1
|
Lakshmi Priya VP, Devi M. Potential of integrating phytochemicals with standard treatments for enhanced outcomes in TBI. Brain Inj 2025:1-17. [PMID: 40259453 DOI: 10.1080/02699052.2025.2493352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
OBJECTIVE TBI's intricate pathophysiology, which includes oxidative stress, neuroinflammation, apoptosis, and mechanical injury, makes it a serious public health concern. Although stabilization and secondary damage management are the main goals of current treatments, their efficacy is still restricted. The potential for improving patient outcomes by combining phytochemicals with traditional medicines is examined in this review. METHODS The study examined the neuroprotective qualities of ginsenosides, ginkgolides, resveratrol, and curcumin as well as their antioxidant and anti-inflammatory activities. Analysis was done on molecular pathways and medication delivery techniques to improve translational outcomes and drug availability for clinical practice. RESULTS Phytochemical substances directly influence TBI-related neurogenic pathways and functional restoration while also affecting subsequent neural damage processes. Particle-based medicine delivery platforms enhance therapeutic drug efficacy, emerging as innovative solutions for targeted drug delivery. When traditional medical therapies integrate with phytochemicals, it becomes possible to achieve better patient results through enhanced synergy. CONCLUSION This review uniquely integrates phytochemicals with standard TBI treatments, emphasizing advanced drug delivery strategies and their translational potential to enhance neuroprotection and clinical outcomes. Unlike previous studies, it explores novel drug delivery platforms, such as nanoparticle-based systems, and highlights the synergy between phytochemicals and conventional therapies to improve patient recovery.
Collapse
Affiliation(s)
- V P Lakshmi Priya
- Department of Pharmacology, Faculty of Pharmacy, Dr. M.G.R Educational and Research Institute, Chennai, India
| | - M Devi
- Department of Pharmacology, Faculty of Pharmacy, Dr. M.G.R Educational and Research Institute, Chennai, India
| |
Collapse
|
2
|
Wang X, Fang X, Zhou J, Pu H, Shang Q, Li J, Qin X, Zhao Q, Gu W. Hepatoprotective effects of wine-steamed Schisandra sphenanthera fruit in alleviating APAP-induced liver injury via the gut-liver axis. Food Funct 2025. [PMID: 40243619 DOI: 10.1039/d5fo00656b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Drug-induced liver injury (DILI) is a common adverse drug reaction that can result in liver injury, particularly in cases of paracetamol (APAP) abuse. Schisandra sphenanthera Rehd. et Wils. has attracted attention due to its hepatoprotective properties, and the underlying mechanism is unclear. In this study, a mouse model of APAP-induced liver injury was employed to evaluate network pharmacology analysis, histopathological analysis, the gut microbiota, and fecal metabolome to investigate the mechanism by which S. sphenanthera fruit extract (SFE) alleviates DILI. Network pharmacology indicated that the SFE can attenuate APAP-induced liver injury via key targets, including MAPK3 and CASP3. Furthermore, SFE effectively alleviated APAP-induced oxidative stress (MDA, SOD, and GSH) and inflammation (IL-6, TNF-α, and IL-1β). Further analysis of gut microbiota and fecal metabolites revealed that SFE promoted the growth of Bacteroidales and Erysipelotrichales, and decreased the growth of Lactobacillales, leading to increased production of tryptophan metabolites. Correlation analysis showed that the increase in gut microbiota by SFE was positively correlated with improved antioxidant ability and improved liver and gut function. In conclusion, SFE pretreatment can alleviate APAP-induced liver injury by targeting the gut-liver axis, and provides a valuable reference for the clinical use of SFE in the prevention or treatment of DILI.
Collapse
Affiliation(s)
- Xiaorui Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Xilin Fang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Jia Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Han Pu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Qianqian Shang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Jianhua Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Xiaolu Qin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Qiaozhu Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Wei Gu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| |
Collapse
|
3
|
Dong Y, Jia R, Jiang Y, Li Q, Wang L, Ding W, Yan R, Qiu Y, Shi Z, Liu W, Wang J, Xu S, Li N. SMND-309 activates Nrf2 signaling to alleviate acetaminophen-induced hepatotoxicity and oxidative stress. PLoS One 2025; 20:e0310879. [PMID: 40163430 PMCID: PMC11957308 DOI: 10.1371/journal.pone.0310879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Acetaminophen (APAP) can be used for pain relief and fever alleviation, the overdose of which, however, may lead to the accumulation of N-acetyl-p-benzoquinone imine (NAPQI), inducing oxidative stress and liver damage. The natural compound SMND-309 has been shown to have hepatoprotective effects and potential antioxidant activity. However, its ability to alleviate acetaminophen-induced acute liver injury (AILI) has not been elucidated. OBJECTIVE To explore the protective effect of the natural compound SMND-309 against AILI and the potential mechanism. METHODS The AILI model was established using a mouse model and HepG2 cells for pathological evaluation and biochemical assays of mouse liver tissues to assess the level of liver injury. The effects of SMND-309 on cellular ROS levels and mitochondrial membrane potential were detected using DCFH-DA and JC-1 probes. Western blotting was performed to detect the expressions of Nrf2 signaling pathway and key proteins related to APAP metabolism in the combination of immunohistochemistry of liver tissues, with immunofluorescence assay used to detect whether Nrf2 undergoes nuclear translocation. Molecular docking, molecular dynamics simulation (MD) and biofilm layer interference (BLI) experiments were performed to detect the interaction of SMND-309 with Keap1. RESULTS SMND-309 improved histopathological changes in the liver, decreased alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) levels, as well as attenuated oxidative stress injury and mitochondrial dysfunction in the HepG2 cell line. Further studies revealed that SMND-309 promoted nuclear translocation of Nrf2 and upregulated the expressions of glutamate-cysteine ligase catalytic subunit (GCLC), heme oxygenase 1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1). In addition, molecular docking and MD suggested that SMND-309 could bind Keap1 and identified possible binding modes, with BLI experiments confirming that SMND-309 directly interacted with Keap1. CONCLUSION SMND-309 exerts hepatoprotective effects against AILI in an Nrf2-ARE signaling pathway-dependent manner.
Collapse
Affiliation(s)
- Yao Dong
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Ru Jia
- Department of Obstetrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Yujie Jiang
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Qing Li
- Department of Obstetrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Lei Wang
- Department of Obstetrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Wensi Ding
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Rui Yan
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Yujie Qiu
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Zhengjie Shi
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Wenying Liu
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Jing Wang
- Department of Gastroenterology, Yantai Zhifu Hospital, Yantai, Shandong, P.R.China
| | - Sen Xu
- Binzhou Medical University, Yantai, Shandong, P.R.China
| | - Na Li
- Department of Orthopedics, Yantai Yantaishan Hospital, Yantai, Shandong, P.R.China
| |
Collapse
|
4
|
Jadhav PA, Thomas AB, Pathan MK, Chaudhari SY, Wavhale RD, Chitlange SS. Unlocking the therapeutic potential of unexplored phytocompounds as hepatoprotective agents through integration of network pharmacology and in-silico analysis. Sci Rep 2025; 15:8425. [PMID: 40069278 PMCID: PMC11897136 DOI: 10.1038/s41598-025-92868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Liver diseases account for over two million deaths annually, amounting to 4% of mortality worldwide, underscoring the need for development of novel preventive and therapeutic strategies. The growing interest in natural hepatoprotective agents highlights the potential of traditional medicine for modern drug discovery, though unlocking their molecular complexity requires advanced tools. This study integrates cutting-edge computational techniques with traditional herbal knowledge to identify potential hepatoprotective compounds. Protein targets implicated in liver disorders were identified through network pharmacology and by leveraging the rich molecular diversity inherent in herbal compounds, phytocompounds were selected. The Gene Ontology, Kyoto Encyclopedia of Genes and Genome data were compiled and enrichment analysis was performed using the DAVID database. Molecular docking of selected phytocompounds with top five protein targets helped identify 14 compounds which were employed for building the pharmacophore model. In virtual screening, among 1089 compounds screened, 10 compounds were identified as potential hits based on their predicted scores and alignment with pharmacophore features. The interactions of resulting hits were then analyzed through redocking studies and validated through molecular dynamics simulation and ADMET studies. Notably, (2S,5E)-2-(3,4-Dihydroxybenzyl)-6-(3,4-dihydroxyphenyl)-4-oxo-5-hexenoic acid and 5'-hydroxymorin emerged as lead compounds for further investigation. Both compounds exhibited significant binding affinities with specific amino acids in selected targets, suggesting their potential to modulate key pathways involved in hepatic disorders. Our findings demonstrate the utility of this integrated approach which transits beyond traditional trial-and-error methods. This approach will accelerate the discovery of novel hepatoprotective compounds, providing deeper insights into their mechanistic pathways and action.
Collapse
Affiliation(s)
- Pranali A Jadhav
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, 411 018, India
| | - Asha B Thomas
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, 411 018, India.
| | | | - Somdatta Y Chaudhari
- Department of Pharmaceutical Chemistry, PES's Modern College of Pharmacy, Nigdi, Pune, Maharashtra, India
| | - Ravindra D Wavhale
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, 411 018, India
| | - Sohan S Chitlange
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, 411 018, India
| |
Collapse
|
5
|
Saeed K, Chughtai MFJ, Ahsan S, Mehmood T, Khalid MZ, Khaliq A, Zuhair M, Khalid W, Alsulami T, Law D, Mukonzo EL. Hepatoprotective Effect of a Kalanchoe pinnata-Based Beverage Against Carbon Tetrachloride- and Gentamicin-Induced Hepatotoxicity in Wistar Rats. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025:1-17. [PMID: 39937610 DOI: 10.1080/27697061.2024.2442615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 02/14/2025]
Abstract
OBJECTIVE Chronic liver diseases are accountable for approximately 2 million deaths annually. The current study aimed to test the putative prophylactic role of Kalanchoe pinnata against hepatic stress. METHOD Kalanchoe pinnata leaf extracts utilized in beverage production were obtained via 3 different extraction techniques (conventional solvent extraction, supercritical fluid extraction, microwave-assisted extraction). RESULTS The highest values on 2,2-diphenyl-1-picrylhydrazyl, ferric reducing antioxidant power, and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid assay were from a beverage prepared with supercritical fluid extract. When the prophylactic aspects of a Kalanchoe pinnata-based beverage were explored against carbon tetrachloride- (CCl4-) and gentamicin-induced hepatotoxic conditions in male Wistar rats, results revealed a reduction in serum aspartate aminotransferase, serum alkaline phosphatase, serum alanine transaminase, and bilirubin levels in rats with CCl4 and gentamicin-induced toxicity. The study also concluded that the administration of a therapeutic beverage significantly improved serum total protein, albumin, and globulin levels in Kalanchoe pinnata-treated rats. CONCLUSIONS Our findings support the ameliorative potential of Kalanchoe pinnata against liver diseases.
Collapse
Affiliation(s)
- Kanza Saeed
- Institute of Food Science and Technology, Faculty of Food Health Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
- Faculty of Food Technology and Nutrition Sciences, University of Biological and Applied Sciences, Lahore, Pakistan
| | - Muhammad Farhan Jahangir Chughtai
- Institute of Food Science and Technology, Faculty of Food Health Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Samreen Ahsan
- Institute of Food Science and Technology, Faculty of Food Health Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Tariq Mehmood
- Institute of Food Science and Technology, Faculty of Food Health Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Zubair Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Adnan Khaliq
- Institute of Food Science and Technology, Faculty of Food Health Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Zuhair
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Waseem Khalid
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, Ciudad Real, Spain
| | - Tawfiq Alsulami
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabi
| | - Douglas Law
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Emery Lenge Mukonzo
- Land Evaluation and Agro-metrology Research Unit, Department of Soil Science, Faculty of Agriculture Research, University of Lubumbashi, Lubumbashi, DR Congo
| |
Collapse
|
6
|
Zhong YH, Wu XW, Zhang XY, Zhang SW, Feng Y, Zhang XM, Xu BB, Zhong GY, Huang HL, He JW, Zeng JX, Liang J. Intestinal microbiota-mediated serum pharmacochemistry reveals hepatoprotective metabolites of Platycodonis Radix against APAP-induced liver injury. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1251:124395. [PMID: 39644824 DOI: 10.1016/j.jchromb.2024.124395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
The urgent need for new medications that regulate CYP2E1, CASP3, Nrf2, HO-1, TLR2, TLR4, STAT3, and NF-κB activities is paramount for the treatment of drug-induced liver injury (DILI), particularly from acetaminophen (APAP). Previous studies have suggested that platycosides of Platycodonis Radix exhibits hepatoprotective properties against APAP-induced liver injury (AILI), and their serum metabolites may be the effective agents. As the identify the serum metabolites of platycosides is a huge challenge, the mechanism whether platycosides exert effects through the serum metabolites regulating those targets still remain unclear. In this study, we propose a novel method termed intestinal microbiota-mediated serum pharmacochemistry (IMSP) to identify the serum metabolite profile of platycosides, using deglycosylated platycosides as template molecules. Our results identified a total of 44 prototype platycosides in the total platycosides fraction of Platycodonis Radix (PF). In rat serum, we identified 12 prototype platycosides and 45 metabolites derived from the 44 platycosides. Furthermore, our findings indicate that all 44 platycosides can enter the serum in the form of metabolites. The presence of these metabolites in serum is closely related to their oral bioavailability and the content of the prototypes. The in vivo animal experiments showed that the PF possessed significant anti-AILI effects and CYP2E1, CASP3, Nrf2, HO-1, TLR2, TLR4, STAT3, and NF-κB p65 regulation activities. And the in vitro cell experiments and molecular docking analyses further demonstrated that the hepatoprotective effects were mainly ascribed to the serum metabolites, which regulating targets of CYP2E1, CASP3, Nrf2, HO-1, TLR2, TLR4, STAT3, and NF-κB p65. Additionally, the activities of these metabolites are closely associated with their structures. In summary, the IMSP method significantly enhances the ability to identify platycoside metabolites in serum, reveals that all platycosides may contribute to anti-AILI activity through their metabolites, PF and some of these metabolites are promising candidate compounds for developing new medications with anti-AILI effects for the first time.
Collapse
Affiliation(s)
- Yuan-Han Zhong
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xi-Wa Wu
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xin-Yu Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shou-Wen Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yan Feng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xue-Mei Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Bing-Bing Xu
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Nanchang 330046, China
| | - Guo-Yue Zhong
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hui-Liang Huang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun-Wei He
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jin-Xiang Zeng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Jian Liang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
7
|
Ramachandran A, Akakpo JY, Curry SC, Rumack BH, Jaeschke H. Clinically relevant therapeutic approaches against acetaminophen hepatotoxicity and acute liver failure. Biochem Pharmacol 2024; 228:116056. [PMID: 38346541 PMCID: PMC11315809 DOI: 10.1016/j.bcp.2024.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Liver injury and acute liver failure caused by an acetaminophen (APAP) overdose is a significant clinical problem in western countries. With the introduction of the mouse model of APAP hepatotoxicity in the 1970 s, fundamental mechanisms of cell death were discovered. This included the recognition that part of the APAP dose is metabolized by cytochrome P450 generating a reactive metabolite that is detoxified by glutathione. After the partial depletion of glutathione, the reactive metabolite will covalently bind to sulfhydryl groups of proteins, which is the initiating event of the toxicity. This insight led to the introduction of N-acetyl-L-cysteine, a glutathione precursor, as antidote against APAP overdose in the clinic. Despite substantial progress in our understanding of the pathomechanisms over the last decades viable new antidotes only emerged recently. This review will discuss the background, mechanisms of action, and the clinical prospects of the existing FDA-approved antidote N-acetylcysteine, of several new drug candidates under clinical development [4-methylpyrazole (fomepizole), calmangafodipir] and examples of additional therapeutic targets (Nrf2 activators) and regeneration promoting agents (thrombopoietin mimetics, adenosine A2B receptor agonists, Wharton's Jelly mesenchymal stem cells). Although there are clear limitations of certain therapeutic approaches, there is reason to be optimistic. The substantial progress in the understanding of the pathophysiology of APAP hepatotoxicity led to the consideration of several drugs for development as clinical antidotes against APAP overdose in recent years. Based on the currently available information, it is likely that this will result in additional drugs that could be used as adjunct treatment for N-acetylcysteine.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Steven C Curry
- Department of Medical Toxicology, Banner - University Medical Center Phoenix, Phoenix, AZ, USA; Department of Medicine, and Division of Clinical Data Analytics and Decision Support, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Barry H Rumack
- Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Denver, CO, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
8
|
Jaeschke H, Ramachandran A. Comments on: Unveiling the therapeutic promise of natural products in alleviating drug-induced liver injury: Present advancements and future prospects. Phytother Res 2024; 38:1781-1782. [PMID: 38317477 PMCID: PMC11003835 DOI: 10.1002/ptr.8145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
9
|
Wu X, Guan Y, Wang J, Song L, Zhang Y, Wang Y, Li Y, Qin L, He Q, Zhang T, Long B, Ji L. Co-catalpol alleviates fluoxetine-induced main toxicity: Involvement of ATF3/FSP1 signaling-mediated inhibition of ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155340. [PMID: 38401490 DOI: 10.1016/j.phymed.2024.155340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Fluoxetine is often used as a well-known first-line antidepressant. However, it is accompanied with hepatogenic injury as its main organ toxicity, thereby limiting its application despite its superior efficacy. Fluoxetine is commonly traditionally used combined with some Chinese antidepressant prescriptions containing Rehmannia glutinosa (Dihuang) for depression therapy and hepatoprotection. Our previous experiments showed that co-Dihuang can alleviate fluoxetine-induced liver injury while efficiencies, and catalpol may be the key ingredient to characterize the toxicity-reducing and synergistic effects. However, whether co-catalpol can alleviate fluoxetine-induced liver injury and its toxicity-reducing mechanism remain unclear. PURPOSE On the basis of the first recognition of the dose and duration at which pre-fluoxetine caused hepatic injury, co-catalpol's alleviation of fluoxetine-induced hepatic injury and its pathway was comprehensively elucidated. METHOD AND RESULTS The hepatoprotection of co-catalpol was evaluated by serum biochemical indexes sensitive to hepatic injury and multiple staining techniques for hepatic pathologic analysis. Subsequently, the pathway by which catalpol alleviated fluoxetine-induced hepatic injury was predicted by network pharmacology to be predominantly the inhibition of ferroptosis. These were validated and confirmed in subsequent experiments with key technologies and diagnostic reagents related to ferroptosis. Further molecular docking showed that activating transcription factor 3 (ATF3) and ferroptosis suppressor protein 1 (FSP1) were the the most prospective molecules for catalpol and fluoxetine among many ferroptosis-related molecules. The critical role of ATF3/FSP1 signaling was further observed by surface plasmon resonance, diagnostic reagents, transmission electron microscopy, Western blot, real-time PCR, immunofluorescence, and immunohistochemistry. Results showed that fluoxetine directly bound to ATF3 and FSP1; agonisting ATF3 or blocking FSP1 abolished the alleviation of catalpol on fluoxetine-induced liver injury, and both exacerbated ferroptosis. Moreover, co-catalpol significantly enhanced the antidepressant efficacy of fluoxetine against depressive behaviours in mice. CONCLUSION The hepatic impairment properties of fluoxetine were largely dependent on ATF3/FSP1 target-mediated ferroptosis. Co-catalpol alleviated fluoxetine-induced hepatic injury while enhancing its antidepressant efficacy, and that ATF3/FSP1 signaling-mediated inhibition of ferroptosis was involved in its co-administration detoxification mechanism. This study was the first to reveal the hepatotoxicity characteristics, targets, and mechanisms of fluoxetine; provide a detoxification and efficiency regimen by co-catalpol; and elucidate the detoxification mechanism.
Collapse
Affiliation(s)
- Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yuechen Guan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanmei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Qingwen He
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Tianzhu Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Bingyu Long
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lijie Ji
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|