1
|
Electrochemical magneto-immunoassay for detection of zika virus antibody in human serum. Talanta 2023; 256:124277. [PMID: 36738622 DOI: 10.1016/j.talanta.2023.124277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/29/2022] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Zika virus (ZIKV) is a flavivirus transmitted by infected Aedes genus mosquitoes. An infected person may be asymptomatic or present symptoms such as fever, arthralgia, and in pregnancy it may lead to neurological disorders in the fetus, such as microcephaly. Based on the high dissemination potential of ZIVK and its similar antigen composition to other arboviruses, new approaches for selective virus detection are urgently needed. This work reports the development of an electrochemical immunoassay for detection of anti-ZIKV antibodies, using magnetic beads functionalized with recombinant protein derived from the non-structural protein 1 (ΔNS1-ZIKV) and anti-IgG antibodies labeled with horseradish peroxidase (HRP) enzyme. The magneto-immunoassay uses disposable microfluidic devices for detection of anti-ZIKV in serum samples. A linear response was obtained for a wide concentration range from 0.01 to 9.80 × 105 pg mL-1 (r2 = 0.982), with a limit of detection of 0.48 pg mL-1. The proposed immunoassay proved to be highly efficient for the detection of anti-ZIKV antibodies in serum, offering promising perspectives for the development of fast, simple, and affordable point-of-care diagnosis devices for ZIKV.
Collapse
|
2
|
Oliveira SW, Cardoso-Sousa L, Georjutti RP, Shimizu JF, Silva S, Caixeta DC, Guevara-Vega M, Cunha TM, Carneiro MG, Goulart LR, Jardim ACG, Sabino-Silva R. Salivary Detection of Zika Virus Infection Using ATR-FTIR Spectroscopy Coupled with Machine Learning Algorithms and Univariate Analysis: A Proof-of-Concept Animal Study. Diagnostics (Basel) 2023; 13:diagnostics13081443. [PMID: 37189545 DOI: 10.3390/diagnostics13081443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/17/2023] Open
Abstract
Zika virus (ZIKV) diagnosis is currently performed through an invasive, painful, and costly procedure using molecular biology. Consequently, the search for a non-invasive, more cost-effective, reagent-free, and sustainable method for ZIKV diagnosis is of great relevance. It is critical to prepare a global strategy for the next ZIKV outbreak given its devastating consequences, particularly in pregnant women. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy has been used to discriminate systemic diseases using saliva; however, the salivary diagnostic application in viral diseases is unknown. To test this hypothesis, we intradermally challenged interferon-gamma gene knockout C57/BL6 mice with ZIKV (50 µL,105 FFU, n = 7) or vehicle (50 µL, n = 8). Saliva samples were collected on day three (due to the peak of viremia) and the spleen was also harvested. Changes in the salivary spectral profile were analyzed by Student's t test (p < 0.05), multivariate analysis, and the diagnostic capacity by ROC curve. ZIKV infection was confirmed by real-time PCR of the spleen sample. The infrared spectroscopy coupled with univariate analysis suggested the vibrational mode at 1547 cm-1 as a potential candidate to discriminate ZIKV and control salivary samples. Three PCs explained 93.2% of the cumulative variance in PCA analysis and the spectrochemical analysis with LDA achieved an accuracy of 93.3%, with a specificity of 87.5% and sensitivity of 100%. The LDA-SVM analysis showed 100% discrimination between both classes. Our results suggest that ATR-FTIR applied to saliva might have high accuracy in ZIKV diagnosis with potential as a non-invasive and cost-effective diagnostic tool.
Collapse
Affiliation(s)
- Stephanie Wutke Oliveira
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | - Leia Cardoso-Sousa
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | - Renata Pereira Georjutti
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
- College of Dentistry, University Center of Triangle (UNITRI), Uberlandia 38411-869, Brazil
| | - Jacqueline Farinha Shimizu
- Laboratory of Antiviral Research, Institute of Biomedical Science, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, Brazil
| | - Suely Silva
- Laboratory of Antiviral Research, Institute of Biomedical Science, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, Brazil
| | - Douglas Carvalho Caixeta
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | - Marco Guevara-Vega
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | - Thúlio Marquez Cunha
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia 38408-100, Brazil
| | | | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Institute of Biomedical Science, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, Brazil
| | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| |
Collapse
|
3
|
Prudencio CR, Gomes da Costa V, Rocha LB, da Costa HHM, Orts DJB, da Silva Santos FR, Rahal P, Lino NAB, da Conceição PJP, Bittar C, Machado RRG, Durigon EL, Araujo JP, Polatto JM, da Silva MA, de Oliveira JA, Mitsunari T, Pereira LR, Andreata-Santos R, de Souza Ferreira LC, Luz D, Piazza RMF. Identification of Zika Virus NS1-Derived Peptides with Potential Applications in Serological Tests. Viruses 2023; 15:v15030654. [PMID: 36992364 PMCID: PMC10052002 DOI: 10.3390/v15030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Zika virus (ZIKV), a mosquito-borne pathogen, is an emerging arbovirus associated with sporadic symptomatic cases of great medical concern, particularly among pregnant women and newborns affected with neurological disorders. Serological diagnosis of ZIKV infection is still an unmet challenge due to the co-circulation of the dengue virus, which shares extensive sequence conservation of structural proteins leading to the generation of cross-reactive antibodies. In this study, we aimed to obtain tools for the development of improved serological tests for the detection of ZIKV infection. Polyclonal sera (pAb) and a monoclonal antibody (mAb 2F2) against a recombinant form of the ZIKV nonstructural protein 1 (NS1) allowed the identification of linear peptide epitopes of the NS1 protein. Based on these findings, six chemically synthesized peptides were tested both in dot blot and ELISA assays using convalescent sera collected from ZIKV-infected patients. Two of these peptides specifically detected the presence of ZIKV antibodies and proved to be candidates for the detection of ZIKV-infected subjects. The availability of these tools opens perspectives for the development of NS1-based serological tests with enhanced sensitivity regarding other flaviviruses.
Collapse
Affiliation(s)
- Carlos Roberto Prudencio
- Laboratório de Imunobiotecnologia, Centro de Imunologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, São Paulo 01246-902, SP, Brazil
- Correspondence: (C.R.P.); (D.L.); (R.M.F.P.); Tel.: +55-11-3068-2886 (C.R.P.); +55-11-2627-9708 (D.L.); +55-11-2627-9724 (R.M.F.P.)
| | - Vivaldo Gomes da Costa
- Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, São Jose do Rio Preto 15054-000, SP, Brazil
| | - Leticia Barboza Rocha
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil
| | - Hernan Hermes Monteiro da Costa
- Laboratório de Imunobiotecnologia, Centro de Imunologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, São Paulo 01246-902, SP, Brazil
| | - Diego José Belato Orts
- Laboratório de Imunobiotecnologia, Centro de Imunologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, São Paulo 01246-902, SP, Brazil
| | - Felipe Rocha da Silva Santos
- Laboratório de Imunobiotecnologia, Centro de Imunologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, São Paulo 01246-902, SP, Brazil
| | - Paula Rahal
- Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, São Jose do Rio Preto 15054-000, SP, Brazil
| | - Nikolas Alexander Borsato Lino
- Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, São Jose do Rio Preto 15054-000, SP, Brazil
| | - Pâmela Jóyce Previdelli da Conceição
- Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, São Jose do Rio Preto 15054-000, SP, Brazil
| | - Cintia Bittar
- Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, São Jose do Rio Preto 15054-000, SP, Brazil
| | - Rafael Rahal Guaragna Machado
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - Edison Luiz Durigon
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - João Pessoa Araujo
- Instituto de Biotecnologia, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu 18607-440, SP, Brazil
| | - Juliana Moutinho Polatto
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil
| | - Miriam Aparecida da Silva
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil
| | - Joyce Araújo de Oliveira
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil
| | - Thais Mitsunari
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil
| | - Lennon Ramos Pereira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - Robert Andreata-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - Luís Carlos de Souza Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
- Plataforma Científica Pasteur USP, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil
- Correspondence: (C.R.P.); (D.L.); (R.M.F.P.); Tel.: +55-11-3068-2886 (C.R.P.); +55-11-2627-9708 (D.L.); +55-11-2627-9724 (R.M.F.P.)
| | - Roxane Maria Fontes Piazza
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo 05503-900, SP, Brazil
- Correspondence: (C.R.P.); (D.L.); (R.M.F.P.); Tel.: +55-11-3068-2886 (C.R.P.); +55-11-2627-9708 (D.L.); +55-11-2627-9724 (R.M.F.P.)
| |
Collapse
|
4
|
Yellow Fever Molecular Diagnosis Using Urine Specimens during Acute and Convalescent Phases of the Disease. J Clin Microbiol 2022; 60:e0025422. [PMID: 35916519 PMCID: PMC9383191 DOI: 10.1128/jcm.00254-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Prior studies have demonstrated prolonged presence of yellow fever virus (YFV) RNA in saliva and urine as an alternative to serum. To investigate the presence of YFV RNA in urine, we used RT-PCR for YFV screening in 60 urine samples collected from a large cohort of naturally infected yellow fever (YF) patients during acute and convalescent phases of YF infection from recent YF outbreaks in Brazil (2017 to 2018). Fifteen urine samples from acute phase infection (up to 15 days post-symptom onset) and four urine samples from convalescent phase infection (up to 69 days post-symptom onset), were YFV PCR-positive. We genotyped YFV detected in seven urine samples (five collected during the acute phase and two collected during the YF convalescent phase). Genotyping indicated the presence of YFV South American I genotype in these samples. To our knowledge, this is the first report of wild-type YFV RNA detection in the urine this far out from symptom onset (up to 69 DPS), including YFV RNA detection during the convalescent phase of YF infection. The detection of YFV RNA in urine is an indicative of YFV infection; however, the results of RT-PCR using urine as sample should be interpreted with care, since a negative result does not exclude the possibility of YFV infection. With a possible prolonged period of detection beyond the viremic phase, the use of urine samples coupled with serological tests, epidemiologic inquiry, and clinical assessment could provide a longer diagnostic window for laboratory YF diagnosis.
Collapse
|
5
|
Prates JWO, Xisto MF, Rodrigues JVDS, Colombari JPC, Meira JMA, Dias RS, da Silva CC, de Paula ESO. Zika Virus Envelope Protein Domain III Produced in K. phaffii Has the Potential for Diagnostic Applications. Diagnostics (Basel) 2022; 12:diagnostics12051198. [PMID: 35626353 PMCID: PMC9139701 DOI: 10.3390/diagnostics12051198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) represents a global human health threat and it is related to severe diseases such as congenital Zika syndrome (CZS) and Guillain-Barré syndrome (GBS). There is no vaccine available nor specific antiviral treatment, so developing sensitive, specific, and low-cost diagnostic tests is necessary. Thus, the objective of this work was to produce the Zika virus envelope protein domain III (ZIKV-EDIII) in Komagataella phaffii KM71H and evaluate its potential for diagnostic applications. After the K. phaffii had been transformed with the pPICZαA-ZIKV-EDIII vector, an SDS-PAGE and Western Blot were performed to characterize the recombinant protein and an ELISA to evaluate the antigenic potential. The results show that ZIKV-EDIII was produced in the expected size, with a good purity grade and yield of 2.58 mg/L. The receiver operating characteristic (ROC) curve showed 90% sensitivity and 87.5% specificity for IgM, and 93.33% sensitivity and 82.76% specificity for IgG. The ZIKV-EDIII protein was efficiently produced in K. phaffi, and it has the potential for diagnostic applications.
Collapse
Affiliation(s)
- John Willians Oliveira Prates
- Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (J.W.O.P.); (J.V.d.S.R.); (C.C.d.S.)
| | - Mariana Fonseca Xisto
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (M.F.X.); (R.S.D.)
| | - João Vitor da Silva Rodrigues
- Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (J.W.O.P.); (J.V.d.S.R.); (C.C.d.S.)
| | - João Pedro Cruz Colombari
- Department of Medicine and Nursing, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (J.P.C.C.); (J.M.A.M.)
| | - Júlia Maria Alves Meira
- Department of Medicine and Nursing, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (J.P.C.C.); (J.M.A.M.)
| | - Roberto Sousa Dias
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (M.F.X.); (R.S.D.)
| | - Cynthia Canedo da Silva
- Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (J.W.O.P.); (J.V.d.S.R.); (C.C.d.S.)
| | - e Sérgio Oliveira de Paula
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (M.F.X.); (R.S.D.)
- Correspondence: ; Tel.: +55-31-36125015
| |
Collapse
|
6
|
The value of West Nile virus RNA detection by real-time RT-PCR in urine samples from patients with neuroinvasive forms. Arch Microbiol 2022; 204:238. [DOI: 10.1007/s00203-022-02829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
|
7
|
Magalhães ICL, Souza PFN, Marques LEC, Girão NM, Araújo FMC, Guedes MIF. New insights into the recombinant proteins and monoclonal antibodies employed to immunodiagnosis and control of Zika virus infection: A review. Int J Biol Macromol 2022; 200:139-150. [PMID: 34998869 DOI: 10.1016/j.ijbiomac.2021.12.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
An emergent positive-stranded RNA virus, transmitted by mosquitoes with its first case of vertical transmission confirmed in 2015 in Brazil. The Zika virus (ZIKV) fever has received particular attention, mainly related to neurological diseases such as microcephaly in newborns. However, the laboratory diagnosis for ZIKV still faces some challenges due to its cross-reactivity with other flaviviruses, requiring a correct and differential diagnosis, contributing to the good prognosis of patients, especially in pregnant women. Among these, for early diagnosis, the CDC considers the RT-PCR the gold standard, more sensitive and specific, but expensive. Serological tests for the diagnosis of ZIKV can also be found beyond the period when the viral components are detectable in the serum. Inputs to produce more sensitive and specific diagnostic kits and the possibility of viral detection in less invasive samples are among the objectives of recent research on ZIKV. This review outlines recent advances in developing recombinant antigen and antibody-based diagnostic tools for the main flaviviruses in Northeast Brazil, such as ZIKV and Dengue virus (DENV).
Collapse
Affiliation(s)
- Ilana C L Magalhães
- Biotechnology and Molecular Biology Laboratory, State University of Ceara, Fortaleza, Ceara, Brazil.
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Defense Proteins, Federal University of Ceara, Fortaleza, Brazil.
| | - Lívia E C Marques
- Biotechnology and Molecular Biology Laboratory, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Nicolas M Girão
- Biotechnology and Molecular Biology Laboratory, State University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Maria Izabel F Guedes
- Biotechnology and Molecular Biology Laboratory, State University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
8
|
Castillo-León J, Trebbien R, Castillo JJ, Svendsen WE. Commercially available rapid diagnostic tests for the detection of high priority pathogens: status and challenges. Analyst 2021; 146:3750-3776. [PMID: 34060546 DOI: 10.1039/d0an02286a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ongoing COVID-19 pandemic has shown the importance of having analytical devices that allow a simple, fast, and robust detection of pathogens which cause epidemics and pandemics. The information these devices can collect is crucial for health authorities to make effective decisions to contain the disease's advance. The World Health Organization published a list of primary pathogens that have raised concern as potential causes of future pandemics. Unfortunately, there are no rapid diagnostic tests commercially available and approved by the regulatory bodies to detect most of the pathogens listed by the WHO. This report describes these pathogens, the available detection methods, and highlights areas where more attention is needed to produce rapid diagnostic tests for future pandemic surveillance.
Collapse
Affiliation(s)
- Jaime Castillo-León
- Bioengineering Department, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark.
| | - Ramona Trebbien
- Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - John J Castillo
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Winnie E Svendsen
- Bioengineering Department, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|