1
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
2
|
Li C. Deer antler renewal gives insights into mammalian epimorphic regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:26. [PMID: 37490254 PMCID: PMC10368610 DOI: 10.1186/s13619-023-00169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023]
Abstract
Deer antlers are the only known mammalian organ that, once lost, can fully grow back naturally. Hence, the antler offers a unique opportunity to learn how nature has solved the problem of mammalian epimorphic regeneration (EpR). Comprehensive comparisons amongst different types of EpR reveal that antler renewal is fundamentally different from that in lower vertebrates such as regeneration of the newt limb. Surprisingly, antler renewal is comparable to wound healing over a stump of regeneration-incompetent digit/limb, bone fracture repair, and to a lesser extent to digit tip regeneration in mammals. Common to all these mammalian cases of reaction to the amputation/mechanical trauma is the response of the periosteal cells at the distal end/injury site with formation of a circumferential cartilaginous callus (CCC). Interestingly, whether the CCC can proceed to the next stage to transform to a blastema fully depends on the presence of an interactive partner. The actual form of the partner can vary in different cases with the nail organ in digit tip EpR, the opposing callus in bone fracture repair, and the closely associated enveloping skin in antler regeneration. Due to absence of such an interactive partner, the CCC of a mouse/rat digit/limb stump becomes involuted gradually. Based on these discoveries, we created an interactive partner for the rat digit/limb stump through surgically removal of the interposing layers of loose connective tissue and muscle between the resultant CCC and the enveloping skin after amputation and by forcefully bonding two tissue types tightly together. In so doing partial regeneration of the limb stump occurred. In summary, if EpR in humans is to be realized, then I envisage that it would be more likely in a manner akin to antler regeneration rather to that of lower vertebrates such as newt limbs.
Collapse
Affiliation(s)
- Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, China.
- Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130000, China.
| |
Collapse
|
3
|
Castilla-Ibeas A, Zdral S, Galán L, Haro E, Allou L, Campa VM, Icardo JM, Mundlos S, Oberg KC, Ros MA. Failure of digit tip regeneration in the absence of Lmx1b suggests Lmx1b functions disparate from dorsoventral polarity. Cell Rep 2023; 42:111975. [PMID: 36641754 DOI: 10.1016/j.celrep.2022.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Mammalian digit tip regeneration is linked to the presence of nail tissue, but a nail-explicit model is missing. Here, we report that nail-less double-ventral digits of ΔLARM1/2 mutants that lack limb-specific Lmx1b enhancers fail to regenerate. To separate the nail's effect from the lack of dorsoventral (DV) polarity, we also interrogate double-dorsal double-nail digits and show that they regenerate. Thus, DV polarity is not a prerequisite for regeneration, and the nail requirement is supported. Transcriptomic comparison between wild-type and non-regenerative ΔLARM1/2 mutant blastemas reveals differential upregulation of vascularization and connective tissue functional signatures in wild type versus upregulation of inflammation in the mutant. These results, together with the finding of Lmx1b expression in the postnatal dorsal dermis underneath the nail and uniformly in the regenerative blastema, open the possibility of additional Lmx1b roles in digit tip regeneration, in addition to the indirect effect of mediating the formation of the nail.
Collapse
Affiliation(s)
- Alejandro Castilla-Ibeas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Sofía Zdral
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Laura Galán
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Endika Haro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Lila Allou
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Víctor M Campa
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Jose M Icardo
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain.
| |
Collapse
|
4
|
Ketcham PD, Imholt F, Yan M, Smith HM, Asrar S, Yu L, Dolan CP, Qureshi O, Lin YL, Xia I, Hall PC, Falck AR, Sherman KM, Gaddy D, Suva LJ, Muneoka K, Brunauer R, Dawson LA. Microcomputed tomography staging of bone histolysis in the regenerating mouse digit. Wound Repair Regen 2023; 31:17-27. [PMID: 36177656 DOI: 10.1111/wrr.13054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/10/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
Humans and mice have the ability to regenerate the distal digit tip, the terminal phalanx (P3) in response to amputation. What distinguishes P3 regeneration from regenerative failure is formation of the blastema, a proliferative structure that undergoes morphogenesis to regenerate the amputated tissues. P3 regeneration is characterised by the phases of inflammation, tissue histolysis and expansive bone degradation with simultaneous blastema formation, wound closure and finally blastemal differentiation to restore the amputated structures. While each regenerating digit faithfully progresses through all phases of regeneration, phase progression has traditionally been delineated by time, that is, days postamputation (DPA), yet there is widespread variability in the timing of the individual phases. To diminish variability between digits during tissue histolysis and blastema formation, we have established an in-vivo method using microcomputed tomography (micro CT) scanning to identify five distinct stages of the early regeneration response based on anatomical changes of the digit stump. We report that categorising the initial phases of digit regeneration by stage rather than time greatly diminishes the variability between digits with respect to changes in bone volume and length. Also, stages correlate with the levels of cell proliferation, osteoclast recruitment and osteoprogenitor cell recruitment. Importantly, micro CT staging provides a means to estimate open versus closed digit wounds. We demonstrate two spatially distinct and stage specific bone repair/regeneration responses that occur during P3 regeneration. Collectively, these studies showcase the utility of micro CT imaging to infer the composition of radiolucent soft tissues during P3 blastema formation. Specifically, the staging system identifies the onset of cell proliferation, osteoclastogenesis, osteoprogenitor recruitment, the spatial initiation of de novo bone formation and epidermal closure.
Collapse
Affiliation(s)
- Paulina D Ketcham
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Felisha Imholt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Hannah M Smith
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Shabistan Asrar
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,DoD-VA Extremity Trauma and Amputation Centre of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Centre, Bethesda, Maryland, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Yu-Lieh Lin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ian Xia
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Patrick C Hall
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alyssa R Falck
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Kirby M Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Tower RJ, Busse E, Jaramillo J, Lacey M, Hoffseth K, Guntur AR, Simkin J, Sammarco MC. Spatial transcriptomics reveals metabolic changes underly age-dependent declines in digit regeneration. eLife 2022; 11:71542. [PMID: 35616636 PMCID: PMC9135401 DOI: 10.7554/elife.71542] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
De novo limb regeneration after amputation is restricted in mammals to the distal digit tip. Central to this regenerative process is the blastema, a heterogeneous population of lineage-restricted, dedifferentiated cells that ultimately orchestrates regeneration of the amputated bone and surrounding soft tissue. To investigate skeletal regeneration, we made use of spatial transcriptomics to characterize the transcriptional profile specifically within the blastema. Using this technique, we generated a gene signature with high specificity for the blastema in both our spatial data, as well as other previously published single-cell RNA-sequencing transcriptomic studies. To elucidate potential mechanisms distinguishing regenerative from non-regenerative healing, we applied spatial transcriptomics to an aging model. Consistent with other forms of repair, our digit amputation mouse model showed a significant impairment in regeneration in aged mice. Contrasting young and aged mice, spatial analysis revealed a metabolic shift in aged blastema associated with an increased bioenergetic requirement. This enhanced metabolic turnover was associated with increased hypoxia and angiogenic signaling, leading to excessive vascularization and altered regenerated bone architecture in aged mice. Administration of the metabolite oxaloacetate decreased the oxygen consumption rate of the aged blastema and increased WNT signaling, leading to enhanced in vivo bone regeneration. Thus, targeting cell metabolism may be a promising strategy to mitigate aging-induced declines in tissue regeneration.
Collapse
Affiliation(s)
- Robert J Tower
- Department of Orthopaedics, Johns Hopkins University, Baltimore, United States
| | - Emily Busse
- Department of Surgery, Tulane School of Medicine, New Orleans, United States
| | - Josue Jaramillo
- Department of Surgery, Tulane School of Medicine, New Orleans, United States
| | - Michelle Lacey
- Department of Mathematics, Tulane University, New Orleans, United States
| | - Kevin Hoffseth
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, United States
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, United States
| | - Jennifer Simkin
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, New Orleans, United States
| | - Mimi C Sammarco
- Department of Surgery, Tulane School of Medicine, New Orleans, United States
| |
Collapse
|
6
|
Dolan CP, Imholt F, Yan M, Yang TJ, Gregory J, Qureshi O, Zimmel K, Sherman KM, Smith HM, Falck A, Leininger E, Yu L, Brunauer R, Suva LJ, Gaddy D, Dawson LA, Muneoka K. Digit specific denervation does not inhibit mouse digit tip regeneration. Dev Biol 2022; 486:71-80. [DOI: 10.1016/j.ydbio.2022.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/26/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022]
|
7
|
Dolan CP, Imholt F, Yang TJ, Bokhari R, Gregory J, Yan M, Qureshi O, Zimmel K, Sherman KM, Falck A, Yu L, Leininger E, Brunauer R, Suva LJ, Gaddy D, Dawson LA, Muneoka K. Mouse Digit Tip Regeneration Is Mechanical Load Dependent. J Bone Miner Res 2022; 37:312-322. [PMID: 34783092 PMCID: PMC9400037 DOI: 10.1002/jbmr.4470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Amputation of the mouse digit tip results in blastema-mediated regeneration. In this model, new bone regenerates de novo to lengthen the amputated stump bone, resulting in a functional replacement of the terminal phalangeal element along with associated non-skeletal tissues. Physiological examples of bone repair, such as distraction osteogenesis and fracture repair, are well known to require mechanical loading. However, the role of mechanical loading during mammalian digit tip regeneration is unknown. In this study, we demonstrate that reducing mechanical loading inhibits blastema formation by attenuating bone resorption and wound closure, resulting in the complete inhibition of digit regeneration. Mechanical unloading effects on wound healing and regeneration are completely reversible when mechanical loading is restored. Mechanical unloading after blastema formation results in a reduced rate of de novo bone formation, demonstrating mechanical load dependence of the bone regenerative response. Moreover, enhancing the wound-healing response of mechanically unloaded digits with the cyanoacrylate tissue adhesive Dermabond improves wound closure and partially rescues digit tip regeneration. Taken together, these results demonstrate that mammalian digit tip regeneration is mechanical load-dependent. Given that human fingertip regeneration shares many characteristics with the mouse digit tip, these results identify mechanical load as a previously unappreciated requirement for de novo bone regeneration in humans. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Felisha Imholt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Tae-Jung Yang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Rihana Bokhari
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Joshua Gregory
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katherine Zimmel
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kirby M Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alyssa Falck
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Eric Leininger
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
8
|
Yu L, Lin YL, Yan M, Li T, Wu EY, Zimmel K, Qureshi O, Falck A, Sherman KM, Huggins SS, Hurtado DO, Suva LJ, Gaddy D, Cai J, Brunauer R, Dawson LA, Muneoka K. Hyaline cartilage differentiation of fibroblasts in regeneration and regenerative medicine. Development 2022; 149:274141. [PMID: 35005773 PMCID: PMC8917415 DOI: 10.1242/dev.200249] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Amputation injuries in mammals are typically non-regenerative; however, joint regeneration is stimulated by BMP9 treatment, indicating the presence of latent articular chondrocyte progenitor cells. BMP9 induces a battery of chondrogenic genes in vivo, and a similar response is observed in cultures of amputation wound cells. Extended cultures of BMP9-treated cells results in differentiation of hyaline cartilage, and single cell RNAseq analysis identified wound fibroblasts as BMP9 responsive. This culture model was used to identify a BMP9-responsive adult fibroblast cell line and a culture strategy was developed to engineer hyaline cartilage for engraftment into an acutely damaged joint. Transplanted hyaline cartilage survived engraftment and maintained a hyaline cartilage phenotype, but did not form mature articular cartilage. In addition, individual hypertrophic chondrocytes were identified in some samples, indicating that the acute joint injury site can promote osteogenic progression of engrafted hyaline cartilage. The findings identify fibroblasts as a cell source for engineering articular cartilage and establish a novel experimental strategy that bridges the gap between regeneration biology and regenerative medicine. Summary:In vivo articular cartilage regeneration serves as a model to develop novel approaches for engineering cartilage to repair damaged joints and identifies fibroblasts as a BMP9-inducible chondroprogenitor.
Collapse
Affiliation(s)
- Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yu-Lieh Lin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tao Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Emily Y. Wu
- Dewpoint Therapeutics, 6 Tide Street, Suite 300, Boston, MA 02210, USA
| | - Katherine Zimmel
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Alyssa Falck
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kirby M. Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Shannon S. Huggins
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Daniel Osorio Hurtado
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Larry J. Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - James Cai
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lindsay A. Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Yang C, Wang X, Zhang H, Kou Z, Gao Y, He Y, Liu B. Microscopical observations on the regenerating tail of tsinling dwarf skink (Scincella tsinlingensis). Micron 2022; 154:103215. [PMID: 35051802 DOI: 10.1016/j.micron.2022.103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
Although the key steps of tail regeneration in lizards are well understood, further investigations involving skinks can provide the field of regeneration research with additional information. In order to characterize the cytoarchitecture of tail regeneration in Scincella tsinlingensis, an endemic species in China, its histological events and growth trends are investigated. The rate of tail regeneration varies with the season: it proceeds faster in summer and autumn than it does in winter and spring. Tail regeneration of S. tsinlingensis is summarized as wound healing, blastema formation, cell differentiation and tail growth, which can be subdivided into seven stages. Wound healing following tail loss, begins with an obvious outgrowth undergoing re-epithelialization. Numerous proliferating mesenchymal-like cells aggregate near the distal end of the severed spinal cord to form the blastema. The expanding blastema is invaded by blood vessels, nerves and ependyma. A cartilaginous skeleton is formed around the ependymal tube and the muscle starts to differentiate. The keratinization of epidermis coincides with scale formation. Pigmentation eventually occurs in the regenerated tail. Tail regeneration in S. tsinlingensis is an epimorphic kind of regeneration that is also known as blastema-mediated. Structure and composition of the regenerated tail, including its cytoarchitecture, represent a conserved pattern of regeneration also known from other lizards.
Collapse
Affiliation(s)
- Chun Yang
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China.
| | - Xin Wang
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China
| | - Huihui Zhang
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China
| | - Zhaoting Kou
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China
| | - Yanyan Gao
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China
| | - Yijie He
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China
| | - Bo Liu
- Department of Intensive Care Medicine, Hanzhong Central Hospital, Hanzhong, 723000 Shaanxi Province, PR China.
| |
Collapse
|
10
|
Abstract
Species that can regrow their lost appendages have been studied with the ultimate aim of developing methods to enable human limb regeneration. These examinations highlight that appendage regeneration progresses through shared tissue stages and gene activities, leading to the assumption that appendage regeneration paradigms (e.g. tails and limbs) are the same or similar. However, recent research suggests these paradigms operate differently at the cellular level, despite sharing tissue descriptions and gene expressions. Here, collecting the findings from disparate studies, I argue appendage regeneration is context dependent at the cellular level; nonetheless, it requires (i) signalling centres, (ii) stem/progenitor cell types and (iii) a regeneration-permissive environment, and these three common cellular principles could be more suitable for cross-species/paradigm/age comparisons.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
The Potential of Nail Mini-Organ Stem Cells in Skin, Nail and Digit Tips Regeneration. Int J Mol Sci 2021; 22:ijms22062864. [PMID: 33799809 PMCID: PMC7998429 DOI: 10.3390/ijms22062864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Nails are highly keratinized skin appendages that exhibit continuous growth under physiological conditions and full regeneration upon removal. These mini-organs are maintained by two autonomous populations of skin stem cells. The fast-cycling, highly proliferative stem cells of the nail matrix (nail stem cells (NSCs)) predominantly replenish the nail plate. Furthermore, the slow-cycling population of the nail proximal fold (nail proximal fold stem cells (NPFSCs)) displays bifunctional properties by contributing to the peri-nail epidermis under the normal homeostasis and the nail structure upon injury. Here, we discuss nail mini-organ stem cells’ location and their role in skin and nail homeostasis and regeneration, emphasizing their importance to orchestrate the whole digit tip regeneration. Such endogenous regeneration capabilities are observed in rodents and primates. However, they are limited to the region adjacent to the nail’s proximal area, indicating the crucial role of nail mini-organ stem cells in digit restoration. Further, we explore the molecular characteristics of nail mini-organ stem cells and the critical role of the bone morphogenetic protein (BMP) and Wnt signaling pathways in homeostatic nail growth and digit restoration. Finally, we investigate the latest accomplishments in stimulating regenerative responses in regeneration-incompetent injuries. These pioneer results might open up new opportunities to overcome amputated mammalian digits and limbs’ regenerative failures in the future.
Collapse
|
12
|
Granados-Montiel J, Cruz-Lemini M, Rangel-Escareño C, Martinez-Nava G, Landa-Solis C, Gomez-Garcia R, Lopez-Reyes A, Espinosa-Gutierrez A, Ibarra C. SERPINA9 and SERPINB2: Novel Cartilage Lineage Differentiation Markers of Human Mesenchymal Stem Cells with Kartogenin. Cartilage 2021; 12:102-111. [PMID: 30373376 PMCID: PMC7755963 DOI: 10.1177/1947603518809403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Human mesenchymal stem cells (hMSCs) are a promising source for regenerative medicine, especially mesodermal lineages. Clinical applications require an understanding of the mechanisms for transcriptional control to maintain the desired cell type. The aim of this study was to identify novel markers for differentiation of hMSCs into bone or cartilage with the use of Kartogenin, by RNA analysis using microarray technology, and explore the role of RhoA-Rho associated protein kinase (ROCK) inhibition in these. METHODS Commercial human bone marrow derived primary mesenchymal stem cells were purchased from ATCC. Cells were differentiated in vitro in 2-dimensional cultures using Kartogenin as the main cartilage inducer and bone morphogenetic protein 2 for bone differentiation; cells were cultured with and without ROCK inhibitor Y-27632. After 21 days of culture, whole RNA was extracted and analyzed via Affimetrix microarrays. The most significant hits were validated by quantitative polymerase chain reaction. RESULTS We found a total of 1,757 genes that were either up- or downregulated on differentiation, when compared to P1 hMSC (control) at day 0 of differentiation. Two members of the Serpin superfamily, SERPINA9 and SERPINB2, were significantly upregulated in the cartilage groups, whereas they were unchanged in the bone groups with and without ROCK inhibition. CONCLUSIONS SERPINA9 and SERPINB2 are novel differentiation markers, and molecular regulator candidates for hMSC lineage commitment toward bone and cartilage, providing a new tool for regenerative medicine. Our study highlights the roles of these 2 genes, with significant upregulation of both in cell cultures stimulated with Kartogenin.
Collapse
Affiliation(s)
- Julio Granados-Montiel
- Tissue Engineering, Cell Therapy and Regenerative Medicine Research Unit, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico,Centre for Craniofacial and Regenerative Biology, King’s College London, Guy’s Hospital, London, UK
| | - Monica Cruz-Lemini
- Fetal Medicine Mexico Foundation and Fetal Surgery Unit, Children and Women’s Specialty Hospital of Queretaro, Queretaro, Mexico
| | | | - Gabriela Martinez-Nava
- Synovioanalysis Molecular Laboratory, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Carlos Landa-Solis
- Tissue Engineering, Cell Therapy and Regenerative Medicine Research Unit, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Ricardo Gomez-Garcia
- Tissue Engineering, Cell Therapy and Regenerative Medicine Research Unit, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Alberto Lopez-Reyes
- Synovioanalysis Molecular Laboratory, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Alejandro Espinosa-Gutierrez
- Hand Surgery and Microsurgery Department, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Clemente Ibarra
- Tissue Engineering, Cell Therapy and Regenerative Medicine Research Unit, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico,Clemente Ibarra, Tissue Engineering, Cell Therapy and Regenerative Medicine Unit, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada Mexico-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, Mexico City 14389, Mexico.
| |
Collapse
|
13
|
Storer MA, Miller FD. Cellular and molecular mechanisms that regulate mammalian digit tip regeneration. Open Biol 2020; 10:200194. [PMID: 32993414 PMCID: PMC7536070 DOI: 10.1098/rsob.200194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Digit tip regeneration is one of the few examples of true multi-tissue regeneration in an adult mammal. The key step in this process is the formation of the blastema, a transient proliferating cell mass that generates the different cell types of the digit to replicate the original structure. Failure to form the blastema results in a lack of regeneration and has been postulated to be the reason why mammalian limbs cannot regrow following amputation. Understanding how the blastema forms and functions will help us to determine what is required for mammalian regeneration to occur and will provide insights into potential therapies for mammalian tissue regeneration and repair. This review summarizes the cellular and molecular mechanisms that influence murine blastema formation and govern digit tip regeneration.
Collapse
Affiliation(s)
- Mekayla A Storer
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada M5G 1L7
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada M5G 1L7.,Department of Molecular Genetics, University of Toronto, Toronto, Canada M5G 1A8.,Department of Physiology, University of Toronto, Toronto, Canada M5G 1A8.,Institute of Medical Sciences, University of Toronto, Toronto, Canada M5G 1A8
| |
Collapse
|
14
|
Dawson LA, Schanes PP, Marrero L, Jordan K, Brunauer R, Zimmel KN, Qureshi O, Imholt FM, Falck AR, Yan M, Dolan CP, Yu L, Muneoka K. Proximal digit tip amputation initiates simultaneous blastema and transient fibrosis formation and results in partial regeneration. Wound Repair Regen 2020; 29:196-205. [PMID: 32815252 DOI: 10.1111/wrr.12856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Complete extremity regeneration in mammals is restricted to distal amputations of the digit tip, the terminal phalanx (P3). In mice, P3 regeneration is mediated via the formation of a blastema, a transient population of progenitor cells that form from the blending of periosteal and endosteal/marrow compartmentalized cells that undergo differentiation to restore the amputated structures. Compartmentalized blastema cells are formed independently, and periosteal compartment-derived cells are required for restoration of amputated skeletal length. P3 regenerative capacity is progressively attenuated at increasingly more proximal amputation levels, eventually resulting in regenerative failure. The continuum of regenerative capacity within the P3 wound milieu is a unique model to investigate mammalian blastema formation in response to distal amputation, as well as the healing response associated with regenerative failure at proximal amputation levels. We report that P3 proximal amputation healing, previously reported to result in regenerative failure, is not an example of complete regenerative failure, but instead is characterized by a limited bone regeneration response restricted to the endosteal/marrow compartment. The regeneration response is mediated by blastema formation within the endosteal/marrow compartment, and blastemal osteogenesis progresses through intramembranous ossification in a polarized proximal to distal sequence. Unlike bone regeneration following distal P3 amputation, osteogenesis within the periosteal compartment is not observed in response to proximal P3 amputation. We provide evidence that proximal P3 amputation initiates the formation of fibrotic tissue that isolates the endosteal/marrow compartment from the periosteal compartment and wound epidermis. While the fibrotic response is transient and later resolved, these studies demonstrate that blastema formation and fibrosis can occur in close proximity, with the regenerative response dominating the final outcome. Moreover, the results suggest that the attenuated proximal P3 regeneration response is associated with the absence of periosteal-compartment participation in blastema formation and bone regeneration.
Collapse
Affiliation(s)
- Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Paula P Schanes
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Luis Marrero
- Department of Orthopedic Surgery, Louisiana State University School of Medicine, New Orleans, Louisiana, USA.,Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Kathryn Jordan
- Department of Orthopedic Surgery, Louisiana State University School of Medicine, New Orleans, Louisiana, USA.,Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Katherine N Zimmel
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Felisha M Imholt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alyssa R Falck
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
15
|
Lund-Ricard Y, Cormier P, Morales J, Boutet A. mTOR Signaling at the Crossroad between Metazoan Regeneration and Human Diseases. Int J Mol Sci 2020; 21:E2718. [PMID: 32295297 PMCID: PMC7216262 DOI: 10.3390/ijms21082718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
A major challenge in medical research resides in controlling the molecular processes of tissue regeneration, as organ and structure damage are central to several human diseases. A survey of the literature reveals that mTOR (mechanistic/mammalian target of rapamycin) is involved in a wide range of regeneration mechanisms in the animal kingdom. More particularly, cellular processes such as growth, proliferation, and differentiation are controlled by mTOR. In addition, autophagy, stem cell maintenance or the newly described intermediate quiescence state, Galert, imply upstream monitoring by the mTOR pathway. In this review, we report the role of mTOR signaling in reparative regenerations in different tissues and body parts (e.g., axon, skeletal muscle, liver, epithelia, appendages, kidney, and whole-body), and highlight how the mTOR kinase can be viewed as a therapeutic target to boost organ repair. Studies in this area have focused on modulating the mTOR pathway in various animal models to elucidate its contribution to regeneration. The diversity of metazoan species used to identify the implication of this pathway might then serve applied medicine (in better understanding what is required for efficient treatments in human diseases) but also evolutionary biology. Indeed, species-specific differences in mTOR modulation can contain the keys to appreciate why certain regeneration processes have been lost or conserved in the animal kingdom.
Collapse
Affiliation(s)
| | | | | | - Agnès Boutet
- Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Integrative Biology of Marine Models (LBI2M), UMR 8227, Station Biologique de Roscoff (SBR), 29680 Roscoff, France; (Y.L.-R.); (P.C.); (J.M.)
| |
Collapse
|
16
|
Johnson GL, Masias EJ, Lehoczky JA. Cellular Heterogeneity and Lineage Restriction during Mouse Digit Tip Regeneration at Single-Cell Resolution. Dev Cell 2020; 52:525-540.e5. [PMID: 32097654 PMCID: PMC7186907 DOI: 10.1016/j.devcel.2020.01.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/27/2022]
Abstract
Innate regeneration following digit tip amputation is one of the few examples of epimorphic regeneration in mammals. Digit tip regeneration is mediated by the blastema, the same structure invoked during limb regeneration in some lower vertebrates. By genetic lineage analyses, the digit tip blastema has been defined as a population of heterogeneous, lineage-restricted progenitor cells. These previous studies, however, do not comprehensively evaluate blastema heterogeneity or address lineage restriction of closely related cell types. In this report, we present single-cell RNA sequencing of over 38,000 cells from mouse digit tip blastemas and unamputated control digit tips and generate an atlas of the cell types participating in digit tip regeneration. We computationally define differentiation trajectories of vascular, monocytic, and fibroblastic lineages over regeneration, and while our data confirm broad lineage restriction of progenitors, our analysis reveals 67 genes enriched in blastema fibroblasts including a novel regeneration-specific gene, Mest.
Collapse
Affiliation(s)
- Gemma L Johnson
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Erick J Masias
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jessica A Lehoczky
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Muneoka K, Dawson LA. Evolution of epimorphosis in mammals. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:165-179. [PMID: 31951104 DOI: 10.1002/jez.b.22925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022]
Abstract
Mammalian epimorphic regeneration is rare and digit tip regeneration in mice is the best-studied model for a multi-tissue regenerative event that involves blastema formation. Digit tip regeneration parallels human fingertip regeneration, thus understanding the details of this response can provide insight into developing strategies to expand the potential of human regeneration. Following amputation, the digit stump undergoes a strong histolytic response involving osteoclast-mediated bone degradation that is spatially and temporally linked to the expansion of blastema osteoprogenitor cells. Blastemal differentiation occurs via direct intramembranous ossification. Although robust, digit regeneration is imperfect: The amputated cortical bone is replaced with woven bone and there is excessive bone regeneration restricted to the dorsal-ventral axis. Ontogenetic and phylogenetic analysis of digit regeneration in amphibians and mammals raise the possibility that mammalian blastema is a product of convergent evolution and we hypothesize that digit tip regeneration evolved from a nonregenerative precondition. A model is proposed in which the mammalian blastema evolved in part from an adaptation of two bone repair strategies (the bone remodeling cycle and fracture healing) both of which are conserved across tetrapod vertebrates. The view that epimorphic regeneration evolved in mammals from a nonregenerative precondition is supported by recent studies demonstrating that complex regenerative responses can be induced from a number of different nonregenerative amputation wounds by specific modification of the healing response.
Collapse
Affiliation(s)
- Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
18
|
Cigliola V, Ghila L, Chera S, Herrera PL. Tissue repair brakes: A common paradigm in the biology of regeneration. Stem Cells 2019; 38:330-339. [PMID: 31722129 DOI: 10.1002/stem.3118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022]
Abstract
To date, most attention on tissue regeneration has focused on the exploration of positive cues promoting or allowing the engagement of natural cellular restoration upon injury. In contrast, the signals fostering cell identity maintenance in the vertebrate body have been poorly investigated; yet they are crucial, for their counteraction could become a powerful method to induce and modulate regeneration. Here we review the mechanisms inhibiting pro-regenerative spontaneous adaptive cell responses in different model organisms and organs. The pharmacological or genetic/epigenetic modulation of such regenerative brakes could release a dormant but innate adaptive competence of certain cell types and therefore boost tissue regeneration in different situations.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, North Carolina
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pedro L Herrera
- Department of Genetic Medicine & Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Yu L, Dawson LA, Yan M, Zimmel K, Lin YL, Dolan CP, Han M, Muneoka K. BMP9 stimulates joint regeneration at digit amputation wounds in mice. Nat Commun 2019; 10:424. [PMID: 30723209 PMCID: PMC6363752 DOI: 10.1038/s41467-018-08278-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 12/28/2018] [Indexed: 01/09/2023] Open
Abstract
A major goal of regenerative medicine is to stimulate tissue regeneration after traumatic injury. We previously discovered that treating digit amputation wounds with BMP2 in neonatal mice stimulates endochondral ossification to regenerate the stump bone. Here we show that treating the amputation wound with BMP9 stimulates regeneration of a synovial joint that forms an articulation with the stump bone. Regenerated structures include a skeletal element lined with articular cartilage and a synovial cavity, and we demonstrate that this response requires the Prg4 gene. Combining BMP2 and BMP9 treatments in sequence stimulates the regeneration of bone and joint. These studies provide evidence that treatment of growth factors can be used to engineer a regeneration response from a non-regenerating amputation wound. Mammalian joints have poor regenerative capacity following amputation. Here, the authors show that in mice, stimulation of the amputation wound with BMP2 and BMP9 stimulates regeneration of a synovial joint that includes bone, cartilage and a synovial cavity.
Collapse
Affiliation(s)
- Ling Yu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Katherine Zimmel
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yu-Lieh Lin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Manjong Han
- Department of Cell & Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA. .,Department of Cell & Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
20
|
Digit Tip Injuries: Current Treatment and Future Regenerative Paradigms. Stem Cells Int 2019; 2019:9619080. [PMID: 30805012 PMCID: PMC6360566 DOI: 10.1155/2019/9619080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 11/18/2022] Open
Abstract
Over the past several decades there has been a profound increase in the understanding of tissue regeneration, driven largely by the observance of the tremendous regenerative capacity in lower order life forms, such as hydra and urodeles. However, it is known that humans and other mammals retain the ability to regenerate the distal phalanges of the digits after amputation. Despite the increased knowledge base on model organisms regarding regenerative paradigms, there is a lack of application of regenerative medicine techniques in clinical practice in regard to digit tip injury. Here, we review the current understanding of digit tip regeneration and discuss gaps that remain in translating regenerative medicine into clinical treatment of digit amputation.
Collapse
|
21
|
Tsai SL, Baselga-Garriga C, Melton DA. Blastemal progenitors modulate immune signaling during early limb regeneration. Development 2019; 146:146/1/dev169128. [PMID: 30602532 DOI: 10.1242/dev.169128] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Abstract
Blastema formation, a hallmark of limb regeneration, requires proliferation and migration of progenitors to the amputation plane. Although blastema formation has been well described, the transcriptional programs that drive blastemal progenitors remain unknown. We transcriptionally profiled dividing and non-dividing cells in regenerating stump tissues, as well as the wound epidermis, during early axolotl limb regeneration. Our analysis revealed unique transcriptional signatures of early dividing cells and, unexpectedly, repression of several core developmental signaling pathways in early regenerating stump tissues. We further identify an immunomodulatory role for blastemal progenitors through interleukin 8 (IL-8), a highly expressed cytokine in subpopulations of early blastemal progenitors. Ectopic il-8 expression in non-regenerating limbs induced myeloid cell recruitment, while IL-8 knockdown resulted in defective myeloid cell retention during late wound healing, delaying regeneration. Furthermore, the il-8 receptor cxcr-1/2 was expressed in myeloid cells, and inhibition of CXCR-1/2 signaling during early stages of limb regeneration prevented regeneration. Altogether, our findings suggest that blastemal progenitors are active early mediators of immune support, and identify CXCR-1/2 signaling as an important immunomodulatory pathway during the initiation of regeneration.
Collapse
Affiliation(s)
- Stephanie L Tsai
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.,Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Clara Baselga-Garriga
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.,Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
22
|
Dolan CP, Yan M, Zimmel K, Yang TJ, Leininger E, Dawson LA, Muneoka K. Axonal regrowth is impaired during digit tip regeneration in mice. Dev Biol 2018; 445:237-244. [PMID: 30458171 DOI: 10.1016/j.ydbio.2018.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Abstract
Mice are intrinsically capable of regenerating the tips of their digits after amputation. Mouse digit tip regeneration is reported to be a peripheral nerve-dependent event. However, it is presently unknown what types of nerves and Schwann cells innervate the digit tip, and to what extent these cells regenerate in association with the regenerative response. Given the necessity of peripheral nerves for mammalian regeneration, we investigated the neuroanatomy of the unamputated, regenerating, and regenerated mouse digit tip. Using immunohistochemistry for β-III-tubulin (β3T) or neurofilament H (NFH), substance P (SP), tyrosine hydroxylase (TH), myelin protein zero (P0), and glial fibrillary acidic protein (GFAP), we identified peripheral nerve axons (sensory and sympathetic), and myelinating- and non-myelinating-Schwann cells. Our findings show that the digit tip is innervated by two digital nerves that each bifurcate into a bone marrow (BM) and connective tissue (CT) branch. The BM branches are composed of sympathetic axons that are ensheathed by non-myelinating-Schwann cells whereas the CT branches are composed of sensory and sympathetic axons and are ensheathed by myelinating- and non-myelinating-Schwann cells. The regenerated digit neuroanatomy differs from unamputated digit in several key ways. First, there is 7.5 fold decrease in CT branch axons in the regenerated digit compared to the unampuated digit. Second, there is a 5.6 fold decrease in myelinating-Schwann cells in the regenerated digit compared to the unamputated digit that is consistent with the decrease in CT branch axons. Importantly, we also find that the central portion of the regenerating digit blastema is aneural, with axons and Schwann cells restricted to peripheral and distal blastema regions. Finally, we show that even with impaired innervation, digits maintain the ability to regenerate after re-amputation. Taken together, these data indicate that nerve regeneration is impaired in the context of mouse digit tip regeneration.
Collapse
Affiliation(s)
- Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Katherine Zimmel
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Tae-Jung Yang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Eric Leininger
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA.
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
23
|
Dawson LA, Schanes PP, Kim P, Imholt FM, Qureshi O, Dolan CP, Yu L, Yan M, Zimmel KN, Falck AR, Muneoka K. Blastema formation and periosteal ossification in the regenerating adult mouse digit. Wound Repair Regen 2018; 26:263-273. [PMID: 30120800 DOI: 10.1111/wrr.12666] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/16/2018] [Accepted: 08/07/2018] [Indexed: 01/25/2023]
Abstract
While mammals cannot regenerate amputated limbs, mice and humans have regenerative ability restricted to amputations transecting the digit tip, including the terminal phalanx (P3). In mice, the regeneration process is epimorphic and mediated by the formation of a blastema comprised of undifferentiated proliferating cells that differentiate to regenerate the amputated structures. Blastema formation distinguishes the regenerative response from a scar-forming healing response. The mouse digit tip serves as a preclinical model to investigate mammalian blastema formation and endogenous regenerative capabilities. We report that P3 blastema formation initiates prior to epidermal closure and concurrent with the bone histolytic response. In this early healing response, proliferation and cells entering the early stages of osteogenesis are localized to the periosteal and endosteal bone compartments. After the completion of stump bone histolysis, epidermal closure is completed and cells associated with the periosteal and endosteal compartments blend to form the blastema proper. Osteogenesis associated with the periosteum occurs as a polarized progressive wave of new bone formation that extends from the amputated stump and restores skeletal length. Bone patterning is restored along the proximal-distal and medial digit axes, but is imperfect in the dorsal-ventral axis with the regeneration of excessive new bone that accounts for the enhanced regenerated bone volume noted in previous studies. Periosteum depletion studies show that this compartment is required for the regeneration of new bone distal to the original amputation plane. These studies provide evidence that blastema formation initiates early in the healing response and that the periosteum is an essential tissue for successful epimorphic regeneration in mammals.
Collapse
Affiliation(s)
- Lindsay A Dawson
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Paula P Schanes
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Patrick Kim
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Felisha M Imholt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Connor P Dolan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Ling Yu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Mingquan Yan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Katherine N Zimmel
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Alyssa R Falck
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Ken Muneoka
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
24
|
Dolan CP, Dawson LA, Muneoka K. Digit Tip Regeneration: Merging Regeneration Biology with Regenerative Medicine. Stem Cells Transl Med 2018; 7:262-270. [PMID: 29405625 PMCID: PMC5827737 DOI: 10.1002/sctm.17-0236] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Regeneration Biology is the study of organisms with endogenous regenerative abilities, whereas Regenerative Medicine focuses on engineering solutions for human injuries that do not regenerate. While the two fields are fundamentally different in their approach, there is an obvious interface involving mammalian regeneration models. The fingertip is the only part of the human limb that is regeneration-competent and the regenerating mouse digit tip has emerged as a model to study a clinically relevant regenerative response. In this article, we discuss how studies of digit tip regeneration have identified critical components of the regenerative response, and how an understanding of endogenous regeneration can lead to expanding the regenerative capabilities of nonregenerative amputation wounds. Such studies demonstrate that regeneration-incompetent wounds can respond to treatment with individual morphogenetic agents by initiating a multi-tissue response that culminates in structural regeneration. In addition, the healing process of nonregenerative wounds are found to cycle through nonresponsive, responsive and nonresponsive phases, and we call the responsive phase the Regeneration Window. We also find the responsiveness of mature healed amputation wounds can be reactivated by reinjury, thus nonregenerated wounds retain a potential for regeneration. We propose that regeneration-incompetent injuries possess dormant regenerative potential that can be activated by targeted treatment with specific morphogenetic agents. We believe that future Regenerative Medicine-based-therapies should be designed to promote, not replace, regenerative responses. Stem Cells Translational Medicine 2018;7:262-270.
Collapse
Affiliation(s)
- Connor P Dolan
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ken Muneoka
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
25
|
Brunauer R, Muneoka K. The Impact of Aging on Mechanisms of Mammalian Epimorphic Regeneration. Gerontology 2018; 64:300-308. [DOI: 10.1159/000485320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/15/2017] [Indexed: 01/02/2023] Open
Abstract
Aging is associated with a significant decline of tissue repair and regeneration, ultimately resulting in tissue dysfunction, multimorbidity, and death. Salamanders possess remarkable regenerative abilities and have been studied with the prospect of inducing regeneration in humans and counteracting regenerative decline with aging. However, epimorphic regeneration, the full replacement of amputated structures, also occurs in mammals. One of the best studied models is digit tip regeneration, which is described for mice, and occurs in humans in a comparable manner. To accomplish regeneration, the amputated digit tip has to undergo three interdependent, overlapping steps: (i) wound healing without formation of a scar; (ii) formation of a blastema, a highly proliferative cell mass; and (iii) spatiotemporally regulated differentiation to generate a pattern similar to the original structure. Aging likely interferes with each of these steps. In this article, we provide an overview of the critical signaling pathways for regeneration, as revealed by investigating mammalian digit regeneration, the possible impact of aging on these pathways, and approaches to induce regeneration in the elderly. We hypothesize that with aging, increased Wnt signaling, NF-κB and tumor suppressor activity, and loss of positional information hampers regeneration. Knowledge about the impact of aging on regenerative mechanisms will enable us to safely activate endogenous regeneration in the elderly, and to generate a regeneration-permissive environment for cell therapies.
Collapse
|
26
|
The blastema and epimorphic regeneration in mammals. Dev Biol 2017; 433:190-199. [PMID: 29291973 DOI: 10.1016/j.ydbio.2017.08.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/28/2017] [Accepted: 08/04/2017] [Indexed: 01/02/2023]
Abstract
Studying regeneration in animals where and when it occurs is inherently interesting and a challenging research topic within developmental biology. Historically, vertebrate regeneration has been investigated in animals that display enhanced regenerative abilities and we have learned much from studying organ regeneration in amphibians and fish. From an applied perspective, while regeneration biologists will undoubtedly continue to study poikilothermic animals (i.e., amphibians and fish), studies focused on homeotherms (i.e., mammals and birds) are also necessary to advance regeneration biology. Emerging mammalian models of epimorphic regeneration are poised to help link regenerative biology and regenerative medicine. The regenerating rodent digit tip, which parallels human fingertip regeneration, and the regeneration of large circular defects through the ear pinna in spiny mice and rabbits, provide tractable, experimental systems where complex tissue structures are regrown through blastema formation and morphogenesis. Using these models as examples, we detail similarities and differences between the mammalian blastema and its classical counterpart to arrive at a broad working definition of a vertebrate regeneration blastema. This comparison leads us to conclude that regenerative failure is not related to the availability of regeneration-competent progenitor cells, but is most likely a function of the cellular response to the microenvironment that forms following traumatic injury. Recent studies demonstrating that targeted modification of this microenvironment can restrict or enhance regenerative capabilities in mammals helps provide a roadmap for eventually pushing the limits of human regeneration.
Collapse
|
27
|
Ritenour AM, Dickie R. Inhibition of Vascular Endothelial Growth Factor Receptor Decreases Regenerative Angiogenesis in Axolotls. Anat Rec (Hoboken) 2017; 300:2273-2280. [PMID: 28921926 DOI: 10.1002/ar.23689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 03/24/2017] [Accepted: 04/01/2017] [Indexed: 12/14/2022]
Abstract
Angiogenesis is crucial for tissue growth and repair in mammals, and is chiefly regulated by vascular endothelial growth factor (VEGF) signaling. We evaluated the effect of chemical inhibition of VEGF receptor signaling in animals with superior regenerative ability, axolotl salamanders, to determine the impact on vascularization and regenerative outgrowth. Following tail amputation, treated animals (100 nM PTK787) and controls were examined microscopically and measured over the month-long period of regeneration. Treatment with VEGFR inhibitor decreased regenerative angiogenesis; drug-treated animals had lower vascular densities in the regenerating tail than untreated animals. This decrease in neovascularization, however, was not associated with a decrease in regenerative outgrowth or with morphological abnormalities in the regrown tail. Avascular but otherwise anatomically normal regenerative outgrowth over 1 mm beyond the amputation plane was observed. The results suggest that in this highly regenerative species, significant early tissue regeneration is possible in the absence of a well-developed vasculature. This research sets the groundwork for establishing a system for the chemical manipulation of angiogenesis within the highly regenerative axolotl model, contributing to a better understanding of the role of the microvasculature within strongly proliferative yet well-regulated environments. Anat Rec, 300:2273-2280, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Angela M Ritenour
- Department of Biological Sciences, Towson University, 7800 York Road, Towson, Madison
| | - Renee Dickie
- Department of Biological Sciences, Towson University, 7800 York Road, Towson, Madison
| |
Collapse
|
28
|
Jafari P, Muller C, Grognuz A, Applegate LA, Raffoul W, di Summa PG, Durand S. First Insights into Human Fingertip Regeneration by Echo-Doppler Imaging and Wound Microenvironment Assessment. Int J Mol Sci 2017; 18:ijms18051054. [PMID: 28505080 PMCID: PMC5454966 DOI: 10.3390/ijms18051054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/03/2017] [Accepted: 05/06/2017] [Indexed: 11/20/2022] Open
Abstract
Fingertip response to trauma represents a fascinating example of tissue regeneration. Regeneration derives from proliferative mesenchymal cells (blastema) that subsequently differentiate into soft and skeletal tissues. Clinically, conservative treatment of the amputated fingertip under occlusive dressing can shift the response to tissue loss from a wound repair process towards regeneration. When analyzing by Immunoassay the wound exudate from occlusive dressings, the concentrations of brain-derived neurotrophic factor (BDNF) and leukemia inhibitory factor (LIF) were higher in fingertip exudates than in burn wounds (used as controls for wound repair versus regeneration). Vascular endothelial growth factor A (VEGF-A) and platelet-derived growth factor (PDGF) were highly expressed in both samples in comparable levels. In our study, pro-inflammatory cytokines were relatively higher expressed in regenerative fingertips than in the burn wound exudates while chemokines were present in lower levels. Functional, vascular and mechanical properties of the regenerated fingertips were analyzed three months after trauma and the data were compared to the corresponding fingertip on the collateral uninjured side. While sensory recovery and morphology (pulp thickness and texture) were similar to uninjured sides, mechanical parameters (elasticity, vascularization) were increased in the regenerated fingertips. Further studies should be done to clarify the importance of inflammatory cells, immunity and growth factors in determining the outcome of the regenerative process and its influence on the clinical outcome.
Collapse
Affiliation(s)
- Paris Jafari
- Plastic and Hand Surgery Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Camillo Muller
- Plastic and Hand Surgery Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Anthony Grognuz
- Plastic and Hand Surgery Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Lee Ann Applegate
- Plastic and Hand Surgery Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Wassim Raffoul
- Plastic and Hand Surgery Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Pietro G di Summa
- Plastic and Hand Surgery Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Sébastien Durand
- Plastic and Hand Surgery Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| |
Collapse
|
29
|
Regeneration and Regrowth Potentials of Digit Tips in Amphibians and Mammals. Int J Cell Biol 2017; 2017:5312951. [PMID: 28487741 PMCID: PMC5402240 DOI: 10.1155/2017/5312951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/09/2017] [Indexed: 12/27/2022] Open
Abstract
Tissue regeneration and repair have received much attention in the medical field over the years. The study of amphibians, such as newts and salamanders, has uncovered many of the processes that occur in these animals during full-limb/digit regeneration, a process that is highly limited in mammals. Understanding these processes in amphibians could shed light on how to develop and improve this process in mammals. Amputation injuries in mammals usually result in the formation of scar tissue with limited regrowth of the limb/digit; however, it has been observed that the very tips of digits (fingers and toes) can partially regrow in humans and mice under certain conditions. This review will summarize and compare the processes involved in salamander limb regeneration, mammalian wound healing, and digit regeneration in mice and humans.
Collapse
|
30
|
Payne SL, Peacock HM, Vickaryous MK. Blood vessel formation during tail regeneration in the leopard gecko (Eublepharis macularius): The blastema is not avascular. J Morphol 2017; 278:380-389. [PMID: 28078708 DOI: 10.1002/jmor.20648] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 01/08/2023]
Abstract
Unique among amniotes, many lizards are able to self-detach (autotomize) their tail and then regenerate a replacement. Tail regeneration involves the formation of a blastema, an accumulation of proliferating cells at the site of autotomy. Over time, cells of the blastema give rise to most of the tissues in the replacement tail. In non-amniotes capable of regenerating (such as urodeles and some teleost fish), the blastema is reported to be essentially avascular until tissue differentiation takes place. For tail regenerating lizards less is known. Here, we investigate neovascularization during tail regeneration in the leopard gecko (Eublepharis macularius). We demonstrate that the gecko tail blastema is not an avascular structure. Beginning with the onset of regenerative outgrowth, structurally mature (mural cell supported) blood vessels are found within the blastema. Although the pattern of blood vessel distribution in the regenerate tail differs from that of the original, a hierarchical network is established, with vessels of varying luminal diameters and wall thicknesses. Using immunostaining, we determine that blastema outgrowth and tissue differentiation is characterized by a dynamic interplay between the pro-angiogenic protein vascular endothelial growth factor (VEGF) and the anti-angiogenic protein thrombospondin-1 (TSP-1). VEGF-expression is initially widespread, but diminishes as tissues differentiate. In contrast, TSP-1 expression is initially restricted but becomes more abundant as VEGF-expression wanes. We predict that variation in the neovascular response observed between different regeneration-competent species likely relates to the volume of the blastema. J. Morphol. 278:380-389, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Samantha L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Hanna M Peacock
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Matthew K Vickaryous
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
31
|
Quijano LM, Lynch KM, Allan CH, Badylak SF, Ahsan T. Looking Ahead to Engineering Epimorphic Regeneration of a Human Digit or Limb. TISSUE ENGINEERING. PART B, REVIEWS 2016; 22:251-62. [PMID: 26603349 PMCID: PMC4892205 DOI: 10.1089/ten.teb.2015.0401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/24/2015] [Indexed: 01/08/2023]
Abstract
Approximately 2 million people have had limb amputations in the United States due to disease or injury, with more than 185,000 new amputations every year. The ability to promote epimorphic regeneration, or the regrowth of a biologically based digit or limb, would radically change the prognosis for amputees. This ambitious goal includes the regrowth of a large number of tissues that need to be properly assembled and patterned to create a fully functional structure. We have yet to even identify, let alone address, all the obstacles along the extended progression that limit epimorphic regeneration in humans. This review aims to present introductory fundamentals in epimorphic regeneration to facilitate design and conduct of research from a tissue engineering and regenerative medicine perspective. We describe the clinical scenario of human digit healing, featuring published reports of regenerative potential. We then broadly delineate the processes of epimorphic regeneration in nonmammalian systems and describe a few mammalian regeneration models. We give particular focus to the murine digit tip, which allows for comparative studies of regeneration-competent and regeneration-incompetent outcomes in the same animal. Finally, we describe a few forward-thinking opportunities for promoting epimorphic regeneration in humans.
Collapse
Affiliation(s)
- Lina M. Quijano
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Kristen M. Lynch
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Christopher H. Allan
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tabassum Ahsan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| |
Collapse
|
32
|
Simkin J, Sammarco MC, Dawson LA, Schanes PP, Yu L, Muneoka K. The mammalian blastema: regeneration at our fingertips. ACTA ACUST UNITED AC 2015; 2:93-105. [PMID: 27499871 PMCID: PMC4895320 DOI: 10.1002/reg2.36] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 02/06/2023]
Abstract
In the mouse, digit tip regeneration progresses through a series of discrete stages that include inflammation, histolysis, epidermal closure, blastema formation, and redifferentiation. Recent studies reveal how each regenerative stage influences subsequent stages to establish a blastema that directs the successful regeneration of a complex mammalian structure. The focus of this review is on early events of healing and how an amputation wound transitions into a functional blastema. The stepwise formation of a mammalian blastema is proposed to provide a model for how specific targeted treatments can enhance regenerative performance in humans.
Collapse
Affiliation(s)
- Jennifer Simkin
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Mimi C Sammarco
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Lindsay A Dawson
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Paula P Schanes
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Ling Yu
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Ken Muneoka
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| |
Collapse
|
33
|
Simkin J, Sammarco MC, Dawson LA, Tucker C, Taylor LJ, Van Meter K, Muneoka K. Epidermal closure regulates histolysis during mammalian (Mus) digit regeneration. ACTA ACUST UNITED AC 2015; 2:106-19. [PMID: 27499872 PMCID: PMC4895321 DOI: 10.1002/reg2.34] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/24/2015] [Accepted: 03/03/2015] [Indexed: 12/15/2022]
Abstract
Mammalian digit regeneration progresses through consistent stages: histolysis, inflammation, epidermal closure, blastema formation, and finally redifferentiation. What we do not yet know is how each stage can affect others. Questions of stage timing, tissue interactions, and microenvironmental states are becoming increasingly important as we look toward solutions for whole limb regeneration. This study focuses on the timing of epidermal closure which, in mammals, is delayed compared to more regenerative animals like the axolotl. We use a standard wound closure device, Dermabond (2-octyl cyanoacrylate), to induce earlier epidermal closure, and we evaluate the effect of fast epidermal closure on histolysis, blastema formation, and redifferentiation. We find that fast epidermal closure is reliant upon a hypoxic microenvironment. Additionally, early epidermal closure eliminates the histolysis stage and results in a regenerate that more closely replicates the amputated structure. We show that tools like Dermabond and oxygen are able to independently influence the various stages of regeneration enabling us to uncouple histolysis, wound closure, and other regenerative events. With this study, we start to understand how each stage of mammalian digit regeneration is controlled.
Collapse
Affiliation(s)
- Jennifer Simkin
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Biology University of Kentucky Lexington Kentucky 40506 USA
| | - Mimi C Sammarco
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Lindsay A Dawson
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas 77843 USA
| | - Catherine Tucker
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Louis J Taylor
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Keith Van Meter
- Department of Medicine Louisiana State University Health Sciences Center New Orleans Louisiana 70112 USA
| | - Ken Muneoka
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas 77843 USA
| |
Collapse
|