstrate the positive effect of morusin in mitigating aortic valve calcification. These findings emphasize the antiaging properties of morusin and its potential as a therapeutic agent for CAVD.
Collapse
Affiliation(s)
- Zongtao Liu
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Kan Wang
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Chen Jiang
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yuqi Chen
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Fayuan Liu
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Minghui Xie
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Wai Yen Yim
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Dingyi Yao
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xingyu Qian
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shiqi Chen
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiawei Shi
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Kang Xu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine ProcessingSchool of PharmacyHubei University of Chinese MedicineWuhan430065China
- Hubei Shizhen LaboratoryWuhan430065China
| | - Yixuan Wang
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory of Organ TransplantationMinistry of EducationNHC Key Laboratory of Organ TransplantationKey Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhan430022China
| | - Nianguo Dong
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory of Organ TransplantationMinistry of EducationNHC Key Laboratory of Organ TransplantationKey Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhan430022China
| |
Collapse
|
3
|
Han J, Tan C, Pan Y, Qu C, Wang Z, Wang S, Wang C, Xu K. Andrographolide inhibits the proliferation and migration of vascular smooth muscle cells via PI3K/AKT signaling pathway and amino acid metabolism to prevent intimal hyperplasia. Eur J Pharmacol 2023; 959:176082. [PMID: 37783303 DOI: 10.1016/j.ejphar.2023.176082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Andrographolide (AGP) exerts pharmacological effects when used for the treatment of cardiovascular disease, but the molecular mechanisms underlying its inhibitory effects on the proliferation and migration of vascular smooth muscle cells (VSMCs) and intimal hyperplasia (IH) are unknown. The proliferation and migration of VSMCs treated with AGP were examined using the CCK-8, flow cytometry, and wound healing assays. Expression levels of proteins related to cell proliferation and apoptosis were quantified. Multi-omics analysis with RNA-seq and metabolome was used to explore the potential molecular mechanism of AGP treatment. Additionally, an in vivo model was established through ligation of the left common carotid artery to identify the therapeutic potential of AGP in IH. Molecular docking and western blotting were performed to verify the mechanism discovered with multi-omics analysis. The results showed that AGP inhibited the proliferation and migration of cultured VSMCs in a dose-dependent manner and alleviated IH-related vascular stenosis. AGP significantly downregulated the protein levels of CDK1, CCND1, and BCL2 and upregulated the protein level of BAX. Gene expression profiles showed a total of 3,298 differentially expressed genes (DEGs) after AGP treatment, of which 1,709 DEGs had upregulated expression and 1,589 DEGs had downregulated expression. KEGG enrichment analysis highlighted the PI3K/AKT signaling pathway, verified with the detection of the activation of PI3K and AKT phosphorylation. Further GO enrichment combined with metabolomics analysis showed that AGP inhibition in cultured VSMCs involved the amino acid metabolic process, and the expression levels of the two key factors PRDM16 and EZH2, identified with PPI and docking analysis, were significantly inhibited by AGP treatment. In conclusion, our study showed that AGP inhibited VSMCs proliferation and migration by suppressing the PI3K/AKT signaling pathway and amino acid metabolism, which, in turn, improved IH.
Collapse
Affiliation(s)
- Juanjuan Han
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chunmei Tan
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yijing Pan
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chuang Qu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zijun Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Shunshun Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chunli Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Kang Xu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
4
|
Xie F, Han J, Wang D, Liu P, Liu C, Sun F, Xu K. Disturbing effect of cepharanthine on valve interstitial cells calcification via regulating glycolytic metabolism pathways. Front Pharmacol 2022; 13:1070922. [PMID: 36467082 PMCID: PMC9714323 DOI: 10.3389/fphar.2022.1070922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/04/2022] [Indexed: 10/27/2023] Open
Abstract
Osteogenic differentiation of valve interstitial cells (VICs) directly leads to aortic valve calcification, which is a common cardiovascular disease caused by inflammation and metabolic disorder. There is still no ideal drug for its treatment and prevention. The purpose of this study was to explore the effect and molecular mechanism of cepharanthine (CEP), a natural product, on inhibiting the osteogenic differentiation of VICs. First, CCK8 assay was used to evaluate cell viability of CEP on VICs. CEP concentration of 10 μM was the effective dose with slight cytotoxicity, which was used for further study. The alizarin red staining analysis showed that CEP significantly inhibited calcium deposition caused by osteogenic medium related calcification induction. In order to explore the anti-calcification molecular mechanism of CEP, transcriptome and metabolome were synchronously used to discover the possible molecular mechanism and target of CEP. The results showed that CEP inhibited valve calcification by regulating the glycolytic pathway. The molecular docking of CEP and selected key factors in glycolysis showed significant binding energies for GLUT1 (-11.3 kcal/mol), ENO1 (-10.6 kcal/mol), PKM (-9.8 kcal/mol), HK2 (-9.2 kcal/mol), PFKM (-9.0 kcal/mol), and PFKP (-8.9 kcal/mol). The correlation analysis of RUNX2 expression and cellular lactate content showed R2 of 0.7 (p < 0.001). In conclusion, this study demonstrated that CEP inhibited osteoblastic differentiation of VICs by interfering with glycolytic metabolisms via downregulation of the production of lactate and glycolysis-associated metabolites.
Collapse
Affiliation(s)
- Fei Xie
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juanjuan Han
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dashuai Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Liu
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Henan Provincial People’s Hospital, Henan Cardiovascular Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuqiang Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
5
|
Feng F, Pan L, Wu J, Liu M, He L, Yang L, Zhou W. Schisantherin A inhibits cell proliferation by regulating glucose metabolism pathway in hepatocellular carcinoma. Front Pharmacol 2022; 13:1019486. [PMID: 36425581 PMCID: PMC9679220 DOI: 10.3389/fphar.2022.1019486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/26/2022] [Indexed: 08/06/2023] Open
Abstract
Schisantherin A (STA) is a traditional Chinese medicine extracted from the plant Schisandra chinensis, which has a wide range of anti-inflammatory, antioxidant, and other pharmacological effects. This study investigates the anti-hepatocellular carcinoma effects of STA and the underlying mechanisms. STA significantly inhibits the proliferation and migration of Hep3B and HCCLM3 cells in vitro in a concentration-dependent manner. RNA-sequencing showed that 77 genes are upregulated and 136 genes are downregulated in STA-treated cells compared with untreated cells. KEGG pathway analysis showed significant enrichment in galactose metabolism as well as in fructose and mannose metabolism. Further gas chromatography-mass spectrometric analysis (GC-MS) confirmed this, indicating that STA significantly inhibits the glucose metabolism pathway of Hep3B cells. Tumor xenograft in nude mice showed that STA has a significant inhibitory effect on tumor growth in vivo. In conclusion, our results indicate that STA can inhibit cell proliferation by regulating glucose metabolism, with subsequent anti-tumor effects, and has the potential to be a candidate drug for the treatment of liver cancer.
Collapse
Affiliation(s)
- Fan Feng
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Lianhong Pan
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Jiaqin Wu
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Mingying Liu
- School of Comprehensive Health Management, XiHua University, Chengdu, Sichuan, China
| | - Long He
- School of Artificial Intelligence, Chongqing University of Education, Chongqing, China
| | - Li Yang
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|