1
|
Sansone F, Tonacci A. Non-Invasive Diagnostic Approaches for Kidney Disease: The Role of Electronic Nose Systems. SENSORS (BASEL, SWITZERLAND) 2024; 24:6475. [PMID: 39409515 PMCID: PMC11479338 DOI: 10.3390/s24196475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024]
Abstract
Kidney diseases are a group of conditions related to the functioning of kidneys, which are in turn unable to properly filter waste and excessive fluids from the blood, resulting in the presence of dangerous levels of electrolytes, fluids, and waste substances in the human body, possibly leading to significant health effects. At the same time, the toxins amassing in the organism can lead to significant changes in breath composition, resulting in halitosis with peculiar features like the popular ammonia breath. Starting from this evidence, scientists have started to work on systems that can detect the presence of kidney diseases using a minimally invasive approach, minimizing the burden to the individuals, albeit providing clinicians with useful information about the disease's presence or its main related features. The electronic nose (e-nose) is one of such tools, and its applications in this specific domain represent the core of the present review, performed on articles published in the last 20 years on humans to stay updated with the latest technological advancements, and conducted under the PRISMA guidelines. This review focuses not only on the chemical and physical principles of detection of such compounds (mainly ammonia), but also on the most popular data processing approaches adopted by the research community (mainly those relying on Machine Learning), to draw exhaustive conclusions about the state of the art and to figure out possible cues for future developments in the field.
Collapse
Affiliation(s)
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| |
Collapse
|
2
|
Mass spectrometry for breath analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Wang N, Ernle L, Bekö G, Wargocki P, Williams J. Emission Rates of Volatile Organic Compounds from Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4838-4848. [PMID: 35389619 PMCID: PMC9022422 DOI: 10.1021/acs.est.1c08764] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 05/30/2023]
Abstract
Human-emitted volatile organic compounds (VOCs) are mainly from breath and the skin. In this study, we continuously measured VOCs in a stainless-steel environmentally controlled climate chamber (22.5 m3, air change rate at 3.2 h-1) occupied by four seated human volunteers using proton transfer reaction time-of-flight mass spectrometry and gas chromatography mass spectrometry. Experiments with human whole body, breath-only, and dermal-only emissions were performed under ozone-free and ozone-present conditions. In addition, the effect of temperature, relative humidity, clothing type, and age was investigated for whole-body emissions. Without ozone, the whole-body total emission rate (ER) was 2180 ± 620 μg h-1 per person (p-1), dominated by exhaled chemicals. The ERs of oxygenated VOCs were positively correlated with the enthalpy of the air. Under ozone-present conditions (∼37 ppb), the whole-body total ER doubled, with the increase mainly driven by VOCs resulting from skin surface lipids/ozone reactions, which increased with relative humidity. Long clothing (more covered skin) was found to reduce the total ERs but enhanced certain chemicals related to the clothing. The ERs of VOCs derived from this study provide a valuable data set of human emissions under various conditions and can be used in models to better predict indoor air quality, especially for highly occupied environments.
Collapse
Affiliation(s)
- Nijing Wang
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Lisa Ernle
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Gabriel Bekö
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, Nils Koppels Alle 402, 2800 Lyngby, Denmark
| | - Pawel Wargocki
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, Nils Koppels Alle 402, 2800 Lyngby, Denmark
| | - Jonathan Williams
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
- Climate
& Atmosphere Research Centre, The Cyprus
Institute, 1645 Nicosia, Cyprus
| |
Collapse
|
4
|
Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS. CLINICAL MASS SPECTROMETRY 2020; 16:18-24. [DOI: 10.1016/j.clinms.2020.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022]
|
5
|
Smith D, Španěl P. On the importance of accurate quantification of individual volatile metabolites in exhaled breath. J Breath Res 2017. [PMID: 28635619 DOI: 10.1088/1752-7163/aa7ab5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is argued that shortcomings of certain approaches to breath analysis research based on superficial interpretation of non-quantitative data are inadvertently inhibiting the progression of non-invasive breath analysis into clinical practice. The objective of this perspective is to suggest more clinically profitable approaches to breath research. Thus, following a discourse on the challenges and expectations in breath research, a brief indication is given of the analytical techniques currently used for the analysis of very humid exhaled breath. The seminal work that has been carried out using GC-MS revealed that exhaled breath comprises large numbers of trace volatile organic compounds, VOCs. Unfortunately, analysis of these valuable GC-MS data is mostly performed using chemometrics to distinguish the VOC content of breath samples collected from patients and healthy controls, and reliable quantification of the VOCs is rarely deemed necessary. This limited approach ignores the requirements of clinically acceptable biomarkers and misses the opportunity to identify relationships between the concentrations of individual VOCs and certain related physiological or metabolic parameters. Therefore, a plea is made for more effort to be directed towards the positive identification and accurate quantification of individual VOCs in exhaled breath, which are more physiologically meaningful as best exemplified by the quantification of breath nitric oxide, NO. Support for the value of individual VOC quantification is illustrated by the SIFT-MS studies of breath hydrogen cyanide, HCN, a biomarker of Pseudomonas aeruginosa infection, breath acetic acid as an indicator of airways acidification in cystic fibrosis patients, and n-pentane as a breath biomarker of inflammation in idiopathic bowel disease patients. These single VOCs could be used as non-invasive monitors of the efficacy of therapeutic intervention. The increase of breath methanol following the ingestion of a known amount of the sweetener aspartame impressively shows that accurate breath analysis is a reliable indicator of blood concentrations. However, using individual VOCs for specific disease diagnosis does have its problems and it is, perhaps, more appropriate to see their concentrations as proxy markers of general underlying physiological change. We dedicate this perspective to Lars Gustafsson for his seminal work on breath research and especially for his pioneering work on nitric oxide measurements in exhaled breath in asthma, which best shows the utility and value of the quantification of individual breath biomarkers on which this perspective focuses.
Collapse
Affiliation(s)
- David Smith
- Trans Spectra Limited, 9 The Elms, Newcastle under Lyme, United Kingdom
| | | |
Collapse
|
6
|
Demirjian S, Paschke KM, Wang X, Grove D, Heyka RJ, Dweik RA. Molecular breath analysis identifies the breathprint of renal failure. J Breath Res 2017; 11:026009. [DOI: 10.1088/1752-7163/aa7143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Boshier PR, Mistry V, Cushnir JR, Kon OM, Elkin SL, Curtis S, Marczin N, Hanna GB. Breath metabolite response to major upper gastrointestinal surgery. J Surg Res 2015; 193:704-12. [DOI: 10.1016/j.jss.2014.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 12/28/2022]
|
8
|
Smith D, Španěl P. SIFT-MS and FA-MS methods for ambient gas phase analysis: developments and applications in the UK. Analyst 2015; 140:2573-91. [DOI: 10.1039/c4an02049a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The origins of SIFT created to study interstellar chemistry and SIFT-MS developed for ambient gas and exhaled breath analysis and the UK centres in which these techniques are being exploited.
Collapse
Affiliation(s)
- David Smith
- Institute for Science and Technology in Medicine – Keele University
- Guy Hilton Research Centre
- Stoke-on-Trent
- UK
| | - Patrik Španěl
- Institute for Science and Technology in Medicine – Keele University
- Guy Hilton Research Centre
- Stoke-on-Trent
- UK
- J. Heyrovský Institute of Physical Chemistry
| |
Collapse
|
9
|
Ruzsanyi V, Lederer W, Seger C, Calenic B, Liedl KR, Amann A. Non-(13)CO2 targeted breath tests: a feasibility study. J Breath Res 2014; 8:046005. [PMID: 25358411 DOI: 10.1088/1752-7155/8/4/046005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Breath tests allow a non-invasive and fast diagnostic of different specific enzymes' phenotypic functionality. Over the last decade several 13C-breath tests were successfully tested, with the (13)C-urea breath test being approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). The use of other targets than labeled (13)CO2 in exhaled breath offers additional possibilities. High sensitivity analytical technologies, such as proton-transfer reaction time-of-flight mass spectrometry, enable the detection of different volatile targets in the low ppb (parts per billion) range in real-time.In the current study volunteers received 0.8 mg deuterated 2-propanol, which was converted to d3-acetone (m/z 62.08) by alcohol dehydrogenase. D3-acetone (m/z 62.08) appeared in exhaled breath concentrations up to 30 ppb (at maximum). Parallel consumption of ethanol seems to reduce the activity of the enzyme, resulting in approximately 15-30% reduction of the produced d3-acetone. Phenotypic determination of enzyme activities is important, since the functionality of enzymes is influenced by factors such as age, sex, life-style, diet, organ function, metabolism, etc, which cannot be entirely accounted for by genetic factors.
Collapse
Affiliation(s)
- Veronika Ruzsanyi
- Department of Anesthesiology and Critical Care Medicine, Innsbruck Medical University, Anichstr 35, A-6020 Innsbruck, Austria. Breath Research Institute of the University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria
| | | | | | | | | | | |
Collapse
|
10
|
Lourenço C, Turner C. Breath analysis in disease diagnosis: methodological considerations and applications. Metabolites 2014; 4:465-98. [PMID: 24957037 PMCID: PMC4101517 DOI: 10.3390/metabo4020465] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 02/07/2023] Open
Abstract
Breath analysis is a promising field with great potential for non-invasive diagnosis of a number of disease states. Analysis of the concentrations of volatile organic compounds (VOCs) in breath with an acceptable accuracy are assessed by means of using analytical techniques with high sensitivity, accuracy, precision, low response time, and low detection limit, which are desirable characteristics for the detection of VOCs in human breath. "Breath fingerprinting", indicative of a specific clinical status, relies on the use of multivariate statistics methods with powerful in-built algorithms. The need for standardisation of sample collection and analysis is the main issue concerning breath analysis, blocking the introduction of breath tests into clinical practice. This review describes recent scientific developments in basic research and clinical applications, namely issues concerning sampling and biochemistry, highlighting the diagnostic potential of breath analysis for disease diagnosis. Several considerations that need to be taken into account in breath analysis are documented here, including the growing need for metabolomics to deal with breath profiles.
Collapse
Affiliation(s)
- Célia Lourenço
- Department of Life, Health & Chemical Sciences, Chemistry and Analytical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | - Claire Turner
- Department of Life, Health & Chemical Sciences, Chemistry and Analytical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
11
|
Smith D, Španěl P, Herbig J, Beauchamp J. Mass spectrometry for real-time quantitative breath analysis. J Breath Res 2014; 8:027101. [PMID: 24682047 DOI: 10.1088/1752-7155/8/2/027101] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Smith D, Španěl P, Gilchrist FJ, Lenney W. Hydrogen cyanide, a volatile biomarker of
Pseudomonas aeruginosa
infection. J Breath Res 2013; 7:044001. [DOI: 10.1088/1752-7155/7/4/044001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Bikov A, Paschalaki K, Logan-Sinclair R, Horváth I, Kharitonov SA, Barnes PJ, Usmani OS, Paredi P. Standardised exhaled breath collection for the measurement of exhaled volatile organic compounds by proton transfer reaction mass spectrometry. BMC Pulm Med 2013; 13:43. [PMID: 23837867 PMCID: PMC3708755 DOI: 10.1186/1471-2466-13-43] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/04/2013] [Indexed: 01/03/2023] Open
Abstract
Background Exhaled breath volatile organic compound (VOC) analysis for airway disease monitoring is promising. However, contrary to nitric oxide the method for exhaled breath collection has not yet been standardized and the effects of expiratory flow and breath-hold have not been sufficiently studied. These manoeuvres may also reveal the origin of exhaled compounds. Methods 15 healthy volunteers (34 ± 7 years) participated in the study. Subjects inhaled through their nose and exhaled immediately at two different flows (5 L/min and 10 L/min) into methylated polyethylene bags. In addition, the effect of a 20 s breath-hold following inhalation to total lung capacity was studied. The samples were analyzed for ethanol and acetone levels immediately using proton-transfer-reaction mass-spectrometer (PTR-MS, Logan Research, UK). Results Ethanol levels were negatively affected by expiratory flow rate (232.70 ± 33.50 ppb vs. 202.30 ± 27.28 ppb at 5 L/min and 10 L/min, respectively, p < 0.05), but remained unchanged following the breath hold (242.50 ± 34.53 vs. 237.90 ± 35.86 ppb, without and with breath hold, respectively, p = 0.11). On the contrary, acetone levels were increased following breath hold (1.50 ± 0.18 ppm) compared to the baseline levels (1.38 ± 0.15 ppm), but were not affected by expiratory flow (1.40 ± 0.14 ppm vs. 1.49 ± 0.14 ppm, 5 L/min vs. 10 L/min, respectively, p = 0.14). The diet had no significant effects on the gasses levels which showed good inter and intra session reproducibility. Conclusions Exhalation parameters such as expiratory flow and breath-hold may affect VOC levels significantly; therefore standardisation of exhaled VOC measurements is mandatory. Our preliminary results suggest a different origin in the respiratory tract for these two gasses.
Collapse
|
14
|
Spaněl P, Dryahina K, Smith D. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath. J Breath Res 2013; 7:017106. [PMID: 23445832 DOI: 10.1088/1752-7155/7/1/017106] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Throughout the development of breath analysis research, there has been interest in how the concentrations of trace compounds in exhaled breath are related to their concentrations in the ambient inhaled air. In considering this, Phillips introduced the concept of 'alveolar gradient' and judged that the measured exhaled concentrations of volatile organic compounds should be diminished by an amount equal to their concentrations in the inhaled ambient air. The objective of the work described in this paper was to investigate this relationship quantitatively. Thus, experiments have been carried out in which inhaled air was polluted by seven compounds of interest in breath research, as given below, and exhaled breath has been analysed by SIFT-MS as the concentrations of these compounds in the inhaled air were reduced. The interesting result obtained is that all the exogenous compounds are partially retained in the exhaled breath and there are close linear relationships between the exhaled and inhaled air concentrations for all seven compounds. Thus, retention coefficients, a, have been derived for the following compounds: pentane, 0.76 ± 0.09; isoprene, 0.66 ± 0.04; acetone, 0.17 ± 0.03; ammonia, 0.70 ± 0.13, methanol, 0.29 ± 0.02; formaldehyde, 0.06 ± 0.03; deuterated water (HDO), 0.09 ± 0.02. From these data, correction to breath analyses for inhaled concentration can be described by coefficients specific to each compound, which can be close to 1 for hydrocarbons, as applied by Phillips, or around 0.1, meaning that inhaled concentrations of such compounds can essentially be neglected. A further deduction from the experimental data is that under conditions of the inhalation of clean air, the measured exhaled breath concentrations of those compounds should be increased by a factor of 1/(1 - a) to correspond to gaseous equilibrium with the compounds dissolved in the mixed venous blood entering the alveoli. Thus, for isoprene, this is a factor of 3, which we have confirmed experimentally by re-breathing experiments.
Collapse
Affiliation(s)
- Patrik Spaněl
- J Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, Prague 8, Czech Republic.
| | | | | |
Collapse
|
15
|
Spanel P, Smith D. On the features, successes and challenges of selected ion flow tube mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2013; 19:225-246. [PMID: 24575622 DOI: 10.1255/ejms.1240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The major features of the selected ion flow tube mass spectrometry (SIFT-MS) analytical method that was conceived and designed for the analysis, in real time, of air obviating sample collections into bags or extraction by pre-concentration of trace compounds onto surfaces are reviewed. The unique analytical capabilities of SIFT-MS for ambient analysis are stressed that allow quantification of volatile organic and inorganic compounds directly from the measurement of physical parameters without the need for regular instrumental calibration using internal or external standards. Then, emphasis is placed on the challenging real-time accurate analysis of single exhalations of humid breath, which is now achieved and readily facilitates wider applications of SIFT-MS in other fields where trace gas analysis has value. The quality of the data obtained by SIFT-MS is illustrated by the quantification of some exhaled breath metabolites that are of immediate relevance to physiology and medicine, including that of hydrogen cyanide in the breath of patients with cystic fibrosis. The current status of SIFT-MS is revealed by a form of a strengths, weakness, opportunities and threats (SWOT) analysis intended to present an objective view of this analytical technique and the likely way forward towards its further development and application.
Collapse
Affiliation(s)
- Patrik Spanel
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, DolejSkova 3, 182 23, Prague 8, Czech Republic
| | - David Smith
- lnstitute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW To summarize the recent progress made in noninvasive monitoring of volatile compounds in exhaled breath and above biological liquids, as they are becoming increasingly important in assessing the nutritional and clinical status and beginning to provide support to conventional clinical diagnostics and therapy. To indicate the potential of these developments in medicine and the specific areas which are currently under investigation. RECENT FINDINGS The significance of the following breath gases and their concentrations are reported: acetone and the influence of diet; ammonia confirmed as an indicator of dialysis efficacy; hydrogen and the (13)CO(2)/(12)CO(2) ratio (following the ingestion of (13)C-labeled compounds) as related to gastric emptying and bowel transit times; hydrogen cyanide released by Pseudomonas and its detection in breath of children with cystic fibrosis; and multiple trace compounds in breath of patients with specific pathophysiological conditions and 'metabolic profiling'. SUMMARY Advanced analytical methods, especially exploiting mass spectrometry, are moving breath analysis towards the clinical setting; some trace gas metabolites are already being exploited in diagnosis and therapy. Much effort is being given to the search for biomarkers of tumours in the body. HCN as an indicator of the presence of Pseudomonas in the airways has real potential in therapeutically alleviating the symptoms of cystic fibrosis.
Collapse
Affiliation(s)
- Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | |
Collapse
|
17
|
Affiliation(s)
- T. A. Brettell
- Department of Chemical and Physical Sciences, Cedar Crest College, 100 College Drive, Allentown, Pennsylvania 18104-6196, United States
| | - J. M. Butler
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8312, United States
| | - J. R. Almirall
- Department of Chemistry and Biochemistry and International Forensic Research Institute, Florida International University, University Park, Miami, Florida 33199, United States
| |
Collapse
|
18
|
Abstract
The topic of ambient gas analysis has been rapidly developed in the last few years with the evolution of the exciting new techniques such as DESI, DART and EESI. The essential feature of all is that analysis of trace gases can be accomplished either in the gas phase or those released from surfaces, crucially avoiding sample collection or modification. In this regard, selected ion flow tube mass spectrometry, SIFT-MS, also performs ambient analyses both accurately and rapidly. In this focused review we describe the underlying ion chemistry underpinning SIFT-MS through a discourse on the reactions of different classes of organic and inorganic molecules with H(3)O(+), NO(+) and O(2)(+)˙ studied using the SIFT technique. Rate coefficients and ion products of these reactions facilitate absolute SIFT-MS analyses and can also be useful for the interpretation of data obtained by the other ambient analysis methods mentioned above. The essential physics and flow dynamics of SIFT-MS are described that, together with the reaction kinetics, allow SIFT-MS to perform absolute ambient analyses of trace compounds in humid atmospheric air, exhaled breath and the headspace of aqueous liquids. Several areas of research that, through pilot experiments, are seen to benefit from ambient gas analysis using SIFT-MS are briefly reviewed. Special attention is given to exhaled breath and urine headspace analysis directed towards clinical diagnosis and therapeutic monitoring, and some other areas researched using SIFT-MS are summarised. Finally, extensions to current areas of application and indications of other directions in which SIFT-MS can be exploited for ambient analysis are alluded to.
Collapse
Affiliation(s)
- David Smith
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Hartshill, Stoke-on-Trent, UK
| | | |
Collapse
|
19
|
Spaněl P, Smith D. Progress in SIFT-MS: breath analysis and other applications. MASS SPECTROMETRY REVIEWS 2011; 30:236-267. [PMID: 20648679 DOI: 10.1002/mas.20303] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/12/2009] [Accepted: 09/12/2009] [Indexed: 05/29/2023]
Abstract
The development of selected ion flow tube mass spectrometry, SIFT-MS, is described from its inception as the modified very large SIFT instruments used to demonstrate the feasibility of SIFT-MS as an analytical technique, towards the smaller but bulky transportable instruments and finally to the current smallest Profile 3 instruments that have been located in various places, including hospitals and schools to obtain on-line breath analyses. The essential physics and engineering principles are discussed, which must be appreciated to design and construct a SIFT-MS instrument. The versatility and sensitivity of the Profile 3 instrument is illustrated by typical mass spectra obtained using the three precursor ions H(3)O(+), NO(+) and O(2)(+)·, and the need to account for differential ionic diffusion and mass discrimination in the analytical algorithms is emphasized to obtain accurate trace gas analyses. The performance of the Profile 3 instrument is illustrated by the results of several pilot studies, including (i) on-line real time quantification of several breath metabolites for cohorts of healthy adults and children, which have provided representative concentration/population distributions, and the comparative analyses of breath exhaled via the mouth and nose that identify systemic and orally-generated compounds, (ii) the enhancement of breath metabolites by drug ingestion, (iii) the identification of HCN as a marker of Pseudomonas colonization of the airways and (iv) emission of volatile compounds from urine, especially ketone bodies, and from skin. Some very recent developments are discussed, including the quantification of carbon dioxide in breath and the combination of SIFT-MS with GC and ATD, and their significance. Finally, prospects for future SIFT-MS developments are alluded to.
Collapse
Affiliation(s)
- Patrik Spaněl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23, Prague 8, Czech Republic.
| | | |
Collapse
|
20
|
Current Awareness in Drug Testing and Analysis. Drug Test Anal 2010. [DOI: 10.1002/dta.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|