1
|
Lucero MJ, Lisk C, Cendali F, Swindle D, Setua S, Thangaraju K, Pak DI, O'Boyle Q, Lu S, Tolson R, Zaeske S, Rana N, Khan S, Westover N, DavizonCastillo P, George G, Hassell K, Nuss R, Brinkman N, Gentinetta T, Palmer AF, D'Alessandro A, Buehler PW, Irwin DC. Targeting lung heme iron by aerosol hemopexin adminstration in sickle cell disease pulmonary hypertension. Free Radic Biol Med 2025; 229:458-473. [PMID: 39862998 PMCID: PMC11846696 DOI: 10.1016/j.freeradbiomed.2025.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Lung tissue from human patients and murine models of sickle cell disease pulmonary hypertension (SCD-PH) show perivascular regions with excessive iron accumulation. The iron accumulation arises from chronic hemolysis and extravasation of hemoglobin (Hb) into the lung adventitial spaces, where it is linked to nitric oxide depletion, oxidative stress, inflammation, and tissue hypoxia, which collectively drive SCD-PH. Here, we tested the hypothesis that intrapulmonary delivery of hemopexin (Hpx) to the deep lung is effective at scavenging heme-iron and attenuating the progression of SCD-PH. Herein, we evaluated in a murine model of hemolysis driven SCD-PH, if intrapulmonary Hpx administration bi-weekly for 10 weeks improves lung iron deposition, exercise tolerance, cardiovascular function, and multi-omic indices associated with SCD-PH. Data shows Hpx delivered with a micro-sprayer deposits Hpx in the alveolar regions. Hpx extravasates into the perivascular compartments but does not diffuse into the circulation. Histological examination shows Hpx therapy decreased lung iron deposition, 4-HNE, and HO-1 expression. This was associated with improved exercise tolerance, cardiopulmonary function, and multi-omic profile of whole lung and RV tissue. Our data provides proof of concept that treating lung heme-iron by direct administration of Hpx to the lung attenuates the progression of PH associated with SCD.
Collapse
MESH Headings
- Animals
- Hemopexin/administration & dosage
- Hemopexin/pharmacology
- Anemia, Sickle Cell/complications
- Anemia, Sickle Cell/drug therapy
- Anemia, Sickle Cell/metabolism
- Anemia, Sickle Cell/pathology
- Mice
- Heme/metabolism
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Lung/metabolism
- Lung/drug effects
- Lung/pathology
- Iron/metabolism
- Disease Models, Animal
- Humans
- Oxidative Stress/drug effects
- Male
- Aerosols
- Heme Oxygenase-1/metabolism
- Heme Oxygenase-1/genetics
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Melissa J Lucero
- University of Colorado, Anschutz Medical Campus School of Medicine| Translational research laboratory of Red Blood Cell Diseases and Hypoxia related illnesses| Cardiovascular Pulmonary Research (CVP) group, Pediatrics, United States
| | - Christina Lisk
- University of Colorado, Anschutz Medical Campus School of Medicine| Translational research laboratory of Red Blood Cell Diseases and Hypoxia related illnesses| Cardiovascular Pulmonary Research (CVP) group, Pediatrics, United States
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, United States
| | - Delaney Swindle
- University of Colorado, Anschutz Medical Campus School of Medicine| Translational research laboratory of Red Blood Cell Diseases and Hypoxia related illnesses| Cardiovascular Pulmonary Research (CVP) group, Pediatrics, United States
| | - Saini Setua
- University of Maryland, School of Medicine, Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, Baltimore, MD, United States
| | - Kiruphagaran Thangaraju
- University of Maryland, School of Medicine, Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, Baltimore, MD, United States
| | - David I Pak
- University of Colorado, Anschutz Medical Campus School of Medicine| Translational research laboratory of Red Blood Cell Diseases and Hypoxia related illnesses| Cardiovascular Pulmonary Research (CVP) group, Pediatrics, United States
| | - Quintin O'Boyle
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Shuwei Lu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Robert Tolson
- University of Colorado, Anschutz Medical Campus School of Medicine| Translational research laboratory of Red Blood Cell Diseases and Hypoxia related illnesses| Cardiovascular Pulmonary Research (CVP) group, Pediatrics, United States
| | - Seth Zaeske
- University of Colorado, Anschutz Medical Campus School of Medicine| Translational research laboratory of Red Blood Cell Diseases and Hypoxia related illnesses| Cardiovascular Pulmonary Research (CVP) group, Pediatrics, United States
| | - Nishant Rana
- University of Colorado, Anschutz Medical Campus School of Medicine| Translational research laboratory of Red Blood Cell Diseases and Hypoxia related illnesses| Cardiovascular Pulmonary Research (CVP) group, Pediatrics, United States
| | - Saqib Khan
- University of Colorado, Anschutz Medical Campus School of Medicine| Translational research laboratory of Red Blood Cell Diseases and Hypoxia related illnesses| Cardiovascular Pulmonary Research (CVP) group, Pediatrics, United States
| | - Natalie Westover
- University of Colorado, Anschutz Medical Campus School of Medicine| Translational research laboratory of Red Blood Cell Diseases and Hypoxia related illnesses| Cardiovascular Pulmonary Research (CVP) group, Pediatrics, United States
| | - Pavel DavizonCastillo
- Bloodworks Northwest University of Washington, Seattle Children's Hospital, United States
| | - Gemlyn George
- Division of Hematology Colorado Sickle Cell Treatment and Research Center, School of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA, United States
| | - Kathryn Hassell
- Division of Hematology Colorado Sickle Cell Treatment and Research Center, School of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA, United States
| | - Rachelle Nuss
- Division of Hematology Colorado Sickle Cell Treatment and Research Center, School of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA, United States
| | - Nathan Brinkman
- CSL Behring LLC., Plasma Protein Research & Development, Kankakee, IL, United States
| | - Thomas Gentinetta
- CSL Behring, CSL Biologics Research Center, Bern, Switzerland; Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, United States
| | - Paul W Buehler
- University of Maryland, School of Medicine, Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, Baltimore, MD, United States.
| | - David C Irwin
- University of Colorado, Anschutz Medical Campus School of Medicine| Translational research laboratory of Red Blood Cell Diseases and Hypoxia related illnesses| Cardiovascular Pulmonary Research (CVP) group, Pediatrics, United States.
| |
Collapse
|
2
|
Hemnes A, Fortune N, Simon K, Trenary IA, Shay S, Austin E, Young JD, Britain E, West J, Talati M. A multimodal approach identifies lactate as a central feature of right ventricular failure that is detectable in human plasma. Front Med (Lausanne) 2024; 11:1387195. [PMID: 39346939 PMCID: PMC11428650 DOI: 10.3389/fmed.2024.1387195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024] Open
Abstract
Background In PAH metabolic abnormalities in multiple pathways are well-recognized features of right ventricular dysfunction, however, prior work has focused mainly on the use of a single "omic" modality to describe a single deranged pathway. We integrated metabolomic and epigenomic data using transcriptomics in failing and non-failing RVs from a rodent model to provide novel mechanistic insight and translated these findings to accessible human specimens by correlation with plasma from PAH patients. Methods Study was conducted in a doxycycline-inducible BMPR2 mutant mouse model of RV failure. Plasma was collected from controls and PAH patients. Transcriptomic and metabolomic analyses were done on mouse RV tissue and human plasma. For mouse RV, we layered metabolomic and transcriptomic data for multiple metabolic pathways and compared our findings with metabolomic and transcriptomic data obtained for human plasma. We confirmed our key findings in cultured cardiomyocyte cells with BMPR2 mutation. Results In failing mouse RVs, (1) in the glycolysis pathway, glucose is converted to lactate via aerobic glycolysis, but may also be utilized for glycogen, fatty acid, and nucleic acid synthesis, (2) in the fatty acid pathway, FAs are accumulated in the cytoplasm because the transfer of FAs to mitochondria is reduced, however, the ß-oxidation pathway is likely to be functional. (3) the TCA cycle is altered at multiple checkpoints and accumulates citrate, and the glutaminolysis pathway is not activated. In PAH patients, plasma metabolic and transcriptomic data indicated that unlike in the failing BMPR2 mutant RV, expression of genes and metabolites measured for the glycolysis pathway, FA pathway, TCA cycle, and glutaminolysis pathway were increased. Lactate was the only metabolite that was increased both in RV and circulation. We confirmed using a stable isotope of lactate that cultured cardiomyocytes with mutant BMPR2 show a modest increase in endogenous lactate, suggesting a possibility of an increase in lactate production by cardiomyocytes in failing BMPR2 mutant RV. Conclusion In the failing RV with mutant BMPR2, lactate is produced by RV cardiomyocytes and may be secreted out, thereby increasing lactate in circulation. Lactate can potentially serve as a marker of RV dysfunction in PAH, which warrants investigation.
Collapse
Affiliation(s)
- Anna Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Niki Fortune
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katie Simon
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Irina A Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Sheila Shay
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Evan Britain
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Megha Talati
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Simpson CE, Ledford JG, Liu G. Application of Metabolomics across the Spectrum of Pulmonary and Critical Care Medicine. Am J Respir Cell Mol Biol 2024; 71:1-9. [PMID: 38547373 PMCID: PMC11225873 DOI: 10.1165/rcmb.2024-0080ps] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/28/2024] [Indexed: 07/02/2024] Open
Abstract
In recent years, metabolomics, the systematic study of small-molecule metabolites in biological samples, has yielded fresh insights into the molecular determinants of pulmonary diseases and critical illness. The purpose of this article is to orient the reader to this emerging field by discussing the fundamental tenets underlying metabolomics research, the tools and techniques that serve as foundational methodologies, and the various statistical approaches to analysis of metabolomics datasets. We present several examples of metabolomics applied to pulmonary and critical care medicine to illustrate the potential of this avenue of research to deepen our understanding of pathophysiology. We conclude by reviewing recent advances in the field and future research directions that stand to further the goal of personalizing medicine to improve patient care.
Collapse
Affiliation(s)
- Catherine E. Simpson
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Julie G. Ledford
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona; and
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
4
|
Philip N, Yun X, Pi H, Murray S, Hill Z, Fonticella J, Perez P, Zhang C, Pathmasiri W, Sumner S, Servinsky L, Jiang H, Huetsch JC, Oldham WM, Visovatti S, Leary PJ, Gharib SA, Brittain E, Simpson CE, Le A, Shimoda LA, Suresh K. Fatty acid metabolism promotes TRPV4 activity in lung microvascular endothelial cells in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 326:L252-L265. [PMID: 38226418 PMCID: PMC11280685 DOI: 10.1152/ajplung.00199.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/17/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a morbid disease characterized by significant lung endothelial cell (EC) dysfunction. Prior work has shown that microvascular endothelial cells (MVECs) isolated from animals with experimental PAH and patients with PAH exhibit significant abnormalities in metabolism and calcium signaling. With regards to metabolism, we and others have shown evidence of increased aerobic glycolysis and evidence of increased utilization of alternate fuel sources (such as fatty acids) in PAH EC. In the realm of calcium signaling, our prior work linked increased activity of the transient receptor potential vanilloid-4 (TRPV4) channel to increased proliferation of MVECs isolated from the Sugen/Hypoxia rat model of PAH (SuHx-MVECs). However, the relationship between metabolic shifts and calcium abnormalities was not clear. Specifically, whether shifts in metabolism were responsible for increasing TRPV4 channel activity in SuHx-MVECs was not known. In this study, using human data, serum samples from SuHx rats, and SuHx-MVECs, we describe the consequences of increased MVEC fatty acid oxidation in PAH. In human samples, we observed an increase in long-chain fatty acid levels that was associated with PAH severity. Next, using SuHx rats and SuHx-MVECs, we observed increased intracellular levels of lipids. We also show that increasing intracellular lipid content increases TRPV4 activity, whereas inhibiting fatty acid oxidation normalizes basal calcium levels in SuHx-MVECs. By exploring the fate of fatty acid-derived carbons, we observed that the metabolite linking increased intracellular lipids to TRPV4 activity was β-hydroxybutyrate (BOHB), a product of fatty acid oxidation. Finally, we show that BOHB supplementation alone is sufficient to sensitize the TRPV4 channel in rat and mouse MVECs. Returning to humans, we observe a transpulmonary BOHB gradient in human patients with PAH. Thus, we establish a link between fatty acid oxidation, BOHB production, and TRPV4 activity in MVECs in PAH. These data provide new insight into metabolic regulation of calcium signaling in lung MVECs in PAH.NEW & NOTEWORTHY In this paper, we explore the link between metabolism and intracellular calcium levels in microvascular endothelial cells (MVECs) in pulmonary arterial hypertension (PAH). We show that fatty acid oxidation promotes sensitivity of the transient receptor potential vanilloid-4 (TRPV4) calcium channel in MVECs isolated from a rodent model of PAH.
Collapse
Affiliation(s)
- Nicolas Philip
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Xin Yun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Hongyang Pi
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States
| | - Samuel Murray
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Zack Hill
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jay Fonticella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Preston Perez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Cissy Zhang
- Gigantest, Inc., Baltimore, Maryland, United States
| | - Wimal Pathmasiri
- Department of Nutrition, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, United States
| | - Susan Sumner
- Department of Nutrition, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, United States
| | - Laura Servinsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - John C Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Scott Visovatti
- Department of Cardiology, Ohio State University School of Medicine, Columbus, Ohio, United States
| | - Peter J Leary
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States
| | - Sina A Gharib
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States
| | - Evan Brittain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Catherine E Simpson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Anne Le
- Gigantest, Inc., Baltimore, Maryland, United States
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
5
|
Zhang K, Liu R, Wei X, Wang Z, Huang P. Use of Raman spectroscopy to study rat lung tissues for distinguishing asphyxia from sudden cardiac death. RSC Adv 2024; 14:5665-5674. [PMID: 38357034 PMCID: PMC10865087 DOI: 10.1039/d3ra07684a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Determining asphyxia as the cause of death is crucial but is based on an exclusive strategy because it lacks sensitive and specific morphological characteristics in forensic practice. In some cases where the deceased has underlying heart disease, differentiation between asphyxia and sudden cardiac death (SCD) as the primary cause of death can be challenging. Herein, Raman spectroscopy was employed to detect pulmonary biochemical differences to discriminate asphyxia from SCD in rat models. Thirty-two rats were used to build asphyxia and SCD models, with lung samples collected immediately or 24 h after death. Twenty Raman spectra were collected for each lung sample, and 640 spectra were obtained for further data preprocessing and analysis. The results showed that different biochemical alterations existed in the lung tissues of the rats that died from asphyxia and SCD and could be used to distinguish between the two causes of death. Moreover, we screened and used 8 of the 11 main differential spectral features that maintained their significant differences at 24 h after death to successfully determine the cause of death, even with decomposition and autolysis. Eventually, seven prevalent machine learning classification algorithms were employed to establish classification models, among which the support vector machine exhibited the best performance, with an area under the curve value of 0.9851 in external validation. This study shows the promise of Raman spectroscopy combined with machine learning algorithms to investigate differential biochemical alterations originating from different deaths to aid determining the cause of death in forensic practice.
Collapse
Affiliation(s)
- Kai Zhang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China, Academy of Forensic Science Shanghai People's Republic of China
- Department of Forensic Pathology, College of Forensic Medicine, NHC Key Laboratory of Forensic Science, Xi'an Jiaotong University Xi'an People's Republic of China
| | - Ruina Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an People's Republic of China
| | - Xin Wei
- Department of Forensic Pathology, College of Forensic Medicine, NHC Key Laboratory of Forensic Science, Xi'an Jiaotong University Xi'an People's Republic of China
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, NHC Key Laboratory of Forensic Science, Xi'an Jiaotong University Xi'an People's Republic of China
| | - Ping Huang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China, Academy of Forensic Science Shanghai People's Republic of China
- Institute of Forensic Science, Fudan University Shanghai People's Republic of China
| |
Collapse
|
6
|
Bassareo PP, D’Alto M. Metabolomics in Pulmonary Hypertension-A Useful Tool to Provide Insights into the Dark Side of a Tricky Pathology. Int J Mol Sci 2023; 24:13227. [PMID: 37686034 PMCID: PMC10487467 DOI: 10.3390/ijms241713227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Pulmonary hypertension (PH) is a multifaceted illness causing clinical manifestations like dyspnea, fatigue, and cyanosis. If left untreated, it often evolves into irreversible pulmonary arterial hypertension (PAH), leading to death. Metabolomics is a laboratory technique capable of providing insights into the metabolic pathways that are responsible for a number of physiologic or pathologic events through the analysis of a biological fluid (such as blood, urine, and sputum) using proton nuclear magnetic resonance spectroscopy or mass spectrometry. A systematic review was finalized according to the PRISMA scheme, with the goal of providing an overview of the research papers released up to now on the application of metabolomics to PH/PAH. So, eighty-five papers were identified, of which twenty-four concerning PH, and sixty-one regarding PAH. We found that, from a metabolic standpoint, the hallmarks of the disease onset and progression are an increase in glycolysis and impaired mitochondrial respiration. Oxidation is exacerbated as well. Specific metabolic fingerprints allow the characterization of some of the specific PH and PAH subtypes. Overall, metabolomics provides insights into the biological processes happening in the body of a subject suffering from PH/PAH. The disarranged metabolic pathways underpinning the disease may be the target of new therapeutic agents. Metabolomics will allow investigators to make a step forward towards personalized medicine.
Collapse
Affiliation(s)
- Pier Paolo Bassareo
- Mater Misercordiae University Hospital, D07 R2WY Dublin, Ireland
- Children’s Health Ireland at Crumlin, D12 N512 Dublin, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Michele D’Alto
- Pulmonary Hypertension Unit, Dipartimento di Cardiologia, Università della Campania “Luigi Vanvitelli”, Ospedale Monaldi, 80131 Naples, Italy;
| |
Collapse
|
7
|
Simpson CE, Ambade AS, Harlan R, Roux A, Graham D, Klauer N, Tuhy T, Kolb TM, Suresh K, Hassoun PM, Damico RL. Spatial and temporal resolution of metabolic dysregulation in the Sugen hypoxia model of pulmonary hypertension. Pulm Circ 2023; 13:e12260. [PMID: 37404901 PMCID: PMC10315560 DOI: 10.1002/pul2.12260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Although PAH is partially attributed to disordered metabolism, previous human studies have mostly examined circulating metabolites at a single time point, potentially overlooking crucial disease biology. Current knowledge gaps include an understanding of temporal changes that occur within and across relevant tissues, and whether observed metabolic changes might contribute to disease pathobiology. We utilized targeted tissue metabolomics in the Sugen hypoxia (SuHx) rodent model to investigate tissue-specific metabolic relationships with pulmonary hypertensive features over time using regression modeling and time-series analysis. Our hypotheses were that some metabolic changes would precede phenotypic changes, and that examining metabolic interactions across heart, lung, and liver tissues would yield insight into interconnected metabolic mechanisms. To support the relevance of our findings, we sought to establish links between SuHx tissue metabolomics and human PAH -omics data using bioinformatic predictions. Metabolic differences between and within tissue types were evident by Day 7 postinduction, demonstrating distinct tissue-specific metabolism in experimental pulmonary hypertension. Various metabolites demonstrated significant tissue-specific associations with hemodynamics and RV remodeling. Individual metabolite profiles were dynamic, and some metabolic shifts temporally preceded the emergence of overt pulmonary hypertension and RV remodeling. Metabolic interactions were observed such that abundance of several liver metabolites modulated lung and RV metabolite-phenotype relationships. Taken all together, regression analyses, pathway analyses and time-series analyses implicated aspartate and glutamate signaling and transport, glycine homeostasis, lung nucleotide abundance, and oxidative stress as relevant to early PAH pathobiology. These findings offer valuable insights into potential targets for early intervention in PAH.
Collapse
Affiliation(s)
- Catherine E. Simpson
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Anjira S. Ambade
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Robert Harlan
- Johns Hopkins All Children's Hospital Molecular Determinants CoreSt. PetersburgFloridaUSA
| | - Aurelie Roux
- Johns Hopkins All Children's Hospital Molecular Determinants CoreSt. PetersburgFloridaUSA
| | - David Graham
- Johns Hopkins All Children's Hospital Molecular Determinants CoreSt. PetersburgFloridaUSA
| | - Neal Klauer
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Tijana Tuhy
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Todd M. Kolb
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Karthik Suresh
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Paul M. Hassoun
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Rachel L. Damico
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| |
Collapse
|