1
|
Lin A, Chumala P, Du Y, Ma C, Wei T, Xu X, Luo Y, Katselis GS, Xiao W. Transcriptional activation of budding yeast DDI2/3 through chemical modifications of Fzf1. Cell Biol Toxicol 2023; 39:1531-1547. [PMID: 35809138 DOI: 10.1007/s10565-022-09745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/05/2022] [Indexed: 11/02/2022]
Abstract
DDI2 and DDI3 (DDI2/3) are two identical genes in Saccharomyces cerevisiae encoding cyanamide (CY) hydratase. They are not only highly induced by CY, but also by a DNA-damaging agent methyl methanesulfonate (MMS), and the regulatory mechanism is unknown. In this study, we performed a modified genome-wide genetic synthetic array screen and identified Fzf1 as a zinc-finger transcriptional activator required for CY/MMS-induced DDI2/3 expression. Fzf1 binds to a DDI2/3 promoter consensus sequence CS2 in vivo and in vitro, and this interaction was enhanced in response to the CY treatment. Indeed, experimental over production of Fzf1 alone was sufficient to induce DDI2/3 expression; however, CY and MMS treatments did not cause the accumulation or apparent alteration in migration of cellular Fzf1. To test a hypothesis that Fzf1 is activated by covalent modification of CY and MMS, we performed mass spectrometry of CY/MMS-treated Fzf1 and detected a few modified lysine residues. Amino acid substitutions of these residues revealed that Fzf1-K70A completely abolished MMS-induced and reduced CY-induced DDI2/3 expression, indicating that the Fzf1-K70 methylation activates Fzf1. This study collectively reveals a novel regulatory mechanism by which Fzf1 is activated by chemical modifications and in turn induces the expression of its target genes for detoxification.
Collapse
Affiliation(s)
- Aiyang Lin
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Paulos Chumala
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Ying Du
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Chaoqun Ma
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Ting Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Xin Xu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yu Luo
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - George S Katselis
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
2
|
Bankoglu EE, Schuele C, Stopper H. Cell survival after DNA damage in the comet assay. Arch Toxicol 2021; 95:3803-3813. [PMID: 34609522 PMCID: PMC8536587 DOI: 10.1007/s00204-021-03164-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
The comet assay is widely used in basic research, genotoxicity testing, and human biomonitoring. However, interpretation of the comet assay data might benefit from a better understanding of the future fate of a cell with DNA damage. DNA damage is in principle repairable, or if extensive, can lead to cell death. Here, we have correlated the maximally induced DNA damage with three test substances in TK6 cells with the survival of the cells. For this, we selected hydrogen peroxide (H2O2) as an oxidizing agent, methyl methanesulfonate (MMS) as an alkylating agent and etoposide as a topoisomerase II inhibitor. We measured cell viability, cell proliferation, apoptosis, and micronucleus frequency on the following day, in the same cell culture, which had been analyzed in the comet assay. After treatment, a concentration dependent increase in DNA damage and in the percentage of non-vital and apoptotic cells was found for each substance. Values greater than 20-30% DNA in tail caused the death of more than 50% of the cells, with etoposide causing slightly more cell death than H2O2 or MMS. Despite that, cells seemed to repair of at least some DNA damage within few hours after substance removal. Overall, the reduction of DNA damage over time is due to both DNA repair and death of heavily damaged cells. We recommend that in experiments with induction of DNA damage of more than 20% DNA in tail, survival data for the cells are provided.
Collapse
Affiliation(s)
- Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Straße 9, 97078, Wuerzburg, Germany
| | - Carolin Schuele
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Straße 9, 97078, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Straße 9, 97078, Wuerzburg, Germany.
| |
Collapse
|
3
|
Ali Khan M, Jyoti S, Rahul, Naz F, Ara G, Afzal M, Siddique YH. Effect of lemon grass extract against methyl methanesulfonate-induced toxicity. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1657152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Muqtada Ali Khan
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Smita Jyoti
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Rahul
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Falaq Naz
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Gulshan Ara
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad Afzal
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Yasir Hasan Siddique
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
4
|
Khanam S, Fatima A, Jyoti RS, Ali F, Naz F, Shakya B, Siddique YH. Protective effect of capsaicin against methyl methanesulphonate induced toxicity in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. Chin J Nat Med 2017; 15:271-280. [DOI: 10.1016/s1875-5364(17)30044-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 11/28/2022]
|
5
|
Zanotto-Filho A, Masamsetti VP, Loranc E, Tonapi SS, Gorthi A, Bernard X, Gonçalves RM, Moreira JCF, Chen Y, Bishop AJR. Alkylating Agent-Induced NRF2 Blocks Endoplasmic Reticulum Stress-Mediated Apoptosis via Control of Glutathione Pools and Protein Thiol Homeostasis. Mol Cancer Ther 2016; 15:3000-3014. [PMID: 27638861 DOI: 10.1158/1535-7163.mct-16-0271] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 11/16/2022]
Abstract
Alkylating agents are a commonly used cytotoxic class of anticancer drugs. Understanding the mechanisms whereby cells respond to these drugs is key to identify means to improve therapy while reducing toxicity. By integrating genome-wide gene expression profiling, protein analysis, and functional cell validation, we herein demonstrated a direct relationship between NRF2 and Endoplasmic Reticulum (ER) stress pathways in response to alkylating agents, which is coordinated by the availability of glutathione (GSH) pools. GSH is essential for both drug detoxification and protein thiol homeostasis within the ER, thus inhibiting ER stress induction and promoting survival, an effect independent of its antioxidant role. NRF2 accumulation induced by alkylating agents resulted in increased GSH synthesis via GCLC/GCLM enzyme, and interfering with this NRF2 response by either NRF2 knockdown or GCLC/GCLM inhibition with buthionine sulfoximine caused accumulation of damaged proteins within the ER, leading to PERK-dependent apoptosis. Conversely, upregulation of NRF2, through KEAP1 depletion or NRF2-myc overexpression, or increasing GSH levels with N-acetylcysteine or glutathione-ethyl-ester, decreased ER stress and abrogated alkylating agents-induced cell death. Based on these results, we identified a subset of lung and head-and-neck carcinomas with mutations in either KEAP1 or NRF2/NFE2L2 genes that correlate with NRF2 target overexpression and poor survival. In KEAP1-mutant cancer cells, NRF2 knockdown and GSH depletion increased cell sensitivity via ER stress induction in a mechanism specific to alkylating drugs. Overall, we show that the NRF2-GSH influence on ER homeostasis implicates defects in NRF2-GSH or ER stress machineries as affecting alkylating therapy toxicity. Mol Cancer Ther; 15(12); 3000-14. ©2016 AACR.
Collapse
Affiliation(s)
- Alfeu Zanotto-Filho
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - V Pragathi Masamsetti
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Eva Loranc
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Sonal S Tonapi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Aparna Gorthi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Xavier Bernard
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Rosângela Mayer Gonçalves
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - José C F Moreira
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas. .,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
6
|
Narayanaswamy PB, Hodjat M, Haller H, Dumler I, Kiyan Y. Loss of urokinase receptor sensitizes cells to DNA damage and delays DNA repair. PLoS One 2014; 9:e101529. [PMID: 24987841 PMCID: PMC4079571 DOI: 10.1371/journal.pone.0101529] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/06/2014] [Indexed: 11/18/2022] Open
Abstract
DNA damage induced by numerous exogenous or endogenous factors may have irreversible consequences on the cell leading to cell cycle arrest, senescence and cell death. The DNA damage response (DDR) is powerful signaling machinery triggered in response to DNA damage, to provide DNA damage recognition, signaling and repair. Most anticancer drugs induce DNA damage, and DNA repair in turn attenuates therapeutic efficiency of those drugs. Approaches delaying DNA repair are often used to increase efficiency of treatment. Recent data show that ubiquitin-proteasome system is essential for signaling and repair of DNA damage. However, mechanisms providing regulation of proteasome intracellular localization, activity, and recruitment to DNA damage sites are elusive. Even less investigated are the roles of extranuclear signaling proteins in these processes. In this study, we report the involvement of the serine protease urokinase-type plasminogen activator receptor (uPAR) in DDR-associated regulation of proteasome. We show that in vascular smooth muscle cells (VSMC) uPAR activates DNA single strand break repair signaling pathway. We provide evidence that uPAR is essential for functional assembly of the 26S proteasome. We further demonstrate that uPAR mediates DNA damage-induced phosphorylation, nuclear import, and recruitment of the regulatory subunit PSMD6 to proteasome. We found that deficiency of uPAR and PSMD6 delays DNA repair and leads to decreased cell survival. These data may offer new therapeutic approaches for diseases such as cancer, cardiovascular and neurodegenerative disorders.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Cell Line
- Cell Survival
- Cells, Cultured
- DNA Breaks, Single-Stranded
- DNA Repair
- Gene Deletion
- Humans
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Proteasome Endopeptidase Complex/metabolism
- Receptors, Urokinase Plasminogen Activator/genetics
- Receptors, Urokinase Plasminogen Activator/metabolism
Collapse
Affiliation(s)
| | - Mahshid Hodjat
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | - Inna Dumler
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | - Yulia Kiyan
- Nephrology Department, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
7
|
Goel S, Evans-Johnson JA, Georgieva NI, Boysen G. Exposure profiling of reactive compounds in complex mixtures. Toxicology 2013; 313:145-150. [PMID: 23219592 PMCID: PMC4868061 DOI: 10.1016/j.tox.2012.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 11/13/2012] [Accepted: 11/25/2012] [Indexed: 01/16/2023]
Abstract
Humans are constantly exposed to mixtures, such as tobacco smoke, exhaust from diesel, gasoline or new bio-fuels, containing several 1000 compounds, including many known human carcinogens. Covalent binding of reactive compounds or their metabolites to DNA and formation of stable adducts is believed to be the causal link between exposure and carcinogenesis. DNA and protein adducts are well established biomarkers for the internal dose of reactive compounds or their metabolites and are an integral part of science-based risk assessment. However, technical limitations have prevented comprehensive detection of a broad spectrum of adducts simultaneously. Therefore, most studies have focused on measurement of abundant individual adducts. These studies have produced valuable insight into the metabolism of individual carcinogens, but they are insufficient for risk assessment of exposure to complex mixtures. To overcome this limitation, we present herein proof-of-principle for comprehensive exposure assessment, using N-terminal valine adduct profiles as a biomarker. The reported method is based on our previously established immunoaffinity liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with modification to enrich all N-terminal valine alkylated peptides. The method was evaluated using alkylated peptide standards and globin reacted in vitro with alkylating agents (1,2-epoxy-3-butene, 1,2:3,4-diepoxybutane, propylene oxide, styrene oxide, N-ethyl-N-nitrosourea and methyl methanesulfonate), known to form N-terminal valine adducts. To demonstrate proof-of-principle, the method was successfully applied to globin from mice treated with four model compounds. The results suggest that this novel approach might be suitable for in vivo biomonitoring.
Collapse
Key Words
- 1,2 epoxy-3-butene
- 1,2:3,4-diepoxybutane
- 1,3-butadiene
- 1-hydroxy (or 2-hydroxy)-propyl-valine
- 1-phenyl-2-hydroxyethyl-valine or 2-phenyl-2-hydroxyethyl-valine
- 2,3,4-trihydroxybutyl-valine
- 3,4-epoxy-1,2-butanediol
- BD
- Biomarkers
- Biomonitoring
- DEB
- EB
- EB-diol
- ENU
- ENU-Val
- Et-Val
- FA
- H(2)N-Val
- HB-Val
- HP-Val
- Hb
- IA
- LC–MS/MS
- MMS
- Me-Val
- Mixtures
- Multiple exposure detection
- N,N-(2,3-dihydroxy-1,4-butadiyl)-valine
- N-(2-hydroxy-3-buten-1-yl)-valine
- N-ethyl-N-nitrosourea
- N-terminal valine adducts
- PO
- SO
- SO-Val
- THB-Val
- carbamoylated-valine
- ethyl-valine
- formic acid
- hemoglobin
- immunoaffinity
- liquid chromatography–tandem mass spectrometry
- methyl-methanesulfonate
- methyl-valine
- non-alkylated-valine
- propylene oxide
- pyr-Val
- styrene oxide
Collapse
Affiliation(s)
- Shilpi Goel
- Department of Environmental and Occupational Health, The Winthrop P. Rockefeller Cancer Institute at The University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Julie A Evans-Johnson
- Department of Environmental and Occupational Health, The Winthrop P. Rockefeller Cancer Institute at The University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nadia I Georgieva
- Department of Environmental and Occupational Health, The Winthrop P. Rockefeller Cancer Institute at The University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, The Winthrop P. Rockefeller Cancer Institute at The University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
8
|
Generation of free ubiquitin chains is up-regulated in stress and facilitated by the HECT domain ubiquitin ligases UFD4 and HUL5. Biochem J 2012; 444:611-7. [DOI: 10.1042/bj20111840] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyubiquitin chains serve a variety of physiological roles. Typically the chains are bound covalently to a protein substrate and in many cases target it for degradation by the 26S proteasome. However, several studies have demonstrated the existence of free polyubiquitin chains which are not linked to a specific substrate. Several physiological functions have been attributed to these chains, among them playing a role in signal transduction and serving as storage of ubiquitin for utilization under stress. In the present study, we have established a system for the detection of free ubiquitin chains and monitoring their level under changing conditions. Using this system, we show that UFD4 (ubiquitin fusion degradation 4), a HECT (homologous with E6-AP C-terminus) domain ubiquitin ligase, is involved in free chain generation. We also show that generation of these chains is stimulated in response to a variety of stresses, particularly those caused by DNA damage. However, it appears that the stress-induced synthesis of free chains is catalysed by a different ligase, HUL5 (HECT ubiquitin ligase 5), which is also a HECT domain E3.
Collapse
|
9
|
Kumar V, Ara G, Afzal M, Siddique YH. Effect of methyl methanesulfonate on hsp70 expression and tissue damage in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg. Interdiscip Toxicol 2011; 4:159-65. [PMID: 22058658 PMCID: PMC3203919 DOI: 10.2478/v10102-011-0025-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/10/2011] [Accepted: 07/14/2011] [Indexed: 11/30/2022] Open
Abstract
Methyl methanesulfonate (MMS) is an anti-carcinogenic drug and its toxicity has been reported in various experimental models. The hsp70s are a family of ubiquitously expressed heat shock proteins. In the recent years, hsp70 has been considered to be one of the candidate genes for predicting cytotoxicity against environmental chemicals. Nowadays emphasis is given to the use of alternatives to mammals in testing, research and education. The European Centre for the Validation of Alternative Methods (EVCAM) has recommended the use of Drosophila as an alternative model for scientific studies. Almost all living organisms possess proteins with a similar structure to that of hsp70s. In the present study, the toxicity of MMS was evaluated by quantifying hsp70 expression and tissue damage in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg(9), at different doses and hours of exposure. We studied the effect of 0.25, 0.50, 0.75 and 1.0 µl/ml of MMS at 2, 4, 24 and 48 hours of exposure on hsp70 expression by using the soluble O-nitrophenyl-β-D-galactopyranoside (ONPG) assay and on establishing the tissue damage by the Trypan blue exclusion assay in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg(9). A dose-dependent increase in the expression of hsp70 was observed at 0.25, 0.50, and 0.75 µl/ml of MMS compared to the control. At the highest dose, i.e. 1.0 µl/ml of MMS, the activity of hsp70 was decreased due to tissue damage.
Collapse
Affiliation(s)
- Vineet Kumar
- Drosophila Transgenics Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, UP, Aligarh, INDIA
| | - Gulshan Ara
- Drosophila Transgenics Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, UP, Aligarh, INDIA
| | - Mohammad Afzal
- Drosophila Transgenics Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, UP, Aligarh, INDIA
| | - Yasir Hasan Siddique
- Drosophila Transgenics Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, UP, Aligarh, INDIA
| |
Collapse
|
10
|
Helguera AM, Pérez-Machado G, Cordeiro MNDS, Combes RD. Quantitative structure-activity relationship modelling of the carcinogenic risk of nitroso compounds using regression analysis and the TOPS-MODE approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2010; 21:277-304. [PMID: 20544552 DOI: 10.1080/10629361003773930] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Worldwide, legislative and governmental efforts are focusing on establishing simple screening tools for identifying those chemicals most likely to cause adverse effects without experimentally testing all chemicals of regulatory concern. This is because even the most basic biological testing of compounds of concern, apart from requiring a huge number of test animals, would be neither resource nor time effective. Thus, alternative approaches such as the one proposed here, quantitative structure-activity relationship (QSAR) modelling, are increasingly being used for identifying the potential health hazards and subsequent regulation of new industrial chemicals. This paper follows up on our earlier work that demonstrated the use of the TOPological Substructural MOlecular DEsign (TOPS-MODE) approach to QSAR modelling for predictions of the carcinogenic potency of nitroso compounds. The data set comprises 56 nitroso compounds which have been bio-assayed in female rats and administered by the oral water route. The QSAR model was able to account for about 81% of the variance in the experimental activity and exhibited good cross-validation statistics. A reasonable interpretation of the TOPS-MODE descriptors was achieved by means of bond contributions, which in turn afforded the recognition of structural alerts (SAs) regarding carcinogenicity. A comparison of the SAs obtained from different data sets showed that experimental factors, such as the sex and the oral administration route, exert a major influence on the carcinogenicity of nitroso compounds. The present and previous QSAR models combined together provide a reliable tool for estimating the carcinogenic potency of yet untested nitroso compounds and they should allow the identification of SAs, which can be used as the basis of prediction systems for the rodent carcinogenicity of these compounds.
Collapse
Affiliation(s)
- A M Helguera
- Department of Chemistry, Central University of Las Villas, Santa Clara, Villa Clara, Cuba.
| | | | | | | |
Collapse
|
11
|
Zhang F, Bartels MJ, Pottenger LH, Schisler MR, Grundy JJ, Gollapudi BB. Quantitation of methylated hemoglobin adducts in a signature peptide from rat blood by liquid chromatography/negative electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:1455-1460. [PMID: 18398826 DOI: 10.1002/rcm.3530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hemoglobin adducts are often used as biomarkers for exposure to reactive chemicals in toxicology studies. Therefore, fast, sensitive, accurate, and reproducible methods for quantifying these protein adducts are key to evaluate test material dosimetry. A methodology has been developed for the quantitation of methylated hemoglobin adducts isolated from rats exposed to the model alkylating agent: methyl methane sulfonate (MMS). After 4 days of MMS exposure by oral gavage, hemoglobin was isolated from rat blood and digested with trypsin. The tryptic digestion solution was used for the adducted hemoglobin signature peptide quantitation via liquid chromatography/negative tandem mass spectrometry (LC/ESI-MS/MS). The limit of quantitation (LOQ) for the methylated hemoglobin beta chain N-terminal signature peptide (MeVHLTDAEK) was 1.95 ng/mL (5.9 pmol/mg globin). The calibration curves were linear over a concentration range of 1.95 to 625 ng/mL, with a correlation coefficient R2 >0.998, accuracy of 85.8 to 119.3%, and precision of 0.9 to 19.4%.
Collapse
Affiliation(s)
- Fagen Zhang
- Toxicology and Environmental Research & Consulting, The Dow Chemical Company, 1803 Building, Midland, MI 48674, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Morales Helguera A, Pérez González M, Dias Soeiro Cordeiro MN, Cabrera Pérez MÁ. Quantitative Structure−Carcinogenicity Relationship for Detecting Structural Alerts in Nitroso Compounds: Species, Rat; Sex, Female; Route of Administration, Gavage. Chem Res Toxicol 2008; 21:633-42. [DOI: 10.1021/tx700336n] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Aliuska Morales Helguera
- Department of Chemistry and Molecular Simulation and Drug Design Group, Chemical Bioactive Center, Central University of Las Villas, Santa Clara, 54830, Villa Clara, Cuba, and REQUIMTE, Chemistry Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Maykel Pérez González
- Department of Chemistry and Molecular Simulation and Drug Design Group, Chemical Bioactive Center, Central University of Las Villas, Santa Clara, 54830, Villa Clara, Cuba, and REQUIMTE, Chemistry Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Maria Natália Dias Soeiro Cordeiro
- Department of Chemistry and Molecular Simulation and Drug Design Group, Chemical Bioactive Center, Central University of Las Villas, Santa Clara, 54830, Villa Clara, Cuba, and REQUIMTE, Chemistry Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Miguel Ángel Cabrera Pérez
- Department of Chemistry and Molecular Simulation and Drug Design Group, Chemical Bioactive Center, Central University of Las Villas, Santa Clara, 54830, Villa Clara, Cuba, and REQUIMTE, Chemistry Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
13
|
Helguera AM, González MP, D S Cordeiro MN, Pérez MAC. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds. Toxicol Appl Pharmacol 2007; 221:189-202. [PMID: 17477948 DOI: 10.1016/j.taap.2007.02.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/16/2007] [Accepted: 02/21/2007] [Indexed: 02/01/2023]
Abstract
Prevention of environmentally induced cancers is a major health problem of which solutions depend on the rapid and accurate screening of potential chemical hazards. Lately, theoretical approaches such as the one proposed here - Quantitative Structure-Activity Relationship (QSAR) - are increasingly used for assessing the risks of environmental chemicals, since they can markedly reduce costs, avoid animal testing, and speed up policy decisions. This paper reports a QSAR study based on the Topological Substructural Molecular Design (TOPS-MODE) approach, aiming at predicting the rodent carcinogenicity of a set of nitroso-compounds selected from the Carcinogenic Potency Data Base (CPDB). The set comprises nitrosoureas (14 chemicals), N-nitrosamines (18 chemicals) C-nitroso-compounds (1 chemical), nitrosourethane (1 chemical) and nitrosoguanidine (1 chemical), which have been bioassayed in male rat using gavage as the route of administration. Here we are especially concerned in gathering the role of both parameters on the carcinogenic activity of this family of compounds. First, the regression model was derived, upon removal of one identified nitrosamine outlier, and was able to account for more than 84% of the variance in the experimental activity. Second, the TOPS-MODE approach afforded the bond contributions -- expressed as fragment contributions to the carcinogenic activity -- that can be interpreted and provide tools for better understanding the mechanisms of carcinogenesis. Finally, and most importantly, we demonstrate the potentialities of this approach towards the recognition of structural alerts for carcinogenicity predictions.
Collapse
Affiliation(s)
- Aliuska Morales Helguera
- Department of Chemistry, Faculty of Chemistry and Pharmacy, Central University of Las Villas, Santa Clara, 54830, Villa Clara, Cuba
| | | | | | | |
Collapse
|
14
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1110-21. [PMID: 16106339 DOI: 10.1002/jms.809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|