1
|
An X, Guo X, Cai M, Xu M. Exploring the Regulatory Effect of Hydroxytyrosol on Ovarian Inflammaging Through Autophagy-Targeted Mechanisms: A Bioinformatics Approach. Nutrients 2025; 17:1421. [PMID: 40362730 PMCID: PMC12073169 DOI: 10.3390/nu17091421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: Ovarian aging represents a critically important aspect of female senescence. It not only denotes the loss of fertility but is also accompanied by a series of physiological changes and the aging of other organs. Hydroxytyrosol (HT), a natural polyphenolic phytocompound, has been demonstrated to exhibit remarkable effects in regulating autophagy, inflammation, and the aging process. However, the relationship between HT and ovarian aging, as well as the specific underlying mechanisms, remains poorly understood. Methods: In this study, network pharmacology, molecular docking, and molecular dynamics simulation were employed to explore the regulatory effect of HT on ovarian inflammaging via autophagy-targeted mechanisms. Results: Through network pharmacology analysis, this study successfully identified 10 hub genes associated with ovarian aging regulation. Notably, four out of the top five hub genes were found to be closely related to autophagy regulatory pathways. Further investigation revealed the pivotal role of ATG7: HT may regulate ovarian inflammaging through activating the FIP200 (focal adhesion kinase family interacting protein of 200 kD)-dependent non-canonical selective autophagy pathway. The results of molecular docking indicated that ATG7 has a strong binding ability with HT. Molecular dynamics simulation further verified the binding stability between the two. Conclusions: By analysis, a possible pathway for HT to regulate ovarian inflammaging via non-canonical selective autophagy was explored, providing cues for further research.
Collapse
Affiliation(s)
- Xiaoyang An
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (X.A.); (X.G.); (M.C.)
| | - Xiaoyu Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (X.A.); (X.G.); (M.C.)
| | - Meng Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (X.A.); (X.G.); (M.C.)
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (X.A.); (X.G.); (M.C.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Nakashima Y, Gotoh K, Yagi M, Mizuguchi S, Kang D, Kanno T, Uchiumi T. Parachlorella beijerinckii-derived carotenoids ameliorate inflammation in a psoriasis-like mouse model via modulation of pro-inflammatory cytokines in dendritic cells. J Nutr Biochem 2025; 143:109922. [PMID: 40245955 DOI: 10.1016/j.jnutbio.2025.109922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Psoriasis is one of the most common chronic inflammatory skin diseases. Many studies suggest that dendritic cells (DCs) and the T cell-mediated interleukin (IL)-23/IL-17 axis play a central role in the signaling pathway in the pathogenesis of psoriasis. Chlorella, also known as Parachlorella beijerinckii (PB), is a unicellular green alga that has long been used as a health food. It contains carotenoids that have antioxidant and anti-inflammatory effects. In this study, we investigated whether PB-derived carotenoids (PBCs) ameliorated inflammatory processes in an imiquimod (IMQ)-induced psoriasis-like mouse model and bone marrow-derived dendritic cells (BMDCs). We found that PBCs attenuated erythema, thickness, scaling, and neutrophil infiltration in the skin tissue of the IMQ-induced psoriasis-like mice. Moreover, PBCs suppressed psoriasis-related pro-inflammatory cytokine expression, DC activation, and IL-17A production by γδ T cells in IMQ-induced psoriasis-like mice. In IMQ-induced BMDCs, PBCs suppressed the expression levels of pro-inflammatory cytokines, including IL-23; IL-1β; and IL-6; and CD40/CD86, a marker of DC activation. Additionally, PBCs inhibited the nuclear factor kappa B, p38, and c-Jun NH2-terminal kinase inflammatory signaling pathways and the mitochondrial reactive oxygen species (mitoROS)-triggered inflammasome activation pathway. PBCs also activated the extracellular regulated protein kinase/NF-E2-related factor-2 (ERK/Nrf2) pathway in BMDCs. Moreover, PBCs suppressed the harmful effects of pro-inflammatory cytokine gene expression and mitoROS and inflammasome activation via ERK/Nrf2 pathway activation in IMQ-induced BMDCs. In conclusion, PBCs may be beneficial in the management of psoriatic inflammation.
Collapse
Affiliation(s)
- Yuya Nakashima
- Department of Research and Development, Chlorella Industry Co., Ltd., Fukuoka, Japan.
| | - Kazuhito Gotoh
- Department of Laboratory Medicine, Tokai University School of Medicine, Kanagawa, Japan; Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikako Yagi
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Soichi Mizuguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Kashiigaoka Rehabilitation Hospital, Fukuoka, Japan
| | - Toshihiro Kanno
- Department of Research and Development, Chlorella Industry Co., Ltd., Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Li M, Li D, Zhang Y, Wang J, Wang S, Zhao H, Wang H, Zeng X, Xu D, Lyu L. Cannabidiol-loaded hydrogel microneedle patches inhibit TRIM14/TRAF3/ NF-κB axis for the treatment of psoriasis. Int J Biol Macromol 2025; 304:140825. [PMID: 39933682 DOI: 10.1016/j.ijbiomac.2025.140825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/25/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
Psoriasis is a common chronic skin disease characterized by hyperproliferation of keratinized cells and infiltration of inflammatory cells that affects many patients worldwide. There is no cure for psoriasis, and its pathogenesis has not yet been fully elucidated. Alterations in some TRIM family proteins have been demonstrated to be involved in the exacerbation of psoriasis, however, the molecular mechanism of TRIM14 in psoriasis is unknown. Here, we show that TRIM14 is highly expressed in psoriasis patients and is closely associated with the progression of psoriasis. A possible mechanism is that TRIM14 binds to TRAF3 and mediates the autophagic degradation of TRAF3 through the selective autophagy receptor NDP52, activating the NF-κB pathway. In addition, cannabidiol (CBD) can effectively inhibit the proliferation of keratinocytes, possibly by inhibiting the expression of TRIM14 and attenuating the continuous activation of the NF-κB pathway in psoriasis. CBD-loaded hydrogel microneedle patches significantly improved the symptoms of keratoderma thickening, erythema and desquamation in psoriatic mice and reduced the levels of inflammatory factors in psoriatic skin tissue and blood, as well as the spleen index compared with Tacrolimus cream (positive control). In summary, TRIM14, which is highly expressed in psoriasis patients, may be a potential target and provide new ideas for the treatment of psoriasis. In addition, the CBD hydrogel microneedle patches developed for TRIM14 has obvious therapeutic effects and provides a new option for future drug therapy for psoriasis patients.
Collapse
Affiliation(s)
- Mengyan Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Die Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yu Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Juan Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Shenglan Wang
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Hao Zhao
- The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Hanying Wang
- Department of physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, Yunnan, China.
| | - Dan Xu
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China.
| | - Lechun Lyu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming 650500, Yunnan, China.
| |
Collapse
|
4
|
Shen M, Lu J, Li C, Li Y, Yu Q, Gao X, Wang Z, Yang G, Li S, Lin Z. Punicalagin inhibits excessive autophagy and improves cerebral function in neonatal rats with hypoxia-ischemia brain injury by regulating AKT-FOXO4. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156330. [PMID: 39756314 DOI: 10.1016/j.phymed.2024.156330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/11/2024] [Accepted: 12/14/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Neonatal hypoxic-ischemic encephalopathy (HIE) has a high incidence and mortality rate, representing a significant patient burden. Therefore, treatment strategies that work synergistically with hypothermic therapies are urgently required. Punicalagin (PUN) is a natural and safe polyphenol with anti-inflammatory functions whose excellent water solubility and safety make it an advantageous perinatal medication. However, its underlying mechanisms of action in HIE remain unclear. OBJECTIVES This study investigated the role and associated mechanism of action PUN in HIE. METHODS We used the Rice Vannucci method to construct an in vivo HIE model in rats, from which we extracted primary cortical neurons to construct an in vitro oxygen and glucose deprivation/reoxygenation (OGD/R) model. The mechanisms of action of PUN were investigated using transcriptome sequencing, laser speckle contrast imaging, 2,3,5-triphenyltetrazolium chloride-staining, the Morris water maze test, western blotting, qPCR, immunofluorescence, and histochemistry. RESULTS HIE rats demonstrated excessive autophagy and inflammation. PUN reduced brain tissue damage and neuronal apoptosis, and improved cerebral blood flow perfusion, learning, and cognitive abilities. PUN attenuated autophagic overexpression following HIE and inhibited the AKT-FOXO4 (forkhead box O4) signaling pathway. The neuroprotective effects of PUN were inhibited by treatment with the AKT signaling pathway and autophagy inhibitor 3-MA. Furthermore, brain tissue damage was significant and PUN was ineffective in siFOXO4 rats. CONCLUSIONS PUN significantly reduces cerebral infarction, neuroinflammation, and excessive autophagy caused by HIE, thereby exerting short- and long-term neuroprotective effects. Mechanistically, the neuroprotective effect of PUN is mediated by activation of the AKT-FOXO4 pathway. Therefore, PUN may be a potential therapy for HIE.
Collapse
Affiliation(s)
- Ming Shen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China; Key Laboratory of Rehabilitation, Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou 325024, Zhejiang, China
| | - Junhong Lu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Caiyan Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Yujiang Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Qianqian Yu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Key Laboratory of Rehabilitation, Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou 325024, Zhejiang, China
| | - Xinyu Gao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Zhouguang Wang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Guanhu Yang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Department of Specialty Medicine, Ohio University, 45701,Athens, OH, United States
| | - Shengcun Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China; Department of Specialty Medicine, Ohio University, 45701,Athens, OH, United States.
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Key Laboratory of Rehabilitation, Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou 325024, Zhejiang, China.
| |
Collapse
|
5
|
Li H, Zhang H, Zhao X, Huang J, Zhang J, Liu Z, Wen J, Qin S. The role of C-reactive protein and genetic predisposition in the risk of psoriasis: results from a national prospective cohort. BMC Rheumatol 2024; 8:72. [PMID: 39707502 DOI: 10.1186/s41927-024-00450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic inflammatory disease associated with multiple factors. To evaluate the extent to which C-reactive protein (CRP) and genetic predisposition affect the incidence of psoriasis. METHODS The cohort study retrieved 420,040 participants without psoriasis at baseline from the UK Biobank. Serum CRP was categorized into two levels: < 2 mg/L (normal) and ≥ 2 mg/L (elevated). The polygenic risk score (PRS) was used to estimate genetic predisposition, and was characterized as low, moderate and high PRS. The possible interaction and joint associations between CRP and PRS were assessed using Cox proportional hazards models. RESULTS Participants with high CRP levels had an increased risk of incident psoriasis compared to those with low CRP levels (HR: 1.26, 95% CI: 1.18-1.34). Participants with high CRP levels and high PRS had the highest risk of incident psoriasis [2.24 (95% CI: 2.01, 2.49)], compared with those had low CRP levels and low PRS. Significant additive and multiplicative interaction were found between CRP and PRS in relation to the incidence of psoriasis. CONCLUSIONS Our results suggest that higher CRP concentration may be associated with higher psoriasis incidence, with a more pronounced association observed in individuals with high PRS for psoriasis. So, clinicians should be aware that the risk of incident psoriasis may increase in general population with high CRP levels and high PRS, so that early investigation and intervention can be initiated.
Collapse
Affiliation(s)
- Huarun Li
- Department of Dermatology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Haobin Zhang
- Institute for Healthcare Artificial Intelligence Application, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiangyue Zhao
- Department of Dermatology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinping Huang
- Department of Dermatology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaoyan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Ju Wen
- Department of Dermatology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Si Qin
- Department of Dermatology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Zheng S, Deng R, Huang G, Ou Z, Shen Z. Screening the active ingredients of plants via molecular docking technology and evaluating their ability to reduce skin photoaging. Biogerontology 2024; 25:1115-1143. [PMID: 39312047 DOI: 10.1007/s10522-024-10125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 10/18/2024]
Abstract
The active ingredients of plants were screened by molecular docking technology and the result were verified. According to the verification results of molecular docking, the five active ingredients were combined in equal proportions to form a compound drug. In the HaCaT photoaging model, the effects of the compound drug on antioxidant and senescence-associated secretory phenotype (SASP) factors of the NF-κB and MAPK pathways were studied via SOD and MDA kits, DCFH-DA fluorescent probes and ELISA. In the skin photoaging model, the effects of the compound drug on antioxidants and the SASP factors of the NF-κB and MAPK pathways were studied via SOD, MDA, and CAT kits and ELISA. The results revealed that the compound drug increased SOD activity, decreased the MDA content and intracellular ROS, inhibited IL-6 in the NF-κB pathway, and inhibited MMP-1 and collagen I in the MAPK pathway. The results of HE, Masson and Victoria blue skin staining revealed that the compound drug inhibited abnormal thickening of the epidermis, abnormal breaking and accumulation of collagen fibers and elastic fibers, and maintained their orderly arrangement. Moreover, the results revealed that the compound drug increased SOD, CAT and collagen I, and reduced the MDA content, the SASP factors IL-6 and TNF-α of the NF-κB pathway, and the SASP factors MMP-1 of the MAPK pathway. The above results indicate that the active ingredients of the compound drug screened by molecular docking have the potential to reduce skin photoaging.
Collapse
Affiliation(s)
- Shiqian Zheng
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Rongrong Deng
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Gengjiu Huang
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Zhiwen Ou
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Zhibin Shen
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China.
| |
Collapse
|
7
|
Chen W, Liang J, He S, Liang Q, Tian W, Lu A, Li D, Huang Z, Wu G. She-Chuang-Si-Wu-Tang Alleviates Inflammation and Itching Symptoms in a Psoriasis Mouse Model by Regulating the Th17/IL-17 Axis via the STAT3/MAPK Pathways. J Inflamm Res 2024; 17:5957-5975. [PMID: 39247836 PMCID: PMC11380483 DOI: 10.2147/jir.s472417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose Psoriasis is an immune-related disorder characterized by silver scales, epidermis thickness, and itching. She-Chuang-Si-Wu-Tang (SSWT), a traditional Chinese medicine decoction, has been used clinically for 400 years. Although it benefits psoriasis treatment, the mechanism of action is still unclear. This study explores SSWT's molecular mechanism in treating psoriasis through network pharmacology analysis and experiments. Methods We identified relevant SSWT and psoriasis targets using network pharmacology and conducted SSWT quality control with high-performance liquid chromatography (HPLC). A mouse model of psoriasis was established using imiquimod (IMQ), with the drug administered continuously for seven days, spanning an eight-day period. During the experiment, we observed spontaneous scratching behaviors and assessed the Psoriasis Area and Severity Index (PASI) scores. At the conclusion of the experiment, we examined skin tissue pathology under an optical microscope and measured epidermal thickness. Additionally, we used enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) to measure interleukin (IL)-23, IL-17A, IL-17F, and interferon (IFN)-γ levels in the mice's serum and their mRNA expression in the skin. Western blot analysis was conducted to assess protein levels related to signaling pathways. Results Results indicate that SSWT may target IL-17 signaling pathways and T helper (Th) 17 cell differentiation, as predicted by network pharmacology. SSWT significantly improved the PASI and Baker scores, reduced epidermal thickness, and decreased spontaneous scratching in IMQ-induced mice. Additionally, SSWT treatment significantly lowered the concentrations of inflammatory factors in the serum and skin lesions, as well as mRNA expression levels, compared to the IMQ group. Furthermore, SSWT significantly inhibited the phosphorylation of both the signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) pathways. Conclusion In summary, this study unveiled the potential anti-psoriatic mechanism of SSWT, offering new evidence for its clinical application.
Collapse
Affiliation(s)
- Weixiong Chen
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People’s Republic of China
| | - Jianqiang Liang
- Department of Dermatology, the First People’s Hospital of Yulin, Yulin, Guangxi, 537000, People’s Republic of China
| | - Shuang He
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
- Key Laboratory for Complementary and Alternative Medicine Experimental Animal Models of Guangxi, Nanning, Guangxi, 530299, People’s Republic of China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, Guangxi, 530299, People’s Republic of China
| | - Qingsong Liang
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
- Key Laboratory for Complementary and Alternative Medicine Experimental Animal Models of Guangxi, Nanning, Guangxi, 530299, People’s Republic of China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, Guangxi, 530299, People’s Republic of China
| | - Wenting Tian
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
| | - Aobo Lu
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
| | - Demin Li
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
| | - Zhicheng Huang
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
| | - Guanyi Wu
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530299, People’s Republic of China
- Key Laboratory for Complementary and Alternative Medicine Experimental Animal Models of Guangxi, Nanning, Guangxi, 530299, People’s Republic of China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, Guangxi, 530299, People’s Republic of China
| |
Collapse
|
8
|
Zhang Y, Lin X, Xia L, Xiong S, Xia B, Xie J, Lin Y, Lin L, Wu P. Progress on the Anti-Inflammatory Activity and Structure-Efficacy Relationship of Polysaccharides from Medical and Edible Homologous Traditional Chinese Medicines. Molecules 2024; 29:3852. [PMID: 39202931 PMCID: PMC11356930 DOI: 10.3390/molecules29163852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Medicinal food varieties developed according to the theory of medical and edible homologues are effective at preventing and treating chronic diseases and in health care. As of 2022, 110 types of traditional Chinese medicines from the same source of medicine and food have been published by the National Health Commission. Inflammation is the immune system's first response to injury, infection, and stress. Chronic inflammation is closely related to many diseases such as atherosclerosis and cancer. Therefore, timely intervention for inflammation is the mainstay treatment for other complex diseases. However, some traditional anti-inflammatory drugs on the market are commonly associated with a number of adverse effects, which seriously affect the health and safety of patients. Therefore, the in-depth development of new safe, harmless, and effective anti-inflammatory drugs has become a hot topic of research and an urgent clinical need. Polysaccharides, one of the main active ingredients of medical and edible homologous traditional Chinese medicines (MEHTCMs), have been confirmed by a large number of studies to exert anti-inflammatory effects through multiple targets and are considered potential natural anti-inflammatory drugs. In addition, the structure of medical and edible homologous traditional Chinese medicines' polysaccharides (MEHTCMPs) may be the key factor determining their anti-inflammatory activity, which makes the underlying the anti-inflammatory effects of polysaccharides and their structure-efficacy relationship hot topics of domestic and international research. However, due to the limitations of the current analytical techniques and tools, the structures have not been fully elucidated and the structure-efficacy relationship is relatively ambiguous, which are some of the difficulties in the process of developing and utilizing MEHTCMPs as novel anti-inflammatory drugs in the future. For this reason, this paper summarizes the potential anti-inflammatory mechanisms of MEHTCMPs, such as the regulation of the Toll-like receptor-related signaling pathway, MAPK signaling pathway, JAK-STAT signaling pathway, NLRP3 signaling pathway, PI3K-AKT signaling pathway, PPAR-γ signaling pathway, Nrf2-HO-1 signaling pathway, and the regulation of intestinal flora, and it systematically analyzes and evaluates the relationships between the anti-inflammatory activity of MEHTCMPs and their structures.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiulian Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Li Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Suhui Xiong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingchen Xie
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Limei Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ping Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
9
|
Bernini R, Campo M, Cassiani C, Fochetti A, Ieri F, Lombardi A, Urciuoli S, Vignolini P, Villanova N, Vita C. Polyphenol-Rich Extracts from Agroindustrial Waste and Byproducts: Results and Perspectives According to the Green Chemistry and Circular Economy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12871-12895. [PMID: 38829927 DOI: 10.1021/acs.jafc.4c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Polyphenols are natural secondary metabolites found in plants endowed with multiple biological activities (antioxidant, anti-inflammatory, antimicrobial, cardioprotective, and anticancer). In view of these properties, they find many applications and are used as active ingredients in nutraceutical, food, pharmaceutical, and cosmetic formulations. In accordance with green chemistry and circular economy strategies, they can also be recovered from agroindustrial waste and reused in various sectors, promoting sustainable processes. This review described structural characteristics, methods for extraction, biological properties, and applications of polyphenolic extracts obtained from two selected plant materials of the Mediterranean area as olive (Olea europaea L.) and pomegranate (Punica granatum L.) based on recent literature, highlighting future research perspectives.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Margherita Campo
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Chiara Cassiani
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Fochetti
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Ieri
- Institute of Bioscience and BioResources (IBBR), National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Lombardi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Silvia Urciuoli
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Pamela Vignolini
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Vita
- QuMAP - PIN, University Center "Città di Prato" Educational and Scientific Services for the University of Florence, 59100 Prato, Italy
| |
Collapse
|
10
|
Wójcik M, Plata-Babula A, Głowaczewska A, Sirek T, Orczyk A, Małecka M, Grabarek BO. Expression profile of mRNAs and miRNAs related to mitogen-activated kinases in HaCaT cell culture treated with lipopolysaccharide a and adalimumab. Cell Cycle 2024; 23:385-404. [PMID: 38557266 PMCID: PMC11174132 DOI: 10.1080/15384101.2024.2335051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Studies indicate that mitogen-activated protein kinases (MAPKs) exhibit activation and overexpression within psoriatic lesions. This study aimed to investigate alterations in the expression patterns of genes encoding MAPKs and microRNA (miRNA) molecules that potentially regulate their expression in human adult low-calcium high-temperature (HaCaT) keratinocytes when exposed to bacterial lipopolysaccharide A (LPS) and adalimumab. HaCaT cells underwent treatment with 1 µg/mL LPS for 8 hours, followed by treatment with 8 µg/mL adalimumab for 2, 8, or 24 hours. Untreated cells served as controls. The molecular analysis involved microarray, quantitative real-time polymerase chain reaction (RTqPCR), and enzyme-linked immunosorbent assay (ELISA) analyses. Changes in the expression profile of seven mRNAs: dual specificity phosphatase 1 (DUSP1), dual specificity phosphatase 3 (DUSP3), dual specificity phosphatase 4 (DUSP4), mitogen-activated protein kinase 9 (MAPK9), mitogen-activated protein kinase kinase kinase 2 (MAP3K2), mitogen-activated protein kinase kinase 2 (MAP2K2), and MAP kinase-activated protein kinase 2 (MAPKAPK2, also known as MK2) in cell culture exposed to LPS or LPS and the drug compared to the control. It was noted that miR-34a may potentially regulate the activity of DUSP1, DUSP3, and DUSP4, while miR-1275 is implicated in regulating MAPK9 expression. Additionally, miR-382 and miR-3188 are potential regulators of DUSP4 levels, and miR-200-5p is involved in regulating MAPKAPK2 and MAP3K2 levels. Thus, the analysis showed that these mRNA molecules and the proteins and miRNAs they encode appear to be useful molecular markers for monitoring the efficacy of adalimumab therapy.
Collapse
Affiliation(s)
- Michał Wójcik
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Aleksandra Plata-Babula
- Department of Nursing and Maternity, High School of Strategic Planning in Dabrowa Gornicza, Dabrowa Gornicza, Poland
| | - Amelia Głowaczewska
- Faculty of Health Sciences, University of Applied Sciences in Nysa, Nysa, Poland
| | - Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, Poland
| | - Aneta Orczyk
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Mariola Małecka
- Faculty of Medicine, Uczelnia Medyczna im. Marii Skłodowskiej-Curie, Warszawa, Poland
| | | |
Collapse
|