1
|
Luo J, Yang Q, Jiang W, Liu Y, Hu Q, Peng X. The interaction between Angelica sinensis polysaccharide ASP-2pb and specific gut bacteria alleviates rheumatoid arthritis in rats. Int J Biol Macromol 2025; 301:140473. [PMID: 39889994 DOI: 10.1016/j.ijbiomac.2025.140473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/07/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Angelica sinensis polysaccharide (ASP) alleviated Rheumatoid arthritis (RA), but whether the relief was attributed to ASP itself or its microbial metabolites remained unclear. We characterized the main fraction of ASP (ASP-2pb) as a polysaccharide with molecular weight of 92.02 kDa. It contained approximately 48 repeating units of →6)-β-D-Galp-(1 → 3)-4-OMe-β-D-Galp-(1 → 4)-α-D-GalpA-(1 → 6)-β-D-Galp-(1 → 3)-4-OMe-β-D-Galp-(1→3)-β-D-Galp-(1 → 3)-β-D-Galp-(1 → 3)-β-D-Galp-(1 → with branches of Araf and Galp. Using ASP-2pb as intervention, the symptoms of RA in rats including joint swelling and inflammation were alleviated. Pseudo-germ-free animal test confirmed the necessity of specific gut bacteria during this alleviation. Bacteria such as Candidatus_Saccharimonas, Lactobacillus, Bifidobacterium, Faecalibaculum, Parvibacter, Ruminococcus_torques_group, Fournierella and Alloprevotella ought to be the key bacteria. Metabolites generated by these gut bacteria such as myristoleic acid, cuminaldehyde, 4-deoxypyridoxine and galactosylhydroxylysine, should be the key to RA remission. Therefore, specific metabolites were the consequence of the interaction between ASP-2pb and specific intestinal bacteria, and were responsible for the RA improvement.
Collapse
Affiliation(s)
- Jianming Luo
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, Guangdong 510632, China.
| | - Qianyi Yang
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, Guangdong 510632, China
| | - Wenwen Jiang
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, Guangdong 510632, China
| | - Yanghanxiu Liu
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, Guangdong 510632, China
| | - Qing Hu
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, Guangdong 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
2
|
Lin M, Zhang C, Li H, Li K, Gou S, He X, Lv C, Gao K. Pyroptosis for osteoarthritis treatment: insights into cellular and molecular interactions inflammatory. Front Immunol 2025; 16:1556990. [PMID: 40236711 PMCID: PMC11996656 DOI: 10.3389/fimmu.2025.1556990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Osteoarthritis (OA) is a widely prevalent chronic degenerative disease often associated with significant pain and disability. It is characterized by the deterioration of cartilage and the extracellular matrix (ECM), synovial inflammation, and subchondral bone remodeling. Recent studies have highlighted pyroptosis-a form of programmed cell death triggered by the inflammasome-as a key factor in sustaining chronic inflammation. Central to this process are the inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), which play crucial roles mediating intra-articular pyroptosis through the NOD-like receptor protein 3 (NLRP3) inflammasome. This paper investigates the role of the pyroptosis pathway in perpetuating chronic inflammatory diseases and its linkage with OA. Furthermore, it explores the mechanisms of pyroptosis, mediated by nuclear factor κB (NF-κB), the purinergic receptor P2X ligand-gated ion channel 7 (P2X7R), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factor-1α (HIF-1α). Additionally, it examines the interactions among various cellular components in the context of OA. These insights indicate that targeting the regulation of pyroptosis presents a promising therapeutic approach for the prevention and treatment of OA, offering valuable theoretical perspectives for its effective management.
Collapse
Affiliation(s)
- Minghui Lin
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cunxin Zhang
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Haiming Li
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kang Li
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Shuao Gou
- Jining No.1 People's Hospital, affiliated with Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao He
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Chaoliang Lv
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Kai Gao
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
3
|
Yu C, Wu H, Zhao D, Shi H. Echinocystic acid activates PPARγ to alleviate mannan-induced psoriasis and psoriatic arthritis in mice. Allergol Immunopathol (Madr) 2025; 53:52-58. [PMID: 40088022 DOI: 10.15586/aei.v53i2.1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/30/2024] [Indexed: 03/17/2025]
Abstract
Previous studies have shown that echinocystic acid (EA) can reduce arthritis and skin damage, but the role of EA in psoriatic arthritis is unclear. This study aims to prove the role of EA in psoriatic arthritis, which was induced by intraperitoneal injection of mannan in C57BL/6J mice. The mice were divided into a control group, mannan group, mannan + EA (low-dose) group, and mannan + EA (high-dose) group. Joint tissue damage was scored, and pathological changes in joint tissue and ear skin damage were examined by HE staining. Pathway enrichment of EA drug targets was performed through the target enrichment website, and the mRNA and protein expression levels of pathway-related proteins in joint tissues and ears were verified using the PCR and western blot. The results show that injection of mannan into mice resulted in joint inflammatory infiltration and tissue damage, hyperkeratosis, and acanthosis of the ear skin, while these symptoms were alleviated after high-dose EA treatment. Pathway enrichment analysis showed that the EA drug treatment target is concentrated on the PPAR pathway. The mRNA and protein results showed that the mRNA and protein expression levels of peroxisome proliferator-activated receptor γ (PPARγ) in the joint tissues and ears of mice with psoriatic arthritis decreased, and the expression of PPARγ was activated after high-dose EA treatment. In conclusion, EA increases PPARγ expression and reduces joint and skin damage in mice with psoriatic arthritis.
Collapse
Affiliation(s)
- Chengwei Yu
- Department of Orthopedics, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang Province, China
| | - Huiming Wu
- Department of Orthopedics, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang Province, China
| | - Dongrui Zhao
- Department of Dermatology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang Province, China
| | - Huajie Shi
- Department of Dermatology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang Province, China;
| |
Collapse
|
4
|
Zhu L, Bi Y, Liang T, Zhang P, Xiao X, Yu T. Ginkgetin delays the progression of osteoarthritis by inhibiting the NF-κB and MAPK signaling pathways. J Orthop Surg Res 2025; 20:139. [PMID: 39910626 PMCID: PMC11800635 DOI: 10.1186/s13018-025-05525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is considered an advancing chronic degenerative joint disease, leading to severe physical functional impairment of patients. Its development is closely related to increased inflammation and oxidative stress within the joint. Ginkgetin (GK), a natural non-toxic chemical, has proven anti-inflammatory, antioxidant, anti-tumor, and neuroprotective effects. METHODS First, this study utilizes network pharmacology to explore the intrinsic connection between GK and OA. In vitro, SW1353 human cartilage cells were stimulated with Tert-butyl hydrogen peroxide (TBHP), and different GK concentrations were pre-treated to evaluate its protective effects. GK's anti-inflammatory and antioxidative effects were comprehensively assessed via MTT assay, western blot, cell immunofluorescence, ELISA, and transcriptome sequencing. Potential underlying mechanisms were also explored. In vivo, OA was induced in rats via anterior cruciate ligament transection (ACLT), and GK's impact on cartilage protection was further assessed via histological analysis and western blot. RESULTS Network pharmacology has revealed that GK regulates OA via several key pathways, especially NF-κB, HIF-1, PI3K-AKT, and substances like reactive oxygen species. In vitro experiments showed GK effectively reverses oxidative stress damage from TBHP, inhibits inflammatory factor release, and protects Extracellular matrix (ECM) from degradation. These functions may be achieved via the NF-κB and MAPK signaling pathways. In vivo experiments showed GK significantly reduced proteoglycan loss from ACLT and inhibited matrix metalloproteinase 13 (MMP13) and ADAMTS5 (A disintegrin and metalloproteinase with thrombospondin motifs 5) production, effectively preventing cartilage degeneration in rats. CONCLUSION These findings suggest that GK has potential as a therapeutic agent for OA, offering new strategies and directions for OA treatment.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yanchi Bi
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ting Liang
- Rehabilitation Section, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Po Zhang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao Xiao
- Central Laboratories, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
5
|
Zhao T, Wang X, Li Z, Qin D. Yiqi Yangxue formula inhibits cartilage degeneration in knee osteoarthritis by regulating LncRNA-UFC1/miR-34a/MMP-13 axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118930. [PMID: 39393561 DOI: 10.1016/j.jep.2024.118930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Knee osteoarthritis (KOA) is a prevalent and disabling clinical condition affecting joint structures worldwide. The Yiqi Yangxue formula (YQYXF) is frequently prescribed in clinical settings for the treatment of KOA. Existing research has primarily focused on alterations in drug metabolism, with limited investigation into the epigenetic effects of YQYXF, particularly in relation to non-coding RNA. AIM OF THE STUDY Exploring the effects of YQYXF on critical factors of long chain non-coding RNA UFC1/miR-34a/matrix metalloproteinase-13 (MMP-13) axis and their interrelationships. METHODS UHPLC-QE-MS technology was used to identify the YQYXF ingredients in rat serum. KEGG and GO analysis were performed on the targets of blood components acting on KOA using a database. Simultaneously, a protein interaction network was constructed using target proteins and metabolites to identify the core components and key pathways of YQYXF. The KOA rat model was established using an improved Hulth method. SPF SD rats were randomly divided into normal group, sham surgery group, model group, celecoxib capsules group (18 mg/kg), YQYXF low, medium and high dose groups (4.6 g/kg, 9.2 g/kg, 18.4 g/kg). Observe the synovial and cartilage tissues of rats using pathological methods. RT-PCR was used to detect the levels of UFC1, miR-34a, and MMP-13 in cartilage. Immunohistochemistry was used to detect the levels of MMP-13 and ADAMTS-5 in cartilage. ELISA method was used to detect the levels of MMP-13 and ADAMTS-5 in serum. In addition, we further validated the regulation of crucial factor expression levels of UFC1/miR-34a/MMP-13 axis in rat chondrocytes and degenerative chondrocytes of KOA patients by YQYXF, providing a basis for its treatment of KOA. RESULTS The compounds that YQYXF enters the bloodstream mainly contain flavonoids and phenylpropanoid compounds. The core components that act on OA include quercetin, fisetin, and demethylweldelolactone. The main target pathways are the IL-17 signaling pathway, lipid and atherosclerosis, cellular sensitivity, inflammatory mediator regulation of TRP channels, TNF signaling pathway, relaxin signaling pathway and C-type lectin receptor signaling pathway. YQYXF inhibited the expression of miR-34a and MMP-13 mRNA, and reduced the protein levels of MMP-13 and ADAMTS-5. In vitro studies have confirmed that 20% YQYXF serum promoted UFC1 and reduce miR-34a levels. In addition, miR-34a in sh-UFC1+10% YQYXF serum and sh-UFC1+20% YQYXF serum groups significantly decreased compared to the sh-UFC1 group. CONCLUSION The anti-KOA cartilage degeneration effect of YQYXF might be related to inhibiting cell apoptosis and promoting cell proliferation, which regulated the lncRNA-UFC1/miR-34a/MMP-13 axis.
Collapse
MESH Headings
- Animals
- Matrix Metalloproteinase 13/metabolism
- Matrix Metalloproteinase 13/genetics
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Drugs, Chinese Herbal/pharmacology
- Rats, Sprague-Dawley
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Osteoarthritis, Knee/drug therapy
- Osteoarthritis, Knee/pathology
- Osteoarthritis, Knee/metabolism
- Rats
- Male
- Chondrocytes/drug effects
- Chondrocytes/metabolism
- Cartilage, Articular/drug effects
- Cartilage, Articular/pathology
- Cartilage, Articular/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Ting Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China; School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xinchang Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China.
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Dongdong Qin
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China; School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
6
|
Sun Y, Li G, Kong M, Li J, Wang S, Tan Y. Angelica sinensis polysaccharide as potential protectants against recurrent spontaneous abortion: focus on autophagy regulation. Front Med (Lausanne) 2025; 12:1522503. [PMID: 39881843 PMCID: PMC11774876 DOI: 10.3389/fmed.2025.1522503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
Introduction Recurrent spontaneous abortion (RSA) represents a significant clinical challenge, with its underlying mechanisms yet to be fully elucidated. Despite advances in understanding, the precise pathophysiology driving RSA remains unclear. Angelica sinensis, a traditional herbal remedy, is frequently used as an adjunctive treatment for miscarriage. However, it remains uncertain whether its primary active component, Angelica sinensis polysaccharide (ASP), plays a definitive role in its therapeutic effects. The specific function and mechanism of ASP in the context of RSA require further investigation. Methods In this study, we sought to evaluate autophagy levels at the maternal-fetal interface in RSA patients and in an RSA mouse model treated with ASP, complemented by a comprehensive metabolomic analysis. Autophagy flux in the decidua was compared between eight RSA patients and eight healthy pregnant women. Additionally, changes in autophagy flux were assessed in an RSA mouse model following ASP treatment, with embryos and placental tissues collected for subsequent metabolomic profiling. Results Our results revealed a significant reduction in Beclin 1 protein levels in the decidua of RSA patients compared to the normal pregnancy group. Conversely, ASP treatment in the RSA mouse model restored autophagy-related protein expression, including ATG7, ATG16L, and Beclin 1, to levels higher than those observed in the untreated RSA group. Metabolomic analyses further identified significant changes in phosphatidylethanolamine levels between ASP-treated and control groups, with differential metabolites enriched in pathways related to glycolysis/gluconeogenesis, glycerolipid metabolism, and glycine, serine, and threonine metabolism. Functional assays revealed that ASP enhances trophoblast cell proliferation, migration, and invasion. Conclusion In summary, our findings demonstrate diminished autophagy activity in RSA patients, while ASP appears to restore autophagy and regulate key metabolic pathways, including glycolysis/gluconeogenesis. These results provide new insights into the protective mechanisms of ASP in RSA, suggesting its potential as a therapeutic intervention for this condition.
Collapse
Affiliation(s)
- Yeli Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guohua Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Reproductive Immunology, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengwen Kong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junyuan Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuyun Wang
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Tan
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Tong X, Wang G, Zhao X, Zhou J, Wang P, Xia H, Bian J, Liu X, Yuan Y, Zou H, Liu Z, Gu J. Angelica sinensis polysaccharides mitigate cadmium-induced apoptosis in layer chicken chondrocytes by inhibiting the JNK signaling pathway. Int J Biol Macromol 2024; 282:137106. [PMID: 39486695 DOI: 10.1016/j.ijbiomac.2024.137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Cadmium (Cd), a toxic heavy metal pollutant, inflicts widespread damage on various organs and tissues, including cartilage, where it induces chondrocyte apoptosis. Angelica sinensis polysaccharides (ASP), a key active component of the traditional Chinese medicine Angelica sinensis, have been shown to possess anti-apoptotic effects on chondrocytes. This study investigates the in vitro effects of ASP on alleviating Cd-induced apoptosis in layer chicken chondrocytes, focusing on the mitochondrial apoptosis pathway mediated by the c-Jun N-terminal kinase (JNK) signaling pathway. Chondrocytes were isolated from layer chicken embryos and confirmed to express collagen type II alpha 1 (Col2a1). We found that Cd triggered apoptosis in the chondrocytes; however, the use of the JNK inhibitor SP 600125 mitigated mitochondrial structural damage casused by Cd, indicating the involvement of JNK signaling in this process. Furthermore, ASP effectively alleviated Cd-induced apoptosis in layer chicken chondrocytes by inhibiting JNK signaling in vitro. Our findings provide a theoretical foundation for the clinical application of ASP in preventing Cd-induced cartilage diseases in poultry.
Collapse
Affiliation(s)
- Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Guoshuai Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Xinrui Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Jiatao Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Panting Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Han Xia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Jianchun Bian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Xuezhong Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Yan Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Hui Zou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Zongping Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Jianhong Gu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
8
|
Chen W, Xiao J, Zhou Y, Liu W, Jian J, Yang J, Chen B, Ye Z, Liu J, Xu X, Jiang T, Wang H, Liu W. Curcumenol regulates Histone H3K27me3 demethylases KDM6B affecting Succinic acid metabolism to alleviate cartilage degeneration in knee osteoarthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155922. [PMID: 39126921 DOI: 10.1016/j.phymed.2024.155922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Cartilage metabolism dysregulation is a crucial driver in knee osteoarthritis (KOA). Modulating the homeostasis can mitigate the cartilage degeneration in KOA. Curcumenol, derived from traditional Chinese medicine Curcuma Longa L., has demonstrated potential in enhancing chondrocyte proliferation and reducing apoptosis. However, the specific mechanism of Curcumenol in treating KOA remains unclear. This study aimed to demonstrate the molecular mechanism of Curcumenol in treating KOA based on the transcriptomics and metabolomics, and both in vivo and in vitro experimental validations. MATERIALS AND METHODS In this study, a destabilization medial meniscus (DMM)-induced KOA mouse model was established. And the mice were intraperitoneally injected with Curcumenol at 4 and 8 mg/kg concentrations. The effects of Curcumenol on KOA cartilage and subchondral was evaluated using micro-CT, histopathology, and immunohistochemistry (IHC). In vitro, OA chondrocytes were induced with 10 μg/mL lipopolysaccharide (LPS) and treated with Curcumenol to evaluate the proliferation, apoptosis, and extracellular matrix (ECM) metabolism through CCK8 assay, flow cytometry, and chondrocyte staining. Furthermore, transcriptomics and metabolomics were utilized to identify differentially expressed genes (DEGs) and metabolites. Finally, integrating multi-omics analysis, virtual molecular docking (VMD), and molecular dynamics simulation (MDS), IHC, immunofluorescence (IF), PCR, and Western blot (WB) validation were conducted to elucidate the mechanism by which Curcumenol ameliorates KOA cartilage degeneration. RESULTS Curcumenol ameliorated cartilage destruction and subchondral bone loss in KOA mice, promoted cartilage repair, upregulated the expression of COL2 while downregulated MMP3, and improved ECM synthesis metabolism. Additionally, Curcumenol also alleviated the damage of LPS on the proliferation activity and suppressed apoptosis, promoted ECM synthesis. Transcriptomic analysis combined with weighted gene co-expression network analysis (WGCNA) identified a significant downregulation of 19 key genes in KOA. Metabolomic profiling showed that Curcumenol downregulates the expression of d-Alanyl-d-alanine, 17a-Estradiol, Glutathione, and Succinic acid, while upregulating Sterculic acid and Azelaic acid. The integrated multi-omics analysis suggested that Curcumenol targeted KDM6B to regulate downstream protein H3K27me3 expression, which inhibited methylation at the histone H3K27, consequently reducing Succinic acid levels and improving KOA cartilage metabolism homeostasis. Finally, both in vivo and in vitro findings indicated that Curcumenol upregulated KDM6B, suppressed H3K27me3 expression, and stimulated collagen II expression and ECM synthesis, thus maintaining cartilage metabolism homeostasis and alleviating KOA cartilage degeneration. CONCLUSION Curcumenol promotes cartilage repair and ameliorates cartilage degeneration in KOA by upregulating KDM6B expression, thereby reducing H3K27 methylation and downregulating Succinic Acid, restoring metabolic stability and ECM synthesis.
Collapse
Affiliation(s)
- Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Jiacong Xiao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Yi Zhou
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Weinian Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Junde Jian
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510045, Guangdong, China
| | - Jiyong Yang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Bohao Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Zhilong Ye
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Jun Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Xuemeng Xu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China
| | - Tao Jiang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China.
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China; Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Wengang Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, Guangdong, China; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, Guangdong, China.
| |
Collapse
|
9
|
Chen Y, Gao R, Fang J, Ding S. A review: Polysaccharides targeting mitochondria to improve obesity. Int J Biol Macromol 2024; 277:134448. [PMID: 39102922 DOI: 10.1016/j.ijbiomac.2024.134448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Polysaccharides are one of the most important and widely used bioactive components of natural products, which can be used to treat metabolic diseases. Natural polysaccharides (NPs) have been the subject of much study and research in the field of treating obesity in recent years. Studies in the past have demonstrated that mitochondria are important for the initiation, progression, and management of obesity. Additionally, NPs have the ability to improve mitochondrial dysfunction via a variety of mechanisms. This review summarized the relationship between the structure of NPs and their anti-obesity activity, focusing on the anti-obesity effects of these compounds at the mitochondrial level. We discussed the association between the structure and anti-obesity action of NPs, including molecular weight, monosaccharide composition, glycosidic linkage, conformation and extraction methods. Furthermore, NPs can demonstrate a range of functions in adipose tissue, including but not limited to improving the mitochondrial oxidative respiratory chain, inhibiting oxidative stress, and maintaining mitochondrial mass homeostasis. The purpose of this work is to acquire a thorough understanding of the function that mitochondria play in the anti-obesity effects of NPs and to offer fresh insights for the investigation of how NPs prevent obesity and the creation of natural anti-obesity medications.
Collapse
Affiliation(s)
- Yongchao Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China
| | - Rong Gao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China.
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China.
| |
Collapse
|
10
|
Weng L, Luo Y, Luo X, Yao K, Zhang Q, Tan J, Yin Y. The common link between sleep apnea syndrome and osteoarthritis: a literature review. Front Med (Lausanne) 2024; 11:1401309. [PMID: 39234045 PMCID: PMC11371730 DOI: 10.3389/fmed.2024.1401309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Patients with Osteoarthritis (OA) often also suffer from Sleep Apnea Syndrome (SAS), and many scholars have started to notice this link, although the relationship between the two is still unclear. In this review, we aim to summarize the current literature on these two diseases, integrate evidence of the OA and OSA connection, explore and discuss their potential common mechanisms, and thus identify effective treatment methods for patients with both OA and SAS. Some shared characteristics of the two conditions have been identified, notably aging and obesity as mutual risk factors. Both diseases are associated with various biological processes or molecular pathways, including mitochondrial dysfunction, reactive oxygen species production, the NF-kB pathway, HIF, IL-6, and IL-8. SAS serves as a risk factor for OA, and conversely, OA may influence the progression of SAS. The effects of OA on SAS are underreported in the literature and require more investigation. To effectively manage these patients, timely intervention for SAS is necessary while treating OA, with weight reduction being a primary requirement, alongside combined treatments such as Continuous positive airway pressure (CPAP) and medications. Additionally, numerous studies in drug development are now aimed at inhibiting or clearing certain molecular pathways, including ROS, NF-KB, IL-6, and IL-8. Improving mitochondrial function might represent a viable new strategy, with further research into mitochondrial updates or transplants being essential.
Collapse
Affiliation(s)
- Lian Weng
- Luzhou Longmatan District People's Hospital, Luzhou, China
| | - Yuxi Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiongjunjie Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaitao Yao
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qian Zhang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Junjie Tan
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yiran Yin
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Li J, Wang T, Hou X, Li Y, Zhang J, Bai W, Qian H, Sun Z. Extracellular vesicles: opening up a new perspective for the diagnosis and treatment of mitochondrial dysfunction. J Nanobiotechnology 2024; 22:487. [PMID: 39143493 PMCID: PMC11323404 DOI: 10.1186/s12951-024-02750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Mitochondria are crucial organelles responsible for energy generation in eukaryotic cells. Oxidative stress, calcium disorders, and mitochondrial DNA abnormalities can all cause mitochondrial dysfunction. It is now well documented that mitochondrial dysfunction significantly contributes to the pathogenesis of numerous illnesses. Hence, it is vital to investigate innovative treatment methods targeting mitochondrial dysfunction. Extracellular vesicles (EVs) are cell-derived nanovesicles that serve as intercellular messengers and are classified into small EVs (sEVs, < 200 nm) and large EVs (lEVs, > 200 nm) based on their sizes. It is worth noting that certain subtypes of EVs are rich in mitochondrial components (even structurally intact mitochondria) and possess the ability to transfer them or other contents including proteins and nucleic acids to recipient cells to modulate their mitochondrial function. Specifically, EVs can modulate target cell mitochondrial homeostasis as well as mitochondria-controlled apoptosis and ROS generation by delivering relevant substances. In addition, the artificial modification of EVs as delivery carriers for therapeutic goods targeting mitochondria is also a current research hotspot. In this article, we will focus on the ability of EVs to modulate the mitochondrial function of target cells, aiming to offer novel perspectives on therapeutic approaches for diverse conditions linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiali Li
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tangrong Wang
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaomei Hou
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Yu Li
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiaxin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wenhuan Bai
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zixuan Sun
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
12
|
Deng W, Zhou Y, Wan Q, Li L, Deng H, Yin Y, Zhou Q, Li Q, Cheng D, Hu X, Wang Y, Feng G. Nano-enzyme hydrogels for cartilage repair effectiveness based on ternary strategy therapy. J Mater Chem B 2024; 12:6242-6256. [PMID: 38842217 DOI: 10.1039/d4tb00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Designing artificial nano-enzymes for scavenging reactive oxygen species (ROS) in chondrocytes (CHOs) is considered the most feasible pathway for the treatment of osteoarthritis (OA). However, the accumulation of ROS due to the amount of nano-enzymatic catalytic site exposure and insufficient oxygen supply seriously threatens the clinical application of this therapy. Although metal-organic framework (MOF) immobilization of artificial nano-enzymes to enhance active site exposure has been extensively studied, artificial nano-enzymes/MOFs for ROS scavenging in OA treatment are still lacking. In this study, a biocompatible lubricating hydrogel-loaded iron-doped zeolitic imidazolate framework-8 (Fe/ZIF-8/Gel) centrase was engineered to scavenge endogenous overexpressed ROS synergistically generating dissolved oxygen and enhancing sustained lubrication for CHOs as a ternary artificial nano-enzyme. This property enabled the nano-enzymatic hydrogels to mitigate OA hypoxia and inhibit oxidative stress damage successfully. Ternary strategy-based therapies show excellent cartilage repair in vivo. The experimental results suggest that nano-enzyme-enhanced lubricating hydrogels are a potentially effective OA treatment and a novel strategy.
Collapse
Affiliation(s)
- Wei Deng
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 17 Gaopeng Avenue, Chengdu 610041, China.
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Yue Zhou
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinlin Wan
- Medical College of Soochow University, Suzhou, 215123, China
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Hui Deng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yong Yin
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Qingsong Zhou
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Qiujiang Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 17 Gaopeng Avenue, Chengdu 610041, China.
| | - Duo Cheng
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Ganjun Feng
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 17 Gaopeng Avenue, Chengdu 610041, China.
| |
Collapse
|
13
|
Guo W, Wang W, Lei F, Zheng R, Zhao X, Gu Y, Yang M, Tong Y, Wang Y. Angelica sinensis polysaccharide combined with cisplatin reverses cisplatin resistance of ovarian cancer by inducing ferroptosis via regulating GPX4. Biomed Pharmacother 2024; 175:116680. [PMID: 38703506 DOI: 10.1016/j.biopha.2024.116680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Cisplatin (DDP) resistance poses a significant challenge in the treatment of ovarian cancer. Studies have shown that the combination of certain polysaccharides derived from plants with DDP is an effective approach to overcoming drug resistance in some cancers. Angelica sinensis (Oliv.) Diels has been used for centuries in China to treat gynecological ailments. Numerous studies indicate that Angelica sinensis polysaccharide (ASP), an extract from Angelica sinensis, can inhibit various forms of cancer. However, the impact of ASP on ovarian cancer remains unexplored. Through both in vitro and in vivo experiments, our study revealed the capability of ASP to effectively reversing DDP resistance in cisplatin-resistant ovarian cancer cells, while exhibiting acceptable safety profiles in vivo. To elucidate the mechanism underlying drug resistance reversal, we employed RNA-seq analysis and identified GPX4 as a key gene. Considering the role of GPX4 in ferroptosis, we conducted additional research to explore the effects of combining ASP with DDP on SKOV3/DDP cells. In summary, our findings demonstrate that the combination of ASP and DDP effectively suppresses GPX4 expression in SKOV3/DDP cells, thereby reversing their resistance to DDP.
Collapse
Affiliation(s)
- Weikang Guo
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Wanyue Wang
- School of Basic Medical Sciences, Qiqihar Medical University, Qiqihar 161006, China
| | - Fei Lei
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Ruxin Zheng
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Xinyao Zhao
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yuze Gu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Mengdi Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yunshun Tong
- School of Science, Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yaoxian Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
14
|
Yuan H, Yi N, Li D, Xu C, Yin GR, Zhuang C, Wang YJ, Ni S. PPARγ regulates osteoarthritis chondrocytes apoptosis through caspase-3 dependent mitochondrial pathway. Sci Rep 2024; 14:11237. [PMID: 38755283 PMCID: PMC11099036 DOI: 10.1038/s41598-024-62116-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent form of arthritis, characterized by a complex pathogenesis. One of the key factors contributing to its development is the apoptosis of chondrocytes triggered by oxidative stress. Involvement of peroxisome proliferator-activated receptor gamma (PPARγ) has been reported in the regulation of oxidative stress. However, there remains unclear mechanisms that through which PPARγ influences the pathogenesis of OA. The present study aims to delve into the role of PPARγ in chondrocytes apoptosis induced by oxidative stress in the context of OA. Primary human chondrocytes, both relatively normal and OA, were isolated and cultured for the following study. Various assessments were performed, including measurements of cell proliferation, viability and cytotoxicity. Additionally, we examined cell apoptosis, levels of reactive oxygen species (ROS), nitric oxide (NO), mitochondrial membrane potential (MMP) and cytochrome C release. We also evaluated the expression of related genes and proteins, such as collagen type II (Col2a1), aggrecan, inducible nitric oxide synthase (iNOS), caspase-9, caspase-3 and PPARγ. Compared with relatively normal cartilage, the expression of PPARγ in OA cartilage was down-regulated. The proliferation of OA chondrocytes decreased, accompanied by an increase in the apoptosis rate. Down-regulation of PPARγ expression in OA chondrocytes coincided with an up-regulation of iNOS expression, leading to increased secretion of NO, endogenous ROS production, and decrease of MMP levels. Furthermore, we observed the release of cytochrome C, elevated caspase-9 and caspase-3 activities, and reduction of the components of extracellular matrix (ECM) Col2a1 and aggrecan. Accordingly, utilization of GW1929 (PPARγ Agonists) or Z-DEVD-FMK (caspase-3 inhibitor) can protect chondrocytes from mitochondrial-related apoptosis and alleviate the progression of OA. During the progression of OA, excessive oxidative stress in chondrocytes leads to apoptosis and ECM degradation. Activation of PPARγ can postpone OA by down-regulating caspase-3-dependent mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Hang Yuan
- Graduate School of Bengbu Medical College, Bengbu, China
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Ning Yi
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Graduate School of Dalian Medical University, Dalian, China
| | - Dong Li
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chao Xu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Guang-Rong Yin
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chao Zhuang
- Graduate School of Bengbu Medical College, Bengbu, China.
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Yu-Ji Wang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Su Ni
- Bone Disease Research and Clinical Rehabilitation Center, Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
15
|
Zhang X, Wang X, Yu F, Wang C, Peng J, Wang C, Chen X. PiRNA hsa_piR_019949 promotes chondrocyte anabolic metabolism by inhibiting the expression of lncRNA NEAT1. J Orthop Surg Res 2024; 19:31. [PMID: 38178210 PMCID: PMC10768105 DOI: 10.1186/s13018-023-04511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Osteoarthritis is a prevalent degenerative joint condition typically found in individuals who are aged 50 years or older. In this study, the focus is on PIWI-interacting RNA (piRNA), which belongs to a category of small non-coding RNAs. These piRNAs play a role in the regulation of gene expression and the preservation of genomic stability. The main objective of this research is to examine the expression of a specific piRNA called hsa_piR_019949 in individuals with osteoarthritis, to understand its impact on chondrocyte metabolism within this condition. METHODS We analyzed piRNA expression in osteoarthritis cartilage using the GEO database. To understand the impact of inflammatory factors on piRNA expression in chondrocytes, we conducted RT-qPCR experiments. We also investigated the effect of piRNA hsa_piR_019949 on chondrocyte proliferation using CCK-8 and clone formation assays. Furthermore, we assessed the influence of piRNA hsa_piR_019949 on chondrocyte apoptosis by conducting flow cytometry analysis. Additionally, we examined the differences in cartilage matrix composition through safranine O staining and explored the downstream regulatory mechanisms of piRNA using transcriptome sequencing. Lentiviral transfection of NEAT1 and NLRP3 was performed to regulate the metabolism of chondrocytes. RESULTS Using RNA sequencing technology, we compared the gene expression profiles of 5 patients with osteoarthritis to 3 normal controls. We found a gene called hsa_piR_019949 that showed differential expression between the two groups. Specifically, hsa_piR_019949 was downregulated in chondrocytes when stimulated by IL-1β, an inflammatory molecule. In further investigations, we discovered that overexpression of hsa_piR_019949 in vitro led to increased proliferation and synthesis of the extracellular matrix in chondrocytes, which are cells responsible for cartilage formation. Conversely, suppressing hsa_piR_019949 expression resulted in increased apoptosis (cell death) and degradation of the extracellular matrix in chondrocytes. Additionally, we found that the NOD-like receptor signaling pathway is linked to the low expression of hsa_piR_019949 in a specific chondrocyte cell line called C28/I2. Furthermore, we observed that hsa_piR_019949 can inhibit the expression of a long non-coding RNA called NEAT1 in chondrocytes. We hypothesize that NEAT1 may serve as a downstream target gene regulated by hsa_piR_019949, potentially influencing chondrocyte metabolism and function in the context of osteoarthritis. CONCLUSIONS PiRNA hsa_piR_019949 has shown potential in promoting the proliferation of chondrocytes and facilitating the synthesis of extracellular matrix in individuals with osteoarthritis. This is achieved by inhibiting the expression of a long non-coding RNA called NEAT1. The implication is that by using hsa_piR_019949 mimics, which are synthetic versions of the piRNA, as a therapeutic approach, it may be possible to effectively treat osteoarthritis.
Collapse
Affiliation(s)
- Xinhai Zhang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xuyi Wang
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fengbin Yu
- Department of Orthopaedics, The 72, Group Army Hospital of PLA, Huzhou, 313000, Zhejiang, China
| | - Chenglong Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jianping Peng
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Xiaodong Chen
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| |
Collapse
|