1
|
Li G, Yan L, Wang L, Ma W, Wu H, Guan S, Yao Y, Deng S, Yang H, Zhang J, Zhang X, Wu H, He C, Ji P, Lian Z, Wu Y, Zhang L, Liu G. Ovarian overexpression of ASMT gene increases follicle numbers in transgenic sheep: Association with lipid metabolism. Int J Biol Macromol 2024; 269:131803. [PMID: 38670205 DOI: 10.1016/j.ijbiomac.2024.131803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
Melatonin plays an important role in mammalian reproductive activities, to further understand the effects of endogenous melatonin on functions of ovary, the transgenic sheep with overexpression of melatonin synthetic enzyme gene ASMT in ovary were generated. The results showed that total melatonin content in follicular fluid of transgenic sheep was significantly greater than that in the wild type. Accordingly, the follicle numbers of transgenic sheep were also significantly greater than those in the WT. The results of follicular fluid metabolites sequencing showed that compared with WT, the differential metabolites of the transgenic sheep were significantly enriched in several signaling pathways, the largest number of metabolites was lipid metabolism pathway and the main differential metabolites were lipids and lipoid molecules. SMART-seq2 were used to analyze the oocytes and granulosa cells of transgenic sheep and WT sheep. The main differential enrichment pathway was metabolic pathway, in which lipid metabolism genes accounted for the majority. In conclusion, this is the first report to show that ovary overexpression of ASMT increased local melatonin production and follicle numbers. These results may imply that ASMT plays an important role in follicle development and formation, and melatonin intervention may be a potential method to promote this process.
Collapse
Affiliation(s)
- Guangdong Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Laiqing Yan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Likai Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenkui Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengyu Guan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yujun Yao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Hai Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin 300112, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin 300112, China
| | - Haixin Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Changjiu He
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yingjie Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Zhao D, Wu J, Ma Y, Zhang J, Feng X, Fan Y, Xiong X, Fu W, Li J, Xiong Y. The molecular characteristic analysis of TRIB2 gene and its expressional patterns in Bos grunniens tissue and granulosa cells. Anim Biotechnol 2023; 34:2846-2854. [PMID: 36125800 DOI: 10.1080/10495398.2022.2121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Tribbles homolog 2 (TRIB2) plays an important role in the follicular development of female mammals. However, its expression and function in the yak (Bos grunniens) are still unclear. In this study, we predicted the molecular characteristics of TRIB2, and revealed its expression pattern in yak (Bos grunniens) tissues and ovarian granulosa cells. We cloned the full length of the yak TRIB2 gene obtained by RT-PCR was 1368 bp and the coding sequence (CDS) was 624 bp, encoding 207 amino acids (AA). Homology analysis showed that the yak TRIB2 is highly conserved among species. TRIB2 was detected to be extensively expressed in seven tissues of the yak liver, spleen, lung, kidney, ovary, oviduct and uterus by qPCR. The expression of TRIB2 mRNA in the ovary during gestation was significantly lower than that in the non-pregnant (p < 0.05). At each stage of follicle development, the TRIB2 mRNA in granulosa cells showed a significant upward trend with the development of follicles. The expression of TRIB2 gradually decreased with the increase of the culture time of the granulosa cells in vitro. In conclusion, these results suggest that TRIB2 may play an important role in the follicular development of yaks.
Collapse
Affiliation(s)
- Dan Zhao
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Jiyun Wu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yan Ma
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Jiyue Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Xinxin Feng
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Yiling Fan
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Xianrong Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Wei Fu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Jian Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Yan Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Yamamoto K, Nakano Y, Iwata N, Soejima Y, Suyama A, Hasegawa T, Otsuka F. Stimulatory effects of vasopressin on progesterone production and BMP signaling by ovarian granulosa cells. Biochem Biophys Res Commun 2023; 667:132-137. [PMID: 37224632 DOI: 10.1016/j.bbrc.2023.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
The aim of the present study was to clarify the effects of arginine vasopressin (AVP) on ovarian steroid production and its functional relationship to the ovarian bone morphogenetic protein (BMP) system. The results showed that AVP treatment significantly increased gonadotropin- and forskolin-induced progesterone synthesis by primary culture of rat granulosa cells and human granulosa cells, respectively. In contrast, estradiol production was not significantly affected by AVP. Treatment with AVP significantly increased forskolin-induced cAMP synthesis by human granulosa cells and mRNA levels of the progesterogenic enzymes CYP11A1 and HSD3B2 in the cells. On the other hand, AVP also enhanced BMP-15-induced phosphorylation of SMAD1/5/9 and ID1 transcription. It was further revealed that the expression levels of BMP receptors, including ALK3, ALK6 and BMPR2, were upregulated by AVP. Collectively, the results indicate that AVP stimulates progesterone production via the cAMP-PKA pathway with upregulation of BMP signaling that inhibits progesterone production, which may lead to fine adjustment of progesterone biosynthesis by granulosa cells.
Collapse
Affiliation(s)
- Koichiro Yamamoto
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Atsuhito Suyama
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toru Hasegawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| |
Collapse
|
4
|
Yamamoto K, Nakano Y, Iwata N, Soejima Y, Suyama A, Hasegawa T, Otsuka F. Oxytocin enhances progesterone production with upregulation of BMP-15 activity by granulosa cells. Biochem Biophys Res Commun 2023; 646:103-109. [PMID: 36708595 DOI: 10.1016/j.bbrc.2023.01.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
To elucidate the reproductive role of oxytocin (OXT) in ovarian steroidogenesis and its functional interaction with bone morphogenetic proteins (BMPs), the effects of OXT on ovarian steroidogenesis were investigated by utilizing primary culture of rat granulosa cells and human granulosa KGN cells. Here we revealed that the OXT receptor was expressed in both rat and human granulosa cells and that OXT treatment significantly increased follicle-stimulating hormone (FSH)- and forskolin (FSK)-induced progesterone production, but not estradiol production, by rat and human granulosa cells, respectively. In accordance with the effects of OXT on progesterone production, OXT enhanced mRNA expression of CYP11A1 and HSD3B2 induced by FSK in human granulosa cells. Of note, OXT enhanced the phosphorylation of SMAD1/5/9 and the transcription of ID1 induced by BMP-15, but not those induced by BMP-6, in human granulosa cells. It was also revealed that OXT treatment upregulated the expression of BMPR2, a crucial type-II receptor of BMP-15, and enhanced the BMP-15-induced expression of inhibitory SMAD6 by human granulosa cells. Collectively, it was shown that OXT accelerates ovarian progesterone synthesis with upregulation of BMP-15 activity, leading to a fine-tuning of ovarian steroidogenesis (186 words).
Collapse
Affiliation(s)
- Koichiro Yamamoto
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsuhito Suyama
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toru Hasegawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| |
Collapse
|
5
|
Abdurahman A, Aierken W, Zhang F, Obulkasim R, Aniwashi J, Sulayman A. miR-1306 induces cell apoptosis by targeting BMPR1B gene in the ovine granulosa cells. Front Genet 2022; 13:989912. [PMID: 36212145 PMCID: PMC9539929 DOI: 10.3389/fgene.2022.989912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Bone morphogenetic protein receptor type-1B (BMPR1B) is one of the major gene for sheep prolificacy. However, few studies investigated its regulatory region. In this study, we reported that miR-1306 is a direct inhibitor of BMPR1B gene in the ovine granulosa cells (ovine GCs). We detected a miRNA response element of miR-1306 in the 3’ untranslated region of the ovine BMPR1B gene. Luciferase assay showed that the ovine BMPR1B gene is a direct target of miR-1306. qPCR and western blotting revealed that miR-1306 reduces the expression of BMPR1B mRNA and protein in the ovine granulosa cells. Furthermore, miR-1306 promoted cell apoptosis by suppressing BMPR1B expression in the ovine granulosa cells. Overall, our results suggest that miR-1306 is an epigenetic regulator of BMPR1B, and may serve as a potential target to improve the fecundity of sheep.
Collapse
Affiliation(s)
- Anwar Abdurahman
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | - Fei Zhang
- Animal Diseases Control and Prevention Centre of Xinjiang Uygur Autonomous Region, Urumqi, China
| | | | - Jueken Aniwashi
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, China
| | - Ablat Sulayman
- Institute of Animal Husbandry, Xinjiang Academy of Animal Science, Urumqi, China
- *Correspondence: Ablat Sulayman,
| |
Collapse
|
6
|
Yuzko VO, Yuzko OM, Yuzko TA, Pryimak SH, Voloshynovych NS, Chobaniuk SI. Comparative characteristics of infertile women when applying melatonin in complex preparation for assisted reproductive technologies. J Med Life 2022; 15:1013-1017. [PMID: 36188647 PMCID: PMC9514810 DOI: 10.25122/jml-2022-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022] Open
Abstract
A retrospective analysis of medical records of infertile patients using assisted reproductive technologies and melatonin was performed. 76 infertile women were examined. Group 1 included 33 patients who received 3 mg of melatonin two weeks before and during ovulation induction, and group 2 included 43 patients who did not take melatonin. The average age of patients in the groups did not differ. The data of gynecological and ultrasound examinations, structure and thickness of the endometrium, antral follicle count, hormone levels: anti-mullerian, follicle-stimulating, luteinizing, progesterone, estradiol, prolactin, thyrotropin, and thyroxine were evaluated. The primary infertility incidence was significantly higher in all examined patients. Patients in the first group tended to decrease ovarian reserve, recurrent loss, and unexplained infertility; in the second group, more endometriosis, tubal and male infertility factors were observed. The incidence of extragenital pathology in the examined patients did not differ as well as antral follicle count and the thickness of the endometrium. We also did not find any significant difference in the level of hormones in the blood of the examined women, except that patients taking melatonin had significantly higher levels of lutropin but lower levels of the anti-mullerian hormone in the blood.
Collapse
Affiliation(s)
- Viktoria Olexandrivna Yuzko
- Department of Obstetrics and Gynecology, Bukovynian State Medical University, Chernivtsi, Ukraine,Medical Center of Infertility Treatment, Chernivtsi, Ukraine,Corresponding Author: Viktoria Olexandrivna Yuzko, Department of Obstetrics and Gynecology, Bukovynian State Medical University, Medical Center of Infertility Treatment, Chernivtsi, Ukraine. E-mail:
| | - Olexandr Mykhailovych Yuzko
- Department of Obstetrics and Gynecology, Bukovynian State Medical University, Chernivtsi, Ukraine,Medical Center of Infertility Treatment, Chernivtsi, Ukraine
| | | | | | | | | |
Collapse
|
7
|
Cipolla-Neto J, Amaral FG, Soares JM, Gallo CC, Furtado A, Cavaco JE, Gonçalves I, Santos CRA, Quintela T. The Crosstalk between Melatonin and Sex Steroid Hormones. Neuroendocrinology 2022; 112:115-129. [PMID: 33774638 DOI: 10.1159/000516148] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/24/2021] [Indexed: 11/19/2022]
Abstract
Melatonin, an indolamine mainly released from the pineal gland, is associated with many biological functions, namely, the modulation of circadian and seasonal rhythms, sleep inducer, regulator of energy metabolism, antioxidant, and anticarcinogenic. Although several pieces of evidence also recognize the influence of melatonin in the reproductive physiology, the crosstalk between melatonin and sex hormones is not clear. Here, we review the effects of sex differences in the circulating levels of melatonin and update the current knowledge on the link between sex hormones and melatonin. Furthermore, we explore the effects of melatonin on gonadal steroidogenesis and hormonal control in females. The literature review shows that despite the strong evidence that sex differences impact on the circadian profiles of melatonin, reports are still considerably ambiguous, and these differences may arise from several factors, like the use of contraceptive pills, hormonal status, and sleep deprivation. Furthermore, there has been an inconclusive debate about the characteristics of the reciprocal relationship between melatonin and reproductive hormones. In this regard, there is evidence for the role of melatonin in gonadal steroidogenesis brought about by research that shows that melatonin affects multiple transduction pathways that modulate Sertoli cell physiology and consequently spermatogenesis, and also estrogen and progesterone production. From the outcome of our research, it is possible to conclude that understanding the correlation between melatonin and reproductive hormones is crucial for the correction of several complications occurring during pregnancy, like preeclampsia, and for the control of climacteric symptoms.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - José Maria Soares
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, HCFMUSP, São Paulo, Brazil
| | | | - André Furtado
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - José Eduardo Cavaco
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | - Telma Quintela
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
8
|
Kashino C, Hasegawa T, Nakano Y, Iwata N, Yamamoto K, Kamada Y, Masuyama H, Otsuka F. Involvement of BMP-15 in glucocorticoid actions on ovarian steroidogenesis by rat granulosa cells. Biochem Biophys Res Commun 2021; 559:56-61. [PMID: 33932900 DOI: 10.1016/j.bbrc.2021.04.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 11/28/2022]
Abstract
To elucidate the impact of glucocorticoids on ovarian steroidogenesis and its molecular mechanism by focusing on bone morphogenetic proteins (BMPs), we examined the effect of dexamethasone (Dex) on estradiol and progesterone synthesis by using primary culture of rat granulosa cells. It was revealed that Dex treatment dose-dependently decreased estradiol production but increased progesterone production induced by follicle-stimulating hormone (FSH) by granulosa cells. In accordance with the effects of Dex on estradiol synthesis, Dex suppressed P450arom mRNA expression and cAMP synthesis induced by FSH. Dex treatment in turn enhanced basal as well as FSH-induced levels of mRNAs encoding the enzymes for progesterone synthesis including P450scc and 3βHSD but not StAR and 20αHSD. Of note, Dex treatment significantly upregulated transcription of the BMP target gene Id-1 and Smad1/5/9 phosphorylation in the presence of BMP-15 among the key ovarian BMP ligands. It was also found that Dex treatment increased the expression level of BMP type-I receptor ALK-6 among the type-I and -II receptors for BMP-15. Inhibitory Smad6/7 expression was not affected by Dex treatment. On the other hand, BMP-15 treatment upregulated glucocorticoid receptor (GR) expression in granulosa cells. Collectively, it was revealed that glucocorticoids elicit differential effects on ovarian steroidogenesis, in which GR and BMP-15 actions are mutually enhanced in granulosa cells.
Collapse
Affiliation(s)
- Chiaki Kashino
- Department of General Medicine and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toru Hasegawa
- Department of General Medicine and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiro Nakano
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nahoko Iwata
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koichiro Yamamoto
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiko Kamada
- Department of General Medicine and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hisashi Masuyama
- Department of General Medicine and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fumio Otsuka
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
9
|
Hu Z, Liu J, Cao J, Zhang H, Liu X. Ovarian transcriptomic analysis of black Muscovy duck at the early, peak and late egg-laying stages. Gene 2021; 777:145449. [PMID: 33482277 DOI: 10.1016/j.gene.2021.145449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
Ovarian development is a complex process involving many genes and pathways. A well-developed ovary is essential for poultry to keep high egg production and egg fertility. In order to better understand the mechanism of egg production performance, a comparative transcriptomic analysis was performed on ovaries of black Muscovy ducks at the early (BE), peak (BP) and late laying (BL) stages. 1683 DEGs were identified from BL-vs-BE, BL-vs-BP and BP-vs-BE, and the up-regulated genes were 41, 835, 260, the down-regulated genes were 60, 255, 730, respectively. Besides, there were 32, 20 and 424 DEGs co-expressed in the two comparison groups, and 11 DEGs were co-expressed in the three comparison groups. HOXA10, HtrA3, StAR, ZP2 and TAT were found to be involved in the regulation of ovarian development were significantly differentially expressed at different laying stages, which helped to regulate ovarian maturation and egg production. Moreover, we discovered several important functional pathways, such as steroid hormone biosynthesis and ovarian steroidogenesis, that appear to be much more active in the BP ovary compared to those of the BE and BL. Furthermore, 17 coding and 244 non-coding new transcripts were detected in the three comparison groups, the gene structures were optimized and the gene annotation informations were improved. These findings will provide a solid foundation on ovarian development in black Muscovy ducks and other poultry animals at different laying stages, and help to understand the complex molecular and cellular mechanisms of ovary.
Collapse
Affiliation(s)
- Zhigang Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Junting Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Huilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China.
| |
Collapse
|
10
|
Ouyang X, Ding Y, Yu L, Xin F, Yang X, Sha P, Tong S, Cheng Q, Xu Y. Effects of BMP-2 compound with fibrin on osteoporotic vertebral fracture healing in rats. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:149-156. [PMID: 33657766 PMCID: PMC8020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To investigate the effects of bone morphogenetic protein-2 (BMP-2) compound with fibrin on osteoporotic vertebral fracture healing in rats. METHODS For the present study 160 Specific-Pathogen Free 32-week-old female Sprague-Dawley rats were used. 120 rats were randomly divided in three groups (experimental, model and sham operation group- n=40 per group) and were ovariectomized to establish the osteoporosis model. 40 rats served as a control group without treatment. The expression of BMP-2 in the fracture zone at the 4th, 6th, 8th, and 12th weeks was detected by qRT-PCR. The expression of BALP and CTX-I in serum at the 12th week was detected by Elisa. RESULTS At week 8, the morphology of the sham operation group was the same and the fracture healing occurred more slowly than in the other groups. At week 12, the expression of BMP-2 in the model group was significantly higher than that in the other three groups (p<0.05). At week 12, the maximum load, maximum strain, and elastic modulus of model group were significantly lower than those of the other three groups. CONCLUSIONS BMP-2 compound with fibrin can enhance the timing and quality of bone fracture healing in rats.
Collapse
Affiliation(s)
- Xiao Ouyang
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| | - Yunzhi Ding
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| | - Li Yu
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| | - Feng Xin
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| | - Xiaowei Yang
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China,Corresponding author: Dr Xiao Ouyang, Department of Orthopedics, Xuzhou Third Hospital, Affiliated Hospital of Jiangsu University,131 Huancheng Road, Xuzhou, Jiangsu 221005, P.R. China E-mail:
| | - Peng Sha
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| | - Songming Tong
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| | - Qi Cheng
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| | - Yiqi Xu
- Department of Orthopedic Surgery, Xuzhou Third Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, China
| |
Collapse
|
11
|
Nakano Y, Hasegawa T, Kashino C, Iwata N, Yamamoto K, Suyama A, Soejima Y, Nada T, Otsuka F. Aldosterone enhances progesterone biosynthesis regulated by bone morphogenetic protein in rat granulosa cells. J Steroid Biochem Mol Biol 2020; 203:105738. [PMID: 32828828 DOI: 10.1016/j.jsbmb.2020.105738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/18/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022]
Abstract
Aldosterone (Aldo) is involved in various cardiovascular diseases such as hypertension and heart failure. Aldo levels are known to be increased in patients with polycystic ovary syndrome, and expression of the mineralocorticoid receptor (MR) has also been detected in the ovary. However, the effect of Aldo on reproductive function has yet to be elucidated. Here, we examined the effects of Aldo on follicular steroidogenesis using primary culture of rat granulosa cells by focusing on the ovarian bone morphogenetic protein (BMP) system acting as a luteinizing inhibitor. We found that Aldo treatment increased FSH-induced progesterone production in a concentration-responsive manner. Consistent with the effects on steroidogenesis, Aldo increased mRNA levels of progesterogenic factor and enzymes including StAR and P450scc, whereas Aldo failed to change FSH-induced estradiol and cAMP synthesis or P450arom expression by granulosa cells. Progesterone production and StAR expression induced by FSH and Aldo were reversed by co-treatment with spironolactone, suggesting the involvement of geonomic MR action. Aldo treatment attenuated Smad1/5/9 phosphorylation and Id1 transcription induced by BMP-6. Furthermore, Aldo enhanced the expression of inhibitory Smad6 in the presence of BMP-6. In addition, BMP-6 downregulated MR expression, while Aldo modulated the mRNA levels of endogenous BMP-6 and BMP type-II receptors, indicating the existence of a feedback loop between the BMP system and MR in granulosa cells. Collectively, the results indicated that Aldo predominantly enhances FSH-induced progesterone production by inhibiting BMP-Smad signaling, suggesting a novel role of Aldo in ovarian steroidogenesis and a functional link between MR and BMP pathways in granulosa cells.
Collapse
Affiliation(s)
- Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toru Hasegawa
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chiaki Kashino
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koichiro Yamamoto
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuhito Suyama
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takahiro Nada
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
12
|
Importance of Melatonin in Assisted Reproductive Technology and Ovarian Aging. Int J Mol Sci 2020; 21:ijms21031135. [PMID: 32046301 PMCID: PMC7036809 DOI: 10.3390/ijms21031135] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Melatonin is probably produced in all cells but is only secreted by the pineal gland. The pineal secretion of melatonin is determined by the light–dark cycle, and it is only released at night. Melatonin regulates biological rhythms via its receptors located in the suprachiasmatic nuclei of the hypothalamus. Melatonin also has strong antioxidant activities to scavenge free radicals such as reactive oxygen species (ROS). The direct free radical scavenging actions are receptor independent. ROS play an important role in reproductive function including in the ovulatory process. However, excessive ROS can also have an adverse effect on oocytes because of oxidative stress, thereby causing infertility. It is becoming clear that melatonin is located in the ovarian follicular fluid and in the oocytes themselves, which protects these cells from oxidative damage as well as having other beneficial actions in oocyte maturation, fertilization, and embryo development. Trials on humans have investigated the improvement of outcomes of assisted reproductive technology (ART), such as in vitro fertilization and embryo transfer (IVF-ET), by way of administering melatonin to patients suffering from infertility. In addition, clinical research has examined melatonin as an anti-aging molecule via its antioxidative actions, and its relationship with the aging diseases, e.g., Alzheimer’s and Parkinson’s disease, is also underway. Melatonin may also reduce ovarian aging, which is a major issue in assisted reproductive technology. This review explains the relationship between melatonin and human reproductive function, as well as the clinical applications expected to improve the outcomes of assisted reproductive technology such as IVF, while also discussing possibilities for melatonin in preventing ovarian aging.
Collapse
|
13
|
Liu Y, Chen M, Zhao X, Ren X, Shao S, Zou M, Zhang L. Bone morphogenetic protein 6 expression in cumulus cells is negatively associated with oocyte maturation. HUM FERTIL 2019; 24:290-297. [PMID: 31495245 DOI: 10.1080/14647273.2019.1660003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bone morphogenetic protein 6 (BMP6) is a regulatory peptide secreted by oocytes and granulosa cells that locally regulates folliculogenesis and follicular development. To determine BMP6 location, we studied BMP6 expression in human follicles using immunohistochemistry, real-time polymerase chain reaction (RT-PCR) and western blot analysis. RT-PCR was performed on 354 individual cumulus cell (CC) masses from 48 women to investigate the relationship between BMP6 mRNA expression in CCs and oocyte developmental potential. Results showed that BMP6 protein was mainly located in oocytes from preantral follicles and in granulosa cells from antral follicles. BMP6 mRNA expression was much higher in oocytes than in CCs and mural granulosa cells (mGCs) from preovulatory follicles (p < 0.01), and BMP6 protein level was higher in CCs than in mGCs (p < 0.05). BMP6 mRNA expression was higher in CCs from immature oocytes than in those from mature oocytes (p < 0.05). However, BMP6 mRNA expression in CCs was not associated with oocyte fertilization, embryo morphological grading, or implantation. In conclusion, BMP6 was mainly expressed in oocytes at all human follicular developmental stages and BMP6 mRNA expression in CCs may be negatively correlated with oocyte maturation. BMP6 expression could therefore be used as a biomarker of oocyte maturation.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Mei Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xue Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Shumin Shao
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Min Zou
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.,Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
14
|
Nagao S, Iwata N, Soejima Y, Takiguchi T, Aokage T, Kozato Y, Nakano Y, Nada T, Hasegawa T, Otsuka F. Interaction of ovarian steroidogenesis and clock gene expression modulated by bone morphogenetic protein-7 in human granulosa cells. Endocr J 2019; 66:157-164. [PMID: 30518737 DOI: 10.1507/endocrj.ej18-0423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A functional link between clock gene expression and ovarian steroidogenesis was studied using human granulosa KGN cells. Similarities between changes in the mRNA and protein expression levels of Bmal1 and Clock and those of Per2 and Cry1 were found in KGN cells after treatment with forskolin. Among the interrelationships between the expression levels of clock and steroidogenic factors, Clock mRNA had a strongly positive correlation with P450arom and a negative correlation with 3βHSD. Knockdown of Clock gene by siRNA resulted in a significant reduction of estradiol production by inhibiting P450arom expression, while it induced a significant increase of progesterone production by upregulating 3βHSD in KGN cells treated with forskolin. Moreover, BMP-7 had an enhancing effect on the expression of Clock mRNA and protein in KGN cells. Thus, the expression levels of Clock, being upregulated by forskolin and BMP-7, were functionally linked to estradiol production and progesterone suppression by human granulosa cells.
Collapse
Affiliation(s)
- Satoko Nagao
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Takaaki Takiguchi
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Tamami Aokage
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Yuka Kozato
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Takahiro Nada
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Toru Hasegawa
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| |
Collapse
|
15
|
Riaz H, Yousuf MR, Liang A, Hua GH, Yang L. Effect of melatonin on regulation of apoptosis and steroidogenesis in cultured buffalo granulosa cells. Anim Sci J 2019; 90:473-480. [PMID: 30793438 DOI: 10.1111/asj.13152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/09/2018] [Accepted: 11/11/2018] [Indexed: 12/16/2022]
Abstract
This study was aimed to address melatonin receptor expression, mRNA level of hypothalamus and hypophysis hormone receptors (GnRHR, FSHR, and LHR), steroidogenesis, cell cycle, apoptosis, and their regulatory factors after addition of melatonin for 24 hr in cultured buffalo granulosa cells (GCs). The results revealed that direct addition of different concentrations of melatonin (100 pM, 1 nM, and 100 nM) resulted in significant upregulation (p < 0.05) of mRNA level of melatonin receptor 1a (MT1) without affecting melatonin receptor 1b (MT2). Melatonin treatment significantly downregulated (p < 0.05) mRNA level of FSH and GnRH receptors, whereas 100 nM dose of melatonin significantly increased mRNA level of LH receptor. Treatment with 100 nM of melatonin significantly decreased the basal progesterone production with significant decrease (p < 0.05) in mRNA levels of StAR and p450ssc, and lower mRNA level of genes (Insig1, Lipe, and Scrab1) that affect cholesterol availability. Melatonin supplementation suppressed apoptosis (100 nM, p < 0.05) and enhanced G2/M phase (1 nM, 100 nM, p < 0.05) of cell cycle progression which was further corroborated by decrease in protein expression of caspase-3, p21, and p27 and increase in bcl2. Our results demonstrate that melatonin regulates gonadotrophin receptors and ovarian steroidogenesis through MT1. Furthermore, the notion of its incorporation in apoptosis and proliferation of buffalo GCs extends its role in buffalo ovaries.
Collapse
Affiliation(s)
- Hasan Riaz
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Hubei Wuhan, China.,Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Punjab, Pakistan
| | - Muhammad Rizwan Yousuf
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Aixin Liang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Hubei Wuhan, China
| | - Guo Hua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Hubei Wuhan, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Hubei Wuhan, China
| |
Collapse
|
16
|
Effect of the interaction of metformin and bone morphogenetic proteins on ovarian steroidogenesis by human granulosa cells. Biochem Biophys Res Commun 2018; 503:1422-1427. [PMID: 30017187 DOI: 10.1016/j.bbrc.2018.07.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/31/2023]
Abstract
In the present study, we studied the effects of metformin and its interactions with the actions of bone morphogenetic proteins (BMPs) on ovarian steroidogenesis. It was revealed that metformin treatment enhanced progesterone production by human granulosa KGN cells and rat primary granulosa cells induced by forskolin and FSH, respectively. In human granulosa cells, it was found that metformin treatment suppressed phosphorylation of Smad1/5/9 activated by BMP-15 compared with that induced by other BMP ligands. Moreover, metformin treatment increased the expression of inhibitory Smad6, but not of that Smad7, in human granulosa cells, while metformin had no significant impact on the expression levels of BMP type-I and -II receptors. Thus, the mechanism by which metformin suppresses BMP-15-induced Smad1/5/9 phosphorylation is likely, at least in part, to be upregulation of inhibitory Smad6 expression in granulosa cells. The results suggest the existence of functional interaction between metformin and BMP signaling, in which metformin enhances progesterone production by downregulating endogenous BMP-15 activity in granulosa cells.
Collapse
|