1
|
Khaliq T, Williams TD, Senadheera SN, Aldrich JV. Development of a robust, sensitive and selective liquid chromatography-tandem mass spectrometry assay for the quantification of the novel macrocyclic peptide kappa opioid receptor antagonist [D-Trp]CJ-15,208 in plasma and application to an initial pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1028:11-15. [PMID: 27318293 DOI: 10.1016/j.jchromb.2016.05.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
Abstract
Selective kappa opioid receptor (KOR) antagonists may have therapeutic potential as treatments for substance abuse and mood disorders. Since [D-Trp]CJ-15,208 (cyclo[Phe-d-Pro-Phe-d-Trp]) is a novel potent KOR antagonist in vivo, it is imperative to evaluate its pharmacokinetic properties to assist the development of analogs as potential therapeutic agents, necessitating the development and validation of a quantitative method for determining its plasma levels. A method for quantifying [D-Trp]CJ-15,208 was developed employing high performance liquid chromatography-tandem mass spectrometry in mouse plasma. Sample preparation was accomplished through a simple one-step protein precipitation method with acetonitrile, and [D-Trp]CJ-15,208 analyzed following HPLC separation on a Hypersil BDS C8 column. Multiple reaction monitoring (MRM), based on the transitions m/z 578.1→217.1 and 245.0, was specific for [D-Trp]CJ-15,208, and MRM based on the transition m/z 566.2→232.9 was specific for the internal standard without interference from endogenous substances in blank mouse plasma. The assay was linear over the concentration range 0.5-500ng/mL with a mean r(2)=0.9987. The mean inter-day accuracy and precision for all calibration standards were 93-118% and 8.9%, respectively. The absolute recoveries were 85±6% and 81±9% for [D-Trp]CJ-15,208 and the internal standard, respectively. The analytical method had excellent sensitivity with a lower limit of quantification of 0.5ng/mL using a sample volume of 20μL. The method was successfully applied to an initial pharmacokinetic study of [D-Trp]CJ-15,208 following intravenous administration to mice.
Collapse
Affiliation(s)
- Tanvir Khaliq
- Department of Medicinal Chemistry, the University of Kansas, Lawrence, KS 66045, USA; Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Todd D Williams
- Mass Spectrometry and Analytical Proteomics Laboratory, the University of Kansas, Lawrence, KS 66045, USA
| | - Sanjeewa N Senadheera
- Department of Medicinal Chemistry, the University of Kansas, Lawrence, KS 66045, USA
| | - Jane V Aldrich
- Department of Medicinal Chemistry, the University of Kansas, Lawrence, KS 66045, USA; Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
2
|
Shin BS, Yoo SD, Kim TH, Bulitta JB, Landersdorfer CB, Shin JC, Choi JH, Weon KY, Joo SH, Shin S. Quantitative determination of absorption and first-pass metabolism of apicidin, a potent histone deacetylase inhibitor. Drug Metab Dispos 2014; 42:974-82. [PMID: 24644298 DOI: 10.1124/dmd.113.056713] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Apicidin, a potential oral chemotherapeutic agent, possesses potent anti-histone-deacetylase activity. After oral administration, the total bioavailability of apicidin is known to be low (14.2%-19.3%). In the present study, we evaluated the factors contributing to the low bioavailability of apicidin by means of quantitative determination of absorption fraction and first-pass metabolism after oral administration. Apicidin was given to rats by five different routes: into the femoral vein, duodenum, superior mesenteric artery, portal vein, and carotid artery. Especially, the fraction absorbed (FX) and the fraction that is not metabolized in the gut wall (FG) were separated by injection of apicidin via superior mesenteric artery, which enables bypassing the permeability barrier. The FX was 45.9% ± 9.7%, the FG was 70.9% ± 8.1% and the hepatic bioavailability (FH) was 70.6% ± 12.3%, while the pulmonary first-pass metabolism was minimal (FL = 102.8% ± 7.4%), indicating that intestinal absorption was the rate-determining step for oral absorption of apicidin. The low FX was further examined in terms of passive diffusion and transporter-mediated efflux by in vitro immobilized artificial membrane (IAM) chromatographic assay and in situ single-pass perfusion method, respectively. Although the passive diffusion potential of apicidin was high (98.01%) by the IAM assay, the in situ permeability was significantly enhanced by the presence of the P-glycoprotein (P-gp) inhibitor elacrider. These data suggest that the low bioavailability of apicidin was mainly attributed to the P-gp efflux consistent with the limited FX measured in vivo experiment.
Collapse
Affiliation(s)
- Beom Soo Shin
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, Gyeongbuk, South Korea (B.S.S., J.C.S., J.H.C., K.Y.W., S.H.J.); School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea (S.D.Y., T.H.K.); Centre for Medicine Use and Safety, Monash University, Parkville, Australia (J.B.B., C.B.L.); Department of Pharmacy, Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, South Korea (S.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Shin BS, Bulitta JB, Hong DK, Kim HY, Kim MK, Choi Y, Lee JB, Hwang SW, Lee MH, Yoo SD. Population Pharmacokinetics of a Novel Histone Deacetylase Inhibitor, Cyclo{(2S)-2-Amino-8-[(Aminocarbonyl)Hydrazono] Decanoyl-1- L-Tryptophyl- L-Isoleucyl-(2R)-2-Piperidinecarbonyl} (SD-2007), and Its Metabolic Conversion to Apicidin after Intravenous Injection and Oral Administration in Rats. Chemotherapy 2011; 57:259-67. [DOI: 10.1159/000328027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 01/13/2011] [Indexed: 11/19/2022]
|
4
|
Shin BS, Bulitta JB, Balthasar JP, Kim M, Choi Y, Yoo SD. Prediction of human pharmacokinetics and tissue distribution of apicidin, a potent histone deacetylase inhibitor, by physiologically based pharmacokinetic modeling. Cancer Chemother Pharmacol 2010; 68:465-75. [PMID: 21069337 DOI: 10.1007/s00280-010-1502-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 10/26/2010] [Indexed: 11/26/2022]
Abstract
PURPOSE The objectives of this study were to develop physiologically based models for the pharmacokinetics (PK) and organ distribution of apicidin in rats and mice and to predict human PK in blood and organs. METHODS The PK of apicidin was characterized in rats and mice after i.v. bolus injection, and distribution to various tissues was determined in rats following i.v. infusions at steady state. The developed models were prospectively validated within rat and within mouse and by scaling from rat to mouse using data after multiple i.v. injections. Human PK was predicted by the physiologically based modeling using intrinsic clearance data for humans from in vitro experiments. RESULTS The Cl(s) predicted for human (9.8 ml/min/kg) was lower than those found in mice (116.9 ml/min/kg) and rats (61.6 ml/min/kg), and the V(ss) predicted for human (1.9 l/kg) was less than in mice (2.0 l/kg) and rats (2.5 l/kg). Consequently, the predicted t (1/2) was longer in human (2.3 h) than in mice and rats (0.4 and 0.9 h, respectively). The highest concentrations of apicidin were predicted in liver followed by adipose tissue, kidney, lung, spleen, heart, arterial blood, venous blood, small intestine, stomach, muscle, testis, and brain. CONCLUSIONS The developed models adequately described the PK of apicidin in rats and mice and were applied to predict human PK. These models may be useful in predicting human blood and tissue concentrations of apicidin under different exposure conditions.
Collapse
Affiliation(s)
- Beom Soo Shin
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, Gyeongbuk, Korea
| | | | | | | | | | | |
Collapse
|
5
|
van den Broek I, Sparidans RW, Schellens JH, Beijnen JH. Quantitative bioanalysis of peptides by liquid chromatography coupled to (tandem) mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 872:1-22. [DOI: 10.1016/j.jchromb.2008.07.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/16/2008] [Accepted: 07/12/2008] [Indexed: 12/25/2022]
|
6
|
Shin BS, Hong DK, Kwak JH, Kim J, Yoo SD. LC-MS-MS Determination of Cyclo{(2S)-2-amino-8-[(aminocarbonyl)hydrazono] decanoyl-1-l-tryptophyl-l-isoleucyl-(2R)-2-piperidinecarbonyl} a Novel Histone Deacetylase Inhibitor in Rat Serum. Chromatographia 2007. [DOI: 10.1365/s10337-007-0495-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
van den Broek I, Sparidans RW, Huitema ADR, Schellens JHM, Beijnen JH. Development and validation of a quantitative assay for the measurement of two HIV-fusion inhibitors, enfuvirtide and tifuvirtide, and one metabolite of enfuvirtide (M-20) in human plasma by liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 837:49-58. [PMID: 16713406 DOI: 10.1016/j.jchromb.2006.03.059] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/24/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
A method for the quantification of two peptide HIV-1 fusion inhibitors (enfuvirtide, T-20 and tifuvirtide, T-1249) and one metabolite of enfuvirtide (M-20) in human plasma has been developed and validated, using liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS). The analytes were extracted from plasma by solid-phase extraction (SPE) on vinyl-copolymer cartridges. Chromatographic separation of the peptides was performed on a Symmetry 300 C(18) column (50mmx2.1mm I.D., particle size 3.5 microm), using a water-acetonitrile gradient containing 0.25% (v/v) formic acid. The triple quadrupole mass spectrometer was operated in the positive ion-mode and multiple reaction monitoring (MRM) was used for peak detection. Deuterated (d60) enfuvirtide and (d50) tifuvirtide were used as internal standards. The assay was linear over a concentration range of 20-10,000 ng/ml for enfuvirtide and tifuvirtide and of 20-2000 ng/ml for M-20. Intra- and inter-assay precisions and deviations from the nominal concentrations were </=13%. Stability of the analytes was tested under all relevant conditions for sample handling. The method was capable to measure concentrations of enfuvirtide and its metabolite in plasma samples of human immunodeficiency virus type-1 (HIV-1) infected patients treated with the drug.
Collapse
Affiliation(s)
- I van den Broek
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Section of Biomedical Analysis, Division of Drug Toxicology, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Shin BS, Chang HS, Park EH, Yoon CH, Kim HY, Kim J, Ryu JK, Zee OP, Lee KC, Cao D, Yoo SD. Pharmacokinetics of a novel histone deacetylase inhibitor, apicidin, in rats. Biopharm Drug Dispos 2006; 27:69-75. [PMID: 16299816 DOI: 10.1002/bdd.485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study is the first report of the pharmacokinetics of a novel histone deacetylase inhibitor, apicidin, in rats after i.v. and oral administration. Apicidin was injected intravenously at doses of 0.5, 1.0, 2.0 and 4.0 mg/kg. The terminal elimination half-life (t1/2), systemic clearance (Cl) and steady-state volume of distribution (Vss) remained unaltered as a function of dose, with values in the range 0.8-1.1 h, 59.6-68.0 ml/min/kg and 2.4-2.7 l/kg, respectively. Whereas, the initial serum concentration (C0) and AUC increased linearly as the dose was increased. Taken together, the pharmacokinetics of apicidin were linear over the i.v. dose range studied. The extent of urinary and biliary excretion of apicidin was minimal (0.017%-0.020% and 0.049% +/- 0.016%, respectively). Oral pharmacokinetic studies were conducted in fasting and non-fasting groups of rats at a dose of 10 mg/kg. The Tmax, Cl/F and Vz/F were in the range 0.9-1.1 h, 520.3-621.2 ml/min/kg and 67.6-84.4 l/kg, respectively. No significant difference was observed in the oral absorption profiles between the two groups of rats. Apicidin was poorly absorbed, with the absolute oral bioavailability of 19.3% and 14.2% in fasting and non-fasting rats.
Collapse
Affiliation(s)
- Beom Soo Shin
- College of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Kyeonggi-do, 440-746, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:973-84. [PMID: 16034836 DOI: 10.1002/jms.808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|