1
|
De Miguel MP, Cadenas-Martin M, Stokking M, Martin-Gonzalez AI. Biomedical Application of MSCs in Corneal Regeneration and Repair. Int J Mol Sci 2025; 26:695. [PMID: 39859409 PMCID: PMC11766311 DOI: 10.3390/ijms26020695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The World Health Organization estimates that approximately 285 million people suffer from visual impairments, around 5% of which are caused by corneal pathologies. Currently, the most common clinical treatment consists of a corneal transplant (keratoplasty) from a human donor. However, worldwide demand for donor corneas amply exceeds the available supply. Lamellar keratoplasty (transplantation replacement of only one of the three layers of the cornea) is partially solving the problem of cornea undersupply. Obviously, cell therapy applied to every one of these layers will expand current therapeutic options, reducing the cost of ophthalmological interventions and increasing the effectiveness of surgery. Mesenchymal stem cells (MSCs) are adult stem cells with the capacity for self-renewal and differentiation into different cell lineages. They can be obtained from many human tissues, such as bone marrow, umbilical cord, adipose tissue, dental pulp, skin, and cornea. Their ease of collection and advantages over embryonic stem cells or induced pluripotent stem cells make them a very practical source for experimental and potential clinical applications. In this review, we focus on recent advances using MSCs from different sources to replace the damaged cells of the three corneal layers, at both the preclinical and clinical levels for specific corneal diseases.
Collapse
Affiliation(s)
- Maria P. De Miguel
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (M.C.-M.); (M.S.); (A.I.M.-G.)
| | | | | | | |
Collapse
|
2
|
Yang GN, Sun YBY, Roberts PK, Moka H, Sung MK, Gardner-Russell J, El Wazan L, Toussaint B, Kumar S, Machin H, Dusting GJ, Parfitt GJ, Davidson K, Chong EW, Brown KD, Polo JM, Daniell M. Exploring single-cell RNA sequencing as a decision-making tool in the clinical management of Fuchs' endothelial corneal dystrophy. Prog Retin Eye Res 2024; 102:101286. [PMID: 38969166 DOI: 10.1016/j.preteyeres.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has enabled the identification of novel gene signatures and cell heterogeneity in numerous tissues and diseases. Here we review the use of this technology for Fuchs' Endothelial Corneal Dystrophy (FECD). FECD is the most common indication for corneal endothelial transplantation worldwide. FECD is challenging to manage because it is genetically heterogenous, can be autosomal dominant or sporadic, and progress at different rates. Single-cell RNA sequencing has enabled the discovery of several FECD subtypes, each with associated gene signatures, and cell heterogeneity. Current FECD treatments are mainly surgical, with various Rho kinase (ROCK) inhibitors used to promote endothelial cell metabolism and proliferation following surgery. A range of emerging therapies for FECD including cell therapies, gene therapies, tissue engineered scaffolds, and pharmaceuticals are in preclinical and clinical trials. Unlike conventional disease management methods based on clinical presentations and family history, targeting FECD using scRNA-seq based precision-medicine has the potential to pinpoint the disease subtypes, mechanisms, stages, severities, and help clinicians in making the best decision for surgeries and the applications of therapeutics. In this review, we first discuss the feasibility and potential of using scRNA-seq in clinical diagnostics for FECD, highlight advances from the latest clinical treatments and emerging therapies for FECD, integrate scRNA-seq results and clinical notes from our FECD patients and discuss the potential of applying alternative therapies to manage these cases clinically.
Collapse
Affiliation(s)
- Gink N Yang
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Yu B Y Sun
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Philip Ke Roberts
- Department of Ophthalmology, Medical University Vienna, 18-20 Währinger Gürtel, Vienna, Austria
| | - Hothri Moka
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Min K Sung
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Layal El Wazan
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Bridget Toussaint
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Satheesh Kumar
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Heather Machin
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Geraint J Parfitt
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Kathryn Davidson
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Elaine W Chong
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Karl D Brown
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Jose M Polo
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Xie ZJ, Yuan BW, Chi MM, Hong J. Focus on seed cells: stem cells in 3D bioprinting of corneal grafts. Front Bioeng Biotechnol 2024; 12:1423864. [PMID: 39050685 PMCID: PMC11267584 DOI: 10.3389/fbioe.2024.1423864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Corneal opacity is one of the leading causes of severe vision impairment. Corneal transplantation is the dominant therapy for irreversible corneal blindness. However, there is a worldwide shortage of donor grafts and consequently an urgent demand for alternatives. Three-dimensional (3D) bioprinting is an innovative additive manufacturing technology for high-resolution distribution of bioink to construct human tissues. The technology has shown great promise in the field of bone, cartilage and skin tissue construction. 3D bioprinting allows precise structural construction and functional cell printing, which makes it possible to print personalized full-thickness or lamellar corneal layers. Seed cells play an important role in producing corneal biological functions. And stem cells are potential seed cells for corneal tissue construction. In this review, the basic anatomy and physiology of the natural human cornea and the grafts for keratoplasties are introduced. Then, the applications of 3D bioprinting techniques and bioinks for corneal tissue construction and their interaction with seed cells are reviewed, and both the application and promising future of stem cells in corneal tissue engineering is discussed. Finally, the development trends requirements and challenges of using stem cells as seed cells in corneal graft construction are summarized, and future development directions are suggested.
Collapse
Affiliation(s)
- Zi-jun Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Bo-wei Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Miao-miao Chi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
4
|
Shimmura S, Inagaki E, Hirayama M, Hatou S. The Cornea: An Ideal Tissue for Regenerative Medicine. Keio J Med 2024; 73:1-7. [PMID: 38369325 DOI: 10.2302/kjm.2023-0001-ir] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Regenerative medicine is a highly anticipated field with hopes to provide cures for previously uncurable diseases such as spinal cord injuries and retinal blindness. Most regenerative medical products use either autologous or allogeneic stem cells, which may or may not be genetically modified. The introduction of induced-pluripotent stem cells (iPSCs) has fueled research in the field, and several iPSC-derived cells/tissues are currently undergoing clinical trials. The cornea is one of the pioneering areas of regenerative medicine, and already four cell therapy products are approved for clinical use in Japan. There is one other government-approved cell therapy product approved in Europe, but none are approved in the USA at present. The cornea is transparent and avascular, making it unique as a target for stem cell therapy. This review discusses the unique properties of the cornea and ongoing research in the field.
Collapse
Affiliation(s)
- Shigeto Shimmura
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Emi Inagaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Hatou
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Cellusion Inc., Tokyo, Japan
| |
Collapse
|
5
|
Ajgaonkar BS, Kumaran A, Kumar S, Jain RD, Dandekar PP. Cell-based Therapies for Corneal and Retinal Disorders. Stem Cell Rev Rep 2023; 19:2650-2682. [PMID: 37704835 DOI: 10.1007/s12015-023-10623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Maintenance of the visual function is the desired outcome of ophthalmologic therapies. The shortcomings of the current treatment options, like partial recovery, post-operation failure, rigorous post-operative care, complications, etc., which are usually encountered with the conventional treatment options has warranted newer treatment options that may eliminate the root cause of diseases and minimize the side effects. Cell therapies, a class of regenerative medicines, have emerged as cutting-edge treatment option. The corneal and retinal dystrophies during the ocular disorders are the major cause of blindness, worldwide. Corneal disorders are mainly categorized mainly into corneal epithelial, stromal, and endothelial disorders. On the other hand, glaucoma, retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy, Stargardt Disease, choroideremia, Leber congenital amaurosis are then major retinal degenerative disorders. In this manuscript, we have presented a detailed overview of the development of cell-based therapies, using embryonic stem cells, bone marrow stem cells, mesenchymal stem cells, dental pulp stem cells, induced pluripotent stem cells, limbal stem cells, corneal epithelial, stromal and endothelial, embryonic stem cell-derived differentiated cells (like retinal pigment epithelium or RPE), neural progenitor cells, photoreceptor precursors, and bone marrow-derived hematopoietic stem/progenitor cells etc. The manuscript highlights their efficiency, drawbacks and the strategies that have been explored to regain visual function in the preclinical and clinical state associated with them which can be considered for their potential application in the development of treatment.
Collapse
Affiliation(s)
- Bhargavi Suryakant Ajgaonkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Akash Kumaran
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Salil Kumar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Ratnesh D Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Prajakta P Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
6
|
Sasseville S, Karami S, Tchatchouang A, Charpentier P, Anney P, Gobert D, Proulx S. Biomaterials used for tissue engineering of barrier-forming cell monolayers in the eye. Front Bioeng Biotechnol 2023; 11:1269385. [PMID: 37840667 PMCID: PMC10569698 DOI: 10.3389/fbioe.2023.1269385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell monolayers that form a barrier between two structures play an important role for the maintenance of tissue functionality. In the anterior portion of the eye, the corneal endothelium forms a barrier that controls fluid exchange between the aqueous humor of the anterior chamber and the corneal stroma. This monolayer is central in the pathogenesis of Fuchs endothelial corneal dystrophy (FECD). FECD is a common corneal disease, in which corneal endothelial cells deposit extracellular matrix that increases the thickness of its basal membrane (Descemet's membrane), and forms excrescences (guttae). With time, there is a decrease in endothelial cell density that generates vision loss. Transplantation of a monolayer of healthy corneal endothelial cells on a Descemet membrane substitute could become an interesting alternative for the treatment of this pathology. In the back of the eye, the retinal pigment epithelium (RPE) forms the blood-retinal barrier, controlling fluid exchange between the choriocapillaris and the photoreceptors of the outer retina. In the retinal disease dry age-related macular degeneration (dry AMD), deposits (drusen) form between the RPE and its basal membrane (Bruch's membrane). These deposits hinder fluid exchange, resulting in progressive RPE cell death, which in turn generates photoreceptor cell death, and vision loss. Transplantation of a RPE monolayer on a Bruch's membrane/choroidal stromal substitute to replace the RPE before photoreceptor cell death could become a treatment alternative for this eye disease. This review will present the different biomaterials that are proposed for the engineering of a monolayer of corneal endothelium for the treatment of FECD, and a RPE monolayer for the treatment of dry AMD.
Collapse
Affiliation(s)
- Samantha Sasseville
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Samira Karami
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Ange Tchatchouang
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Pascale Charpentier
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Princia Anney
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Delphine Gobert
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
- Centre universitaire d’ophtalmologie (CUO), Hôpital du Saint-Sacrement, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Stéphanie Proulx
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
7
|
Dong C, Zou D, Duan H, Hu X, Zhou Q, Shi W, Li Z. Ex vivo cultivated retinal pigment epithelial cell transplantation for the treatment of rabbit corneal endothelial dysfunction. EYE AND VISION (LONDON, ENGLAND) 2023; 10:34. [PMID: 37528478 PMCID: PMC10394777 DOI: 10.1186/s40662-023-00351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Stem cell therapy is a promising strategy for the treatment of corneal endothelial dysfunction, and the need to find functional alternative seed cells of corneal endothelial cells (CECs) is urgent. Here, we determined the feasibility of using the retinal pigment epithelium (RPE) as an equivalent substitute for the treatment of corneal endothelial dysfunction. METHODS RPE cells and CECs in situ were obtained from healthy New Zealand male rabbits, and the similarities and differences between them were analyzed by electron microscopy, immunofluorescent staining, and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Rabbit primary RPE cells and CECs were isolated and cultivated ex vivo, and Na+/K+-ATPase activity and cellular permeability were detected at passage 2. The injection of cultivated rabbit primary RPE cells, CECs and human embryonic stem cell (hESC)-derived RPE cells was performed on rabbits with corneal endothelial dysfunction. Then, the therapeutic effects were evaluated by corneal transparency, central corneal thickness, enzyme linked immunosorbent assay (ELISA), qRT-PCR and immunofluorescent staining. RESULTS The rabbit RPE cells were similar in form to CECs in situ and ex vivo, showing a larger regular hexagonal shape and a lower cell density, with numerous tightly formed cell junctions and hemidesmosomes. Moreover, RPE cells presented a stronger barrier and ionic pumping capacity than CECs. When intracamerally injected into the rabbits, the transplanted primary RPE cells could dissolve corneal edema and decrease corneal thickness, with effects similar to those of CECs. In addition, the transplantation of hESC-derived RPE cells exhibited a similar therapeutic effect and restored corneal transparency and thickness within seven days. qRT-PCR results showed that the expressions of CEC markers, like CD200 and S100A4, increased, and the RPE markers OTX2, BEST1 and MITF significantly decreased in the transplanted RPE cells. Furthermore, we have demonstrated that rabbits transplanted with hESC-derived RPE cells maintained normal corneal thickness and exhibited slight pigmentation in the central cornea one month after surgery. Immunostaining results showed that the HuNu-positive transplanted cells survived and expressed ZO1, ATP1A1 and MITF. CONCLUSION RPE cells and CECs showed high structural and functional similarities in barrier and pump characteristics. Intracameral injection of primary RPE cells and hESC-derived RPE cells can effectively restore rabbit corneal clarity and thickness and maintain normal corneal function. This study is the first to report the effectiveness of RPE cells for corneal endothelial dysfunction, suggesting the feasibility of hESC-derived RPE cells as an equivalent substitute for CECs.
Collapse
Affiliation(s)
- Chunxiao Dong
- Department of Medicine, Qingdao University, Qingdao, 266071, China
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Dulei Zou
- Department of Medicine, Qingdao University, Qingdao, 266071, China
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Haoyun Duan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Xiangyue Hu
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Zongyi Li
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China.
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China.
| |
Collapse
|
8
|
Ye EA, Chung HS, Park Y, Sunwoo JH, Lee W, Kim J, Tchah H, Lee H, Kim JY. Induction of Corneal Endothelial-like Cells from Mesenchymal Stem Cells of the Umbilical Cord. Int J Mol Sci 2022; 23:ijms232315408. [PMID: 36499735 PMCID: PMC9739507 DOI: 10.3390/ijms232315408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Because of the limited differentiation capacity of human corneal endothelial cells (CECs), stem cells have emerged as a potential remedy for corneal endothelial dysfunction (CED). This study aimed to demonstrate the differentiation of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) into CECs and to investigate the efficacy of MSC-induced CEC injection into the anterior chamber in a rabbit model of CED. Human UC-MSCs were differentiated into CECs using medium containing glycogen synthase kinase 3β inhibitor and two types of Rho-associated protein kinase inhibitors. In the MSC-induced CECs, CEC-specific proteins were identified through immunohistochemistry and changes in CEC-specific gene expressions over time were confirmed through quantitative RT-PCR. When MSC-induced CECs were injected into a rabbit model of CED, corneal opacity and neovascularization were improved compared with the non-transplanted control or MSC injection group. We also confirmed that MSC-induced CECs were well engrafted as evidenced by human mitochondrial DNA in the central cornea of an animal model. Therefore, we demonstrated the differentiation of UC-MSCs into CECs in vitro and demonstrated the clinical efficacy of MSC-induced CEC injection, providing in vivo evidence that MSC-induced CECs have potential as a treatment option for CED.
Collapse
Affiliation(s)
- Eun Ah Ye
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ho Seok Chung
- Department of Ophthalmology, Dankook University Hospital, Dankook University College of Medicine, Cheonan 31116, Republic of Korea
| | - Yoonkyung Park
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jeong Hye Sunwoo
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Whanseo Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jin Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hungwon Tchah
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hun Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Correspondence: (H.L.); (J.Y.K.); Tel.: +82-2-3010-5931 (H.L.); +82-2-3010-3680 (J.Y.K.); Fax: +82-2-470-6640 (H.L.); +82-2-470-6440 (J.Y.K.)
| | - Jae Yong Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Correspondence: (H.L.); (J.Y.K.); Tel.: +82-2-3010-5931 (H.L.); +82-2-3010-3680 (J.Y.K.); Fax: +82-2-470-6640 (H.L.); +82-2-470-6440 (J.Y.K.)
| |
Collapse
|
9
|
Ying PX, Fu M, Huang C, Li ZH, Mao QY, Fu S, Jia XH, Cao YC, Hong LB, Cai LY, Guo X, Liu RB, Meng FK, Yi GG. Profile of biological characterizations and clinical application of corneal stem/progenitor cells. World J Stem Cells 2022; 14:777-797. [PMID: 36483848 PMCID: PMC9724387 DOI: 10.4252/wjsc.v14.i11.777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Corneal stem/progenitor cells are typical adult stem/progenitor cells. The human cornea covers the front of the eyeball, which protects the eye from the outside environment while allowing vision. The location and function demand the cornea to maintain its transparency and to continuously renew its epithelial surface by replacing injured or aged cells through a rapid turnover process in which corneal stem/progenitor cells play an important role. Corneal stem/progenitor cells include mainly corneal epithelial stem cells, corneal endothelial cell progenitors and corneal stromal stem cells. Since the discovery of corneal epithelial stem cells (also known as limbal stem cells) in 1971, an increasing number of markers for corneal stem/progenitor cells have been proposed, but there is no consensus regarding the definitive markers for them. Therefore, the identification, isolation and cultivation of these cells remain challenging without a unified approach. In this review, we systematically introduce the profile of biological characterizations, such as anatomy, characteristics, isolation, cultivation and molecular markers, and clinical applications of the three categories of corneal stem/progenitor cells.
Collapse
Affiliation(s)
- Pei-Xi Ying
- Department of Ophthalmology, Zhujiang Hospital, The Second Clinical School, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200030, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200030, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200030, China
| | - Zhi-Hong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510550, Guangdong Province, China
| | - Qing-Yi Mao
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng Fu
- Hengyang Medical School, The University of South China, Hengyang 421001, Hunan Province, China
| | - Xu-Hui Jia
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yu-Chen Cao
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Li-Bing Hong
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Li-Yang Cai
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xi Guo
- Medical College of Rehabilitation, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ru-Bing Liu
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Fan-ke Meng
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Guo-Guo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| |
Collapse
|
10
|
Hazra S, Sneha IV, Chaurasia S, Ramachandran C. In Vitro Expansion of Corneal Endothelial Cells for Clinical Application: Current Update. Cornea 2022; 41:1313-1324. [PMID: 36107851 DOI: 10.1097/ico.0000000000003080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Endothelial dysfunction is one of the leading causes of corneal blindness and one of the common indications for keratoplasty. At present, the standard of treatment involves the replacement of the dysfunctional endothelium with healthy tissue taken from a donor. Because there is a paucity of healthy donor tissues, research on the corneal endothelium has focused primarily on expanding these cells in the laboratory for transplantation in an attempt to reduce the gap between the demand and supply of donor tissues for transplantation. To expand these cells, which are nonmitotic in vivo, various mitogens, substrates, culture systems, and alternate strategies have been tested with varying success. The biggest challenge has been the limited proliferative capacity of these cells compounded with endothelial to mesenchymal transition that alters the functioning of these cells and renders them unsuitable for human transplantation. This review aims to give a comprehensive overview of the most common and successful techniques used in the culture of the cells, the current available evidence in support of epithelial to mesenchymal transition (EMT), alternate sources for deriving the corneal endothelial cells, and advances made in transplantation of these cells.
Collapse
Affiliation(s)
- Swatilekha Hazra
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
- Manipal University, Manipal, Karnataka, India ; and
| | - Iskala V Sneha
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | | | | |
Collapse
|
11
|
Bosch BM, Bosch-Rue E, Perpiñan-Blasco M, Perez RA. Design of functional biomaterials as substrates for corneal endothelium tissue engineering. Regen Biomater 2022; 9:rbac052. [PMID: 35958516 PMCID: PMC9362998 DOI: 10.1093/rb/rbac052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 11/12/2022] Open
Abstract
Corneal endothelium defects are one of the leading causes of blindness worldwide. The actual treatment is transplantation, which requires the use of human cadaveric donors, but it faces several problems, such as global shortage of donors. Therefore, new alternatives are being developed and, among them, cell therapy has gained interest in the last years due to its promising results in tissue regeneration. Nevertheless, the direct administration of cells may sometimes have limited success due to the immune response, hence requiring the combination with extracellular mimicking materials. In this review, we present different methods to obtain corneal endothelial cells from diverse cell sources such as pluripotent or multipotent stem cells. Moreover, we discuss different substrates in order to allow a correct implantation as a cell sheet and to promote an enhanced cell behavior. For this reason, natural or synthetic matrixes that mimic the native environment have been developed. These matrixes have been optimized in terms of their physicochemical properties, such as stiffness, topography, composition and transparency. To further enhance the matrixes properties, these can be tuned by incorporating certain molecules that can be delivered in a sustained manner in order to enhance biological behavior. Finally, we elucidate future directions for corneal endothelial regeneration, such as 3D printing, in order to obtain patient-specific substrates.
Collapse
Affiliation(s)
- Begona M Bosch
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| | - Elia Bosch-Rue
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| | - Marina Perpiñan-Blasco
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| | - Roman A Perez
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| |
Collapse
|
12
|
Khalili M, Zarebkohan A, Dianat-Moghadam H, Panahi M, Andre H, Alizadeh E. Corneal endothelial cell sheet bioengineering from neural crest cell-derived adipose stem cells on novel thermo-responsive elastin-mimetic dendrimers decorated with RGD. CHEMICAL ENGINEERING JOURNAL 2022; 429:132523. [DOI: 10.1016/j.cej.2021.132523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Li Z, Duan H, Jia Y, Zhao C, Li W, Wang X, Gong Y, Dong C, Ma B, Dou S, Zhang B, Li D, Cao Y, Xie L, Zhou Q, Shi W. Long-term corneal recovery by simultaneous delivery of hPSC-derived corneal endothelial precursors and nicotinamide. J Clin Invest 2022; 132:146658. [PMID: 34981789 PMCID: PMC8718141 DOI: 10.1172/jci146658] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) hold great promise for the treatment of various human diseases. However, their therapeutic benefits and mechanisms for treating corneal endothelial dysfunction remain undefined. Here, we developed a therapeutic regimen consisting of the combination of hPSC-derived corneal endothelial precursors (CEPs) with nicotinamide (NAM) for effective treatment of corneal endothelial dysfunction. In rabbit and nonhuman primate models, intracameral injection of CEPs and NAM achieved long-term recovery of corneal clarity and thickness, similar with the therapeutic outcome of cultured human corneal endothelial cells (CECs). The transplanted human CEPs exhibited structural and functional integration with host resident CECs. However, the long-term recovery relied on the stimulation of endogenous endothelial regeneration in rabbits, but predominantly on the replacing function of transplanted cells during the 3-year follow-up in nonhuman primates, which resemble human corneal endothelium with limited regenerative capacity. Mechanistically, NAM ensured in vivo proper maturation of transplanted CEPs into functional CECs by preventing premature senescence and endothelial-mesenchymal transition within the TGF-β–enriched aqueous humor. Together, we provide compelling experimental evidence and mechanistic insights of simultaneous delivery of CEPs and NAM as a potential approach for treating corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Haoyun Duan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Yanni Jia
- Eye Hospital of Shandong First Medical University, Jinan, China
| | - Can Zhao
- Eye Hospital of Shandong First Medical University, Jinan, China
| | - Wenjing Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xin Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Eye Hospital of Shandong First Medical University, Jinan, China
| | - Yajie Gong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Chunxiao Dong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Eye Hospital of Shandong First Medical University, Jinan, China
| | - Bochao Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Bin Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Dongfang Li
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Yihai Cao
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Eye Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
14
|
Inagaki E, Arai E, Hatou S, Sayano T, Taniguchi H, Negishi K, Kanai Y, Sato Y, Okano H, Tsubota K, Shimmura S. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:841-849. [PMID: 35666752 PMCID: PMC9397653 DOI: 10.1093/stcltm/szac036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/09/2022] [Indexed: 11/25/2022] Open
Abstract
Pluripotent stem cell (PSC)-based cell therapies have increased steadily over the past few years, and assessing the risk of tumor formation is a high priority for clinical studies. Current in vivo tumorigenesis studies require several months and depend strongly on the site of grafting. In this study, we report that the anterior eye chamber is preferable to the subcutaneous space for in vivo tumorigenesis studies for several reasons. First, cells can easily be transplanted into the anterior chamber and monitored in real-time without sacrificing the animals due to the transparency of the cornea. Second, tumor formation is faster than with the conventional subcutaneous method. The median tumor formation time in the subcutaneous area was 18.50 weeks (95% CI 10.20-26.29), vs. 4.0 weeks (95% CI 3.34-.67) in the anterior chamber (P = .0089). When hiPSCs were spiked with fibroblasts, the log10TPD50 was 3.26, compared with 4.99 when hiPSCs were transplanted without fibroblasts. There was more than a 40-fold difference in the log10TPD50 values with fibroblasts. Furthermore, the log10TPD50 for HeLa cells was 1.45 and 100% of animals formed tumors at a concentration greater than 0.1%, indicating that the anterior chamber tumorigenesis assays can be applied for cancer cell lines as well. Thus, our method has the potential to become a powerful tool in all areas of tumorigenesis studies and cancer research.
Collapse
Affiliation(s)
- Emi Inagaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Japanese Society for the Promotion of Science (JSPS), Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Hatou
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Cellusion Inc., Tokyo, Japan
| | - Tomoko Sayano
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Cellusion Inc., Tokyo, Japan
| | - Hiroko Taniguchi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeto Shimmura
- Corresponding author: Shigeto Shimmura, MD, Department of Ophthalmology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan. Tel: +81 3 3358 5962; Fax: +81 3 3359 8302;
| |
Collapse
|
15
|
Wang X, Dong C, Zhou Q, Duan H, Zou D, Gong Y, Ma B, Li Z, Shi W. Poly(ADP-ribose) polymerase inhibitor PJ34 protects against UVA-induced oxidative damage in corneal endothelium. Apoptosis 2021; 26:600-611. [PMID: 34581992 DOI: 10.1007/s10495-021-01690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is one of the main causes for corneal endothelial blindness, which is characterized by the progressive decline of corneal endothelial cells. Poly (ADP-ribose) polymerase (PARP) was reported to be involved in cell death and apoptosis of several diseases. However, the role of PARP1 in the progression of FECD remains elusive. In the present study, we reported that UVA irradiation caused the corneal endothelial damage and corneal edema in mice, which was accompanied with the elevated activity of PARP1 and PAR. The PARP1 inhibitor PJ34 resolved the corneal edema and protected corneal endothelium from UVA-induced oxidative damage, mitochondrial dysfunction, and cell apoptosis. Mechanistically, PARP1 inhibition exerted its anti-apoptotic effects through downregulation of the phosphorylation levels of JNK1/2 and p38 MAPK and subsequently the increase of MKP-1. Our results suggest that PARP1 inhibition protects corneal endothelium from UVA-induced oxidative damage, which provides a potential alternative strategy for the therapy of FECD.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
- Eye Hospital of Shandong First Medical University, Jinan, China
| | - Chunxiao Dong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Haoyun Duan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Dulei Zou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Yajie Gong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Bochao Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China.
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China.
- Eye Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
16
|
Olszewski C, Maassen J, Guenther R, Skazik-Voogt C, Gutermuth A. Mechanotransductive Differentiation of Hair Follicle Stem Cells Derived from Aged Eyelid Skin into Corneal Endothelial-Like Cells. Stem Cell Rev Rep 2021; 18:1668-1685. [PMID: 34515937 PMCID: PMC9209348 DOI: 10.1007/s12015-021-10249-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Corneal endothelial insufficiency is one of the leading causes of blindness. The main contemporary treatment for corneal blindness is endothelial keratoplasty, which, however, is unsatisfactory as a medical therapy due to the lack of donor corneas and graft rejection. Therefore, autologous stem cell-based corneal endothelial tissue substitutes may be a promising alternative to conventional grafts in the future. To address the age of most patients suffering from corneal endothelial deficiencies, we investigated the presence and potential of hair-derived stem cells from older tissue donors. Our studies revealed the presence of pluripotency- and neural crest-associated markers in tissue sections from blepharoplasty patients aged 50 to 80 years. In vitro outgrowths from eyelid hair follicles on collagen-coated tissue culture plates revealed a weak decrease in stem-cell potency. In contrast, cells within the spheres that spontaneously formed from the adherent cell layer retained full stem-cell potency and could be differentiated into cells of the ecto- meso and endodermal lineages. Although these highly potent hair follicle derived stem cells (HFSC) were only very slightly expandable, they were able to recognize the biomimicry of the Descemet’s-like topography and differentiate into corneal endothelial-like cells. In conclusion, HFSCs derived from epidermal skin of eyelid biopsies are a promising cell source to provide autologous corneal endothelial replacement for any age group of patients.
Collapse
Affiliation(s)
- Christian Olszewski
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Jessika Maassen
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Rebecca Guenther
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Claudia Skazik-Voogt
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Angela Gutermuth
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany.
| |
Collapse
|
17
|
Hatou S, Sayano T, Higa K, Inagaki E, Okano Y, Sato Y, Okano H, Tsubota K, Shimmura S. Transplantation of iPSC-derived corneal endothelial substitutes in a monkey corneal edema model. Stem Cell Res 2021; 55:102497. [PMID: 34411973 DOI: 10.1016/j.scr.2021.102497] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/02/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE In order to provide regenerative therapy for millions of patients suffering from corneal blindness globally, we derived corneal endothelial cell substitute (CECSi) cells from induced pluripotent stem cells (iPSCs) to treat corneal edema due to endothelial dysfunction (bullous keratopathy). METHODS AND RESULTS We developed an efficient xeno-free protocol to produce CECSi cells from both research grade (Ff-MH09s01 and Ff-I01s04) and clinical grade (QHJI01s04) iPSCs. CECSi cells formed a hexagonal confluent monolayer with Na, K-ATPase alpha 1 subunit expression (ATP1A1), tight junctions, N-cadherin adherence junction formation, and nuclear PITX2 expression, which are all characteristics of corneal endothelial cells. CECSi cells can be cryopreserved, and thawed CECSi cell suspensions also expressed N-cadherin and ATP1A1. Residual undifferentiated iPSCs in QHJI01s04-derived CECSi cells was below 0.01%. Frozen stocks of Ff-I01s04- and QHJI01s04-derived CECSi cells were transported, thawed and transplanted into a monkey corneal edema model. CECSi-transplanted eyes significantly reduced corneal edema compared to control group. CONCLUSION Our results show a promising approach to provide bullous keratopathy patients with an iPS-cell-based cell therapy to recover useful vision.
Collapse
Affiliation(s)
- Shin Hatou
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Cellusion Inc, Tokyo, Japan
| | - Tomoko Sayano
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Cellusion Inc, Tokyo, Japan
| | - Kazunari Higa
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Emi Inagaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yuji Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
18
|
Sun B, Bikkuzin T, Li X, Shi Y, Zhang H. Human-Induced Pluripotent Stem Cells-Derived Corneal Endothelial-Like Cells Promote Corneal Transparency in a Rabbit Model of Bullous Keratopathy. Stem Cells Dev 2021; 30:856-864. [PMID: 34128390 DOI: 10.1089/scd.2020.0205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The corneal endothelium (CE) is vital for the cornea to maintain its transparency. However, CE dysfunction occurs due to aging, intraocular surgery, trauma, dystrophy, etc. Corneal transplantation is the only method to clinically treat CE dysfunction; however, this treatment strategy faces the disadvantages of a global cornea shortage, graft failure, and severe side effects. There is a recognized need for a substitute for the CE. Stem cells are becoming increasingly common for the treatment of human diseases. In fact, several studies have documented the induction of corneal endothelial-like cells (CECs) from stem cells, but an ideal procedure has not yet been established. Thus, this study aimed at exploring a more efficient and robust differentiation method. We used a modified approach to differentiate induced pluripotent stem cells (iPSCs) into CECs. After the identification of differentiated CECs, the CECs were injected into the anterior chambers of the eyes of a rabbit model of bullous keratopathy. The rabbits were maintained in the eye-down position to ensure that the cells attached to the cornea. The results showed that corneal edema was alleviated in the rabbits injected with CECs compared with that in the rabbits belonging to the control group. This study extends the ability to differentiate iPSCs into CECs and provides a potential strategy for the treatment of reduced visual acuity caused by CE deficiency in the future.
Collapse
Affiliation(s)
- Baoqi Sun
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Timur Bikkuzin
- Department of Ophthalmology, Bashkir State Medical University, Ufa, Russia
| | - Xuran Li
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Shi
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Català P, Thuret G, Skottman H, Mehta JS, Parekh M, Ní Dhubhghaill S, Collin RWJ, Nuijts RMMA, Ferrari S, LaPointe VLS, Dickman MM. Approaches for corneal endothelium regenerative medicine. Prog Retin Eye Res 2021; 87:100987. [PMID: 34237411 DOI: 10.1016/j.preteyeres.2021.100987] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
The state of the art therapy for treating corneal endothelial disease is transplantation. Advances in the reproducibility and accessibility of surgical techniques are increasing the number of corneal transplants, thereby causing a global deficit of donor corneas and leaving 12.7 million patients with addressable visual impairment. Approaches to regenerate the corneal endothelium offer a solution to the current tissue scarcity and a treatment to those in need. Methods for generating corneal endothelial cells into numbers that could address the current tissue shortage and the possible strategies used to deliver them have now become a therapeutic reality with clinical trials taking place in Japan, Singapore and Mexico. Nevertheless, there is still a long way before such therapies are approved by regulatory bodies and become clinical practice. Moreover, acellular corneal endothelial graft equivalents and certain drugs could provide a treatment option for specific disease conditions without the need of donor tissue or cells. Finally, with the emergence of gene modulation therapies to treat corneal endothelial disease, it would be possible to treat presymptomatic patients or those presenting early symptoms, drastically reducing the need for donor tissue. It is necessary to understand the most recent developments in this rapidly evolving field to know which conditions could be treated with which approach. This article provides an overview of the current and developing regenerative medicine therapies to treat corneal endothelial disease and provides the necessary guidance and understanding towards the treatment of corneal endothelial disease.
Collapse
Affiliation(s)
- Pere Català
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Gilles Thuret
- Laboratory of Biology, Engineering and Imaging of Corneal Graft, BiiGC, Faculty of Medicine, University of Saint Etienne, Saint Etienne, France; Institut Universitaire de France, Paris, France
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-National University Singapore Medical School, Singapore; Singapore National Eye Centre, Singapore
| | - Mohit Parekh
- Institute of Ophthalmology, University College London, London, UK; The Veneto Eye Bank Foundation, Venice, Italy; Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sorcha Ní Dhubhghaill
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Ophthalmology, Visual Optics and Visual Rehabilitation, Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Mor M Dickman
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
20
|
Gong Y, Duan H, Wang X, Zhao C, Li W, Dong C, Li Z, Zhou Q. Transplantation of human induced pluripotent stem cell-derived neural crest cells for corneal endothelial regeneration. Stem Cell Res Ther 2021; 12:214. [PMID: 33781330 PMCID: PMC8008577 DOI: 10.1186/s13287-021-02267-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The corneal endothelium maintains corneal hydration through the barrier and pump function, while its dysfunction may cause corneal edema and vision reduction. Considering its development from neural crest cells (NCCs), here we investigated the efficacy of the human induced pluripotent stem cell (hiPSC)-derived NCCs for corneal endothelial regeneration in rabbits. METHODS Directed differentiation of hiPSC-derived NCCs was achieved using the chemically defined medium containing GSK-3 inhibitor and TGF-β inhibitor. The differentiated cells were characterized by immunofluorescence staining, FACS analysis, and in vitro multi-lineage differentiation capacity. For in vivo functional evaluation, 1.0 × 106 hiPSC-derived NCCs or NIH-3 T3 fibroblasts (as control) combined with 100 μM Y-27632 were intracamerally injected into the anterior chamber of rabbits following removal of corneal endothelium. Rabbit corneal thickness and phenotype changes of the transplanted cells were examined at 7 and 14 days with handy pachymeter, dual-immunofluorescence staining, and quantitative RT-PCR. RESULTS The hiPSC-derived NCCs were differentiated homogenously through 7 days of induction and exhibited multi-lineage differentiation capacity into peripheral neurons, mesenchymal stem cells, and corneal keratocytes. After 7 days of intracameral injection in rabbit, the hiPSC-derived NCCs led to a gradual recovery of normal corneal thickness and clarity, when comparing to control rabbit with fibroblasts injection. However, the recovery efficacy after 14 days deteriorated and caused the reappearance of corneal edema. Mechanistically, the transplanted cells exhibited the impaired maturation, cellular senescence, and endothelial-mesenchymal transition (EnMT) after the early stage of the in vivo directional differentiation. CONCLUSIONS Transplantation of the hiPSC-derived NCCs rapidly restored rabbit corneal thickness and clarity. However, the long-term recovery efficacy was impaired by the improper maturation, senescence, and EnMT of the transplanted cells.
Collapse
Affiliation(s)
- Yajie Gong
- Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, 271016, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Haoyun Duan
- Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, 271016, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Xin Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
- Eye Hospital of Shandong First Medical University, 372 Jingsi Road, Jinan, 250021, China
| | - Can Zhao
- Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, 271016, China
- Eye Hospital of Shandong First Medical University, 372 Jingsi Road, Jinan, 250021, China
| | - Wenjing Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Chunxiao Dong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
- Eye Hospital of Shandong First Medical University, 372 Jingsi Road, Jinan, 250021, China
| | - Zongyi Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, 271016, China.
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China.
| | - Qingjun Zhou
- Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, 271016, China.
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China.
| |
Collapse
|
21
|
Faye PA, Poumeaud F, Chazelas P, Duchesne M, Rassat M, Miressi F, Lia AS, Sturtz F, Robert PY, Favreau F, Benayoun Y. Focus on cell therapy to treat corneal endothelial diseases. Exp Eye Res 2021; 204:108462. [PMID: 33493477 DOI: 10.1016/j.exer.2021.108462] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
The cornea is a multi-layered structure which allows fine refraction and provides both resistance to external insults and adequate transparency. The corneal endothelium ensures stromal hydration, failure of which, such as in Fuchs endothelial corneal dystrophy, after trauma or in aging, may lead to loss of corneal transparency and induce blindness. Currently, no efficient therapeutic alternatives exist except for corneal grafting. Thus corneal tissue engineering represents a valuable alternative approach, which may overcome cornea donor shortage. Several studies describe protocols to isolate, differentiate, and cultivate corneal endothelial cells (CEnCs) in vitro. Two main in vitro strategies can be described: expansion of eye-native cell populations, such as CEnCs, or the production and expansion of CEnCs from non-eye native cell populations, such as induced Pluripotent Stem Cells (iPSCs). The challenge with these cells is to obtain a monolayer of CEnCs on a biocompatible carrier, with a specific morphology (flat hexagonal cells), and with specific functions such as programmed cell cycle arrest. Another issue for this cell culture methodology is to define the adapted protocol (media, trophic factors, timeframe) that can mimic physiological development. Additionally, contamination by other cell types still represents a huge problem. Thus, purification methods, such as Fluorescence Activated Cell Sorting (FACS), Magnetic Ativated Cell Sorting (MACS) or Sedimentation Field Flow Fractionation (SdFFF) are useful. Animal models are also crucial to provide a translational approach for these therapies, integrating macro- and microenvironment influences, systemic hormonal or immune responses, and exogenous interactions. Non-eye native cell graft protocols are constantly improving both in efficacy and safety, with the aim of being the most suitable candidate for corneal therapies in future routine practice. The aim of this work is to review these different aspects with a special focus on issues facing CEnC culture in vitro, and to highlight animal graft models adapted to screen the efficacy of these different protocols.
Collapse
Affiliation(s)
- Pierre Antoine Faye
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France.
| | - François Poumeaud
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Pauline Chazelas
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Mathilde Duchesne
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France; CHU de Limoges, Laboratoire de Neurologie, F-87000, Limoges, France; CHU de Limoges, Service d'Anatomie Pathologique, F-87000, Limoges, France
| | - Marion Rassat
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Federica Miressi
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Anne Sophie Lia
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France; CHU Limoges, UF de Bioinformatique, F-87000, Limoges France
| | - Franck Sturtz
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | | | - Frédéric Favreau
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Yohan Benayoun
- Chénieux Ophtalmologie, Polyclinique de Limoges ELSAN, F-87000, Limoges, France
| |
Collapse
|
22
|
Khalili M, Asadi M, Kahroba H, Soleyman MR, Andre H, Alizadeh E. Corneal endothelium tissue engineering: An evolution of signaling molecules, cells, and scaffolds toward 3D bioprinting and cell sheets. J Cell Physiol 2020; 236:3275-3303. [PMID: 33090510 DOI: 10.1002/jcp.30085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Cornea is an avascular and transparent tissue that focuses light on retina. Cornea is supported by the corneal-endothelial layer through regulation of hydration homeostasis. Restoring vision in patients afflicted with corneal endothelium dysfunction-mediated blindness most often requires corneal transplantation (CT), which faces considerable constrictions due to donor limitations. An emerging alternative to CT is corneal endothelium tissue engineering (CETE), which involves utilizing scaffold-based methods and scaffold-free strategies. The innovative scaffold-free method is cell sheet engineering, which typically generates cell layers surrounded by an intact extracellular matrix, exhibiting tunable release from the stimuli-responsive surface. In some studies, scaffold-based or scaffold-free technologies have been reported to achieve promising outcomes. However, yet some issues exist in translating CETE from bench to clinical practice. In this review, we compare different corneal endothelium regeneration methods and elaborate on the application of multiple cell types (stem cells, corneal endothelial cells, and endothelial precursors), signaling molecules (growth factors, cytokines, chemical compounds, and small RNAs), and natural and synthetic scaffolds for CETE. Furthermore, we discuss the importance of three-dimensional bioprinting strategies and simulation of Descemet's membrane by biomimetic topography. Finally, we dissected the recent advances, applications, and prospects of cell sheet engineering for CETE.
Collapse
Affiliation(s)
- Mostafa Khalili
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Asadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Biomedicine Institute, and Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Soleyman
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Helder Andre
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Bioengineering of Human Corneal Endothelial Cells from Single- to Four-Dimensional Cultures. CURRENT OPHTHALMOLOGY REPORTS 2020. [DOI: 10.1007/s40135-020-00244-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
From Cord to Eye: Wharton Jelly-Derived Stem Cells Differentiate Into Corneal Endothelial–Like Cells. Cornea 2020; 39:877-885. [DOI: 10.1097/ico.0000000000002319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Di Zazzo A, Lee SM, Sung J, Niutta M, Coassin M, Mashaghi A, Inomata T. Variable Responses to Corneal Grafts: Insights from Immunology and Systems Biology. J Clin Med 2020; 9:E586. [PMID: 32098130 PMCID: PMC7074162 DOI: 10.3390/jcm9020586] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Corneal grafts interact with their hosts via complex immunobiological processes that sometimes lead to graft failure. Prediction of graft failure is often a tedious task due to the genetic and nongenetic heterogeneity of patients. As in other areas of medicine, a reliable prediction method would impact therapeutic decision-making in corneal transplantation. Valuable insights into the clinically observed heterogeneity of host responses to corneal grafts have emerged from multidisciplinary approaches, including genomics analyses, mechanical studies, immunobiology, and theoretical modeling. Here, we review the emerging concepts, tools, and new biomarkers that may allow for the prediction of graft survival.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Sang-Mok Lee
- Department of Ophthalmology, Catholic Kwandong University College of Medicine, Gangneung-si, Gangwon-do 25601, Korea;
- Department of Cornea, External Disease & Refractive Surgery, HanGil Eye Hospital, Incheon 21388, Korea
| | - Jaemyoung Sung
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA;
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
| | - Matteo Niutta
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Marco Coassin
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Alireza Mashaghi
- Systems Biomedicine and Pharmacology Division, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
- Department of Strategic Operating Room Management and Improvement, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
- Department of Hospital Administration, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
| |
Collapse
|
26
|
Bergeron L, Busuttil V, Botto JM. Multipotentiality of skin-derived precursors: application to the regeneration of skin and other tissues. Int J Cosmet Sci 2020; 42:5-15. [PMID: 31612512 DOI: 10.1111/ics.12587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/12/2019] [Indexed: 12/13/2022]
Abstract
Skin-derived precursors (SKPs) have been described as multipotent dermal precursors. Here, we provide a review of the breadth and depth of scientific literature and studies regarding SKPs, accounting for a large number of scientific publications. Interestingly, these progenitors can be isolated from embryonic and adult skin, as well as from a population of dermal cells cultured in vitro in monolayer. Gathering information from different authors, this review explores different aspects of the SKP theme, such as the potential distinct origins of SKPs in rodents and in humans, and also their ability to differentiate in vitro and in vivo into multiple lineages of different progeny. This remarkable capacity makes SKPs an interesting endogenous source of precursors to explore in the framework of experimental and therapeutic applications in different domains. SKPs are not only involved in the skin's dermal maintenance and support as well as wound healing, but also in hair follicle morphogenesis. This review points out the interests of future researches on SKPs for innovative perspectives that may be helpful in many different types of scientific and medical domains.
Collapse
Affiliation(s)
- L Bergeron
- Ashland Specialties France, Global Skin Research Center, 655, route du Pin Montard, 06904, Sophia Antipolis, France
| | - V Busuttil
- Ashland Specialties France, Global Skin Research Center, 655, route du Pin Montard, 06904, Sophia Antipolis, France
| | - J-M Botto
- Ashland Specialties France, Global Skin Research Center, 655, route du Pin Montard, 06904, Sophia Antipolis, France
| |
Collapse
|
27
|
Affiliation(s)
- Jodhbir S Mehta
- Singapore National Eye Centre, Singapore, Singapore. .,Singapore Eye Research Institute, Singapore, Singapore. .,Duke-NUS Graduate Medical School, Singapore, Singapore. .,School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Viridiana Kocaba
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Gary S Peh
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
28
|
Zhang J, Patel DV, McGhee CNJ. The Rapid Transformation of Transplantation for Corneal Endothelial Diseases: An Evolution From Penetrating to Lamellar to Cellular Transplants. Asia Pac J Ophthalmol (Phila) 2019; 8:441-447. [PMID: 31789646 PMCID: PMC6903320 DOI: 10.1097/apo.0000000000000265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
The cornea is the major focusing structure of the human eye and the corneal endothelium maintains the relatively dehydrated state of the cornea required for clarity. The endothelial cells respond to disease or injury by migration and cellular enlargement. Our current understanding is that there is a very limited degree of proliferative or regenerative capacity in the human corneal endothelium. Thus, corneal endothelial diseases may result in corneal edema, significantly impact vision and quality of life. Contemporary surgical transplantation options for treating moderate to advanced endothelial dysfunction include penetrating keratoplasty (PK), Descemet stripping endothelial keratoplasty (DSEK), and Descemet membrane endothelial keratoplasty. Advances in surgical techniques aim to bring faster visual recovery and improve visual outcomes; however, there is still a significant donor cornea shortage worldwide and alternative methods for treatment for corneal endothelial disease are rapidly evolving. Indeed, we are at a pivotal point in corneal transplantation for endothelial disease and novel surgical strategies include using 1 donor for multiple recipients, a minimally attached endothelial graft, and Descemet membrane stripping only. Crucially, forthcoming approaches include the use of Rho-Kinase (ROCK) inhibitors, endothelial cell therapy, tissue engineered grafts, and consideration of stem cell techniques. Ultimately, the choice of technique will be dependent on recipient factors such as age, type of endothelial disease, extent of the disease, and associated ocular disorders. The safety and efficacy of these rapidly developing treatments warrant further investigations. In time, some or all of these alternatives for corneal transplantation will alleviate the reliance on limited corneal donor tissue.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
29
|
Rolev K, Coussons P, King L, Rajan M. Experimental models of corneal endothelial cell therapy and translational challenges to clinical practice. Exp Eye Res 2019; 188:107794. [PMID: 31518569 DOI: 10.1016/j.exer.2019.107794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 12/13/2022]
Abstract
The human corneal endothelium (CE) is a post-mitotic monolayer of endothelial cells, thought to be incapable of in vivo regeneration. Dysfunction of the CE is a commonly cited indication for corneal transplantation, with corneal blindness being the fifth most common cause of blindness globally. In 2012 alone 184,576 corneal transplants were performed in 116 countries (Gain et al., 2016). Presently, outcomes following human corneal transplantation have been reported to have over 97% success rate in restoring the recipient's vision (Patel et al., 2019). However, the continuing demand for cadaveric human corneas has driven research into alternative sources of CE and with the advent of protocols to produce cultured hCECs there is now the potential for cell therapy to regenerate the damaged CE. This review aims to examine the merits and limitations of different types of human and animal models used so far to test the concept of CE cell therapy.
Collapse
Affiliation(s)
- Kostadin Rolev
- Anglia Ruskin University, Department of Biomedical and Forensic Sciences and the Vision & Eye Research Unit, Cambridge, Cambridgeshire, CB1 1PT, UK; Shenzhen University Xili Campus: No. 1066, Xueyuan Road, Xili Street, Shenzhen, 518000, China.
| | - Peter Coussons
- Anglia Ruskin University, Department of Biomedical and Forensic Sciences and the Vision & Eye Research Unit, Cambridge, Cambridgeshire, CB1 1PT, UK.
| | - Linda King
- Anglia Ruskin University, Department of Biomedical and Forensic Sciences and the Vision & Eye Research Unit, Cambridge, Cambridgeshire, CB1 1PT, UK.
| | - Madhavan Rajan
- Anglia Ruskin University, Department of Biomedical and Forensic Sciences and the Vision & Eye Research Unit, Cambridge, Cambridgeshire, CB1 1PT, UK; Department of Ophthalmology, Cambridge University Hospitals, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK; Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, CB1 1PT, UK.
| |
Collapse
|
30
|
Kocaba V, Damour O, Auxenfans C, Burillon C. [Corneal endothelial cell therapy, a review]. J Fr Ophtalmol 2018; 41:462-469. [PMID: 29773311 DOI: 10.1016/j.jfo.2018.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
In France, endothelial dysfunction represents approximately one half of the indications for corneal transplants performed each year. However, the use of endothelial keratoplasty is limited by the technical difficulty of the procedure, a shortage of available grafts, and the potential for graft failure or rejection. These limitations are driving researchers to develop new, less invasive, and more effective therapies. Corneal endothelial cell therapy is being explored as a potential therapeutic measure, to avoid the uncertainty associated with grafting. The human cornea is an ideal tissue for cell therapy. Due to its avascular and immunologically privileged characteristics, transplanted cells are better tolerated compared with other vascularized tissues and organs. Advances in the field of stem cell engineering, particularly the development of corneal epithelial stem cell therapy for the treatment of severe ocular surface disease, have aroused a massive interest in adapting cell therapy techniques to corneal endothelial cells. This chapter, based on a review of the literature, aims at educating the reader on the latest research in the field of corneal endothelial cell therapy.
Collapse
Affiliation(s)
- V Kocaba
- Service d'ophtalmologie, pavillon C, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France; Université Claude-Bernard Lyon-1, 69100 Villeurbanne, France; Banque de cornée de Lyon, pavillon I, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France; Cornea Center of Excellence, The Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, États-Unis; Tissue Engineering and stem cell group, Singapore Eye Research Institute, 168751 Singapour.
| | - O Damour
- Banque de cornée de Lyon, pavillon I, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France
| | - C Auxenfans
- Banque de cornée de Lyon, pavillon I, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France
| | - C Burillon
- Service d'ophtalmologie, pavillon C, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France; Université Claude-Bernard Lyon-1, 69100 Villeurbanne, France; Banque de cornée de Lyon, pavillon I, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France
| |
Collapse
|
31
|
Yamashita K, Hatou S, Inagaki E, Higa K, Tsubota K, Shimmura S. A Rabbit Corneal Endothelial Dysfunction Model Using Endothelial-Mesenchymal Transformed Cells. Sci Rep 2018; 8:16868. [PMID: 30442918 PMCID: PMC6237874 DOI: 10.1038/s41598-018-35110-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Unlike humans, rabbit corneal endothelial wounds are known to spontaneously heal. The current study was aimed to develop a new rabbit bullous keratopathy model using corneal endothelial cells that were induced to undergo endothelial-mesenchymal transformation (EMT). EMT was induced in rabbit corneal endothelial cells (RCECs) by culturing with TGFβ and basic FGF Supplemented Medium. The corneal endothelia in recipient rabbits were mechanically scraped from the corneal endothelial surface inside an 8 mm mark. Then, a suspension of EMT-induced RCECs (EMT-RCECs) was injected into the anterior chamber. Eyes injected with freshly isolated RCECs (Fresh RCECs group) and eyes that were scraped without injection of cells (Scrape group) were used as controls. Immediately following operation, subepithelial and stromal edema was observed with increased central corneal thickness and corneal opacity in all groups. In the EMT-RCECs group, bullous keratopathy persisted for 42 days up to the end of the study. In the Fresh-RCECs and Scrape groups, corneal transparency and thickness recovered by 7 days after treatment and was maintained up to 42 days. The activated fibroblast marker, α-SMA, was observed spanning from corneal endothelium to corneal stroma in the EMT-RCECs group. Interestingly, α-SMA was upregulated in the Scrape-group as well. In all groups, there was no damage to other intraocular structures, and intraocular pressure was normal throughout the observation period. Transplanting a fresh donor cornea effectively treated corneal edema due to bullous keratopathy. This model is a promising tool for pre-clinical trials in the development of new therapies against corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Kazuya Yamashita
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Hatou
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Emi Inagaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Higa
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
32
|
Abstract
Human-induced pluripotent stem cells (hiPSCs) provide a personalized approach to study conditions and diseases including those of the eye that lack appropriate animal models to facilitate the development of novel therapeutics. Corneal disease is one of the most common causes of blindness. Hence, significant efforts are made to develop novel therapeutic approaches including stem cell-derived strategies to replace the diseased or damaged corneal tissues, thus restoring the vision. The use of adult limbal stem cells in the management of corneal conditions has been clinically successful. However, its limited availability and phenotypic plasticity necessitate the need for alternative stem cell sources to manage corneal conditions. Mesenchymal and embryonic stem cell-based approaches are being explored; nevertheless, their limited differentiation potential and ethical concerns have posed a significant hurdle in its clinical use. hiPSCs have emerged to fill these technical and ethical gaps to render clinical utility. In this review, we discuss and summarize protocols that have been devised so far to direct differentiation of human pluripotent stem cells (hPSCs) to different corneal cell phenotypes. With the summarization, our review intends to facilitate an understanding which would allow developing efficient and robust protocols to obtain specific corneal cell phenotype from hPSCs for corneal disease modeling and for the clinics to treat corneal diseases and injury.
Collapse
Affiliation(s)
| | - Rohit Shetty
- Cornea and Refractive Surgery, Narayana Nethralaya, Bengaluru, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
33
|
Yamashita K, Inagaki E, Hatou S, Higa K, Ogawa A, Miyashita H, Tsubota K, Shimmura S. Corneal Endothelial Regeneration Using Mesenchymal Stem Cells Derived from Human Umbilical Cord. Stem Cells Dev 2018; 27:1097-1108. [PMID: 29929442 DOI: 10.1089/scd.2017.0297] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corneal blindness is the third leading cause of blindness in the world, and one of the main etiologies is dysfunction of the corneal endothelium. Current treatment of corneal endothelial disease is allogenic corneal transplantation, which is limited by the global shortage of donor corneas and immunological rejection. The corneal endothelium consists of a monolayer of cells derived from the neural crest and mesoderm. Its main function is to prevent corneal edema by tight junctions formed by zonular occludens-1 (ZO-1) and Na, K-ATPase pump function. The human umbilical cord (UC) is a rich source of mesenchymal stem cells (MSCs). UC-MSCs that have multi-lineage potential may be an accessible allogenic source. After inducing differentiation with medium containing glycogen synthase kinase (GSK) 3-β inhibitor, UC-MSCs formed polygonal corneal endothelial-like cells that functioned as tissue-engineered corneal endothelium (UTECE). Expressions of major corneal endothelial markers were confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR). Western blotting confirmed the expression of Na,K-ATPase and PITX2, the functional and developmental markers of corneal endothelial cells. Immunohistochemistry revealed the localization of Na,K-ATPase and ZO-1 in cell-cell junctions, suggesting the presence of tight junctions. In vitro functional analysis revealed that UTECE had significantly high pump function compared with UC-MSCs. Moreover, UTECE transplanted into a rabbit model of bullous keratopathy successfully maintained corneal thickness and transparency. Our findings suggest that UTECE may be used as a source of allogenic cells for the treatment of corneal endothelial disease.
Collapse
Affiliation(s)
- Kazuya Yamashita
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Emi Inagaki
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Shin Hatou
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Kazunari Higa
- 2 Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital , Ichikawa, Japan
| | - Akiko Ogawa
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Hideyuki Miyashita
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Kazuo Tsubota
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| | - Shigeto Shimmura
- 1 Department of Ophthalmology, Keio University School of Medicine , Tokyo, Japan
| |
Collapse
|
34
|
Stern JH, Tian Y, Funderburgh J, Pellegrini G, Zhang K, Goldberg JL, Ali RR, Young M, Xie Y, Temple S. Regenerating Eye Tissues to Preserve and Restore Vision. Cell Stem Cell 2018; 22:834-849. [PMID: 29859174 PMCID: PMC6492284 DOI: 10.1016/j.stem.2018.05.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ocular regenerative therapies are on track to revolutionize treatment of numerous blinding disorders, including corneal disease, cataract, glaucoma, retinitis pigmentosa, and age-related macular degeneration. A variety of transplantable products, delivered as cell suspensions or as preformed 3D structures combining cells and natural or artificial substrates, are in the pipeline. Here we review the status of clinical and preclinical studies for stem cell-based repair, covering key eye tissues from front to back, from cornea to retina, and including bioengineering approaches that advance cell product manufacturing. While recognizing the challenges, we look forward to a deep portfolio of sight-restoring, stem cell-based medicine. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jeffrey H Stern
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA; Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yangzi Tian
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - James Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Graziella Pellegrini
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, via G.Gottardi 100, 41125 Modena, Italy
| | - Kang Zhang
- Shiley Eye Institute and Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangzhou Regenerative Medicine and Health Laboratory, Guangzhou 510060, China
| | - Jeffrey L Goldberg
- Byers Eye Institute at Stanford University, 2452 Watson Court, Palo Alto, CA 94303, USA
| | - Robin R Ali
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK; Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Michael Young
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, an affiliate of Harvard Medical School, Boston, MA 02114, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA; Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
35
|
Sun P, Shen L, Zhang C, Du L, Wu X. Promoting the expansion and function of human corneal endothelial cells with an orbital adipose-derived stem cell-conditioned medium. Stem Cell Res Ther 2017; 8:287. [PMID: 29262856 PMCID: PMC5738836 DOI: 10.1186/s13287-017-0737-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/16/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Corneal endothelial dysfunction causes severe impairment of vision. The only solution is corneal transplantation. However, this treatment is hampered by a worldwide shortage of donor corneas. New therapies may replace the conventional donor corneal transplantation alongside the developments in regenerative medicine and tissue engineering, but sufficient functional corneal endothelial cells (CECs) are essential. The aim of this study was to promote the expansion and function of human corneal endothelial cells (HCECs) in vitro and in vivo. METHODS The phenotypes of human orbital adipose-derived stem cells (OASCs) were detected by flow cytometry and immunofluorescence. HCECs were isolated and cultured using a conditioned medium obtained from OASCs (OASC-CM) in vitro. Related cell markers of HCECs were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and immunofluorescence. The cell counting kit-8 (CCK-8) assay and the wound healing assay were performed to evaluate the proliferation ability of the cells. The cultured HCECs were then transplanted into rabbit and monkey corneal endothelial dysfunction models by cell injection. RESULTS CD29, CD105, CD49e, CD166, and vimentin were highly expressed in cultured human OASCs. The CEC-relative markers zonula occludens-1 (ZO-1), Na+/K+ ATPase, N-cadherin, Col8a2, and SLC4A4 were expressed in HCECs cultured by OASC-CM. The HCECs were able to maintain polygonal cell morphology and good proliferative capacity. In animal experiments, corneal transparency was achieved after the injection of HCECs, which demonstrated the good repair capacity of the cells. CONCLUSIONS The proliferation abilities of the cells were significantly enhanced, and related functional markers were strongly positive, while HCEC morphology was maintained using OASC-CM. HCECs obtained some stem cell-like properties. This preclinical study confirmed the therapeutic ability of the HCECs in vivo. Our findings demonstrated that cultured HCECs with OASC-CM might be a promising source for research and clinical treatment.
Collapse
Affiliation(s)
- Peng Sun
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Lin Shen
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Canwei Zhang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Liqun Du
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
36
|
Therapy of corneal endothelial dysfunction with corneal endothelial cell-like cells derived from skin-derived precursors. Sci Rep 2017; 7:13400. [PMID: 29042661 PMCID: PMC5645363 DOI: 10.1038/s41598-017-13787-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
Corneal endothelial dysfunction occurs when corneal endothelial cells (CECs) are dramatically lost and eventually results in vision loss. Corneal transplantation is the only solution at present. However, corneal transplantation requires a fresh human cornea and there is a worldwide shortage of donors. Therefore, finding new functional CECs to replace human CECs is urgent. Skin-derived precursors (SKPs) can be easily acquired and have multiple differential potential. We co-cultured human SKPs with B4G12 cells in serum-free medium and obtained abundant CEC-like cells which had similar morphology and characteristic to human CECs. CEC-like cells exerted excellent therapeutic effect when they were transplanted into rabbit and monkey corneal endothelial dysfunction models by injection method. This protocol enables efficient production of CEC-like cells from SKPs. The renewable cell source, novel derivation method and simple treatment strategy may lead to potential applications in cell replacement therapy for corneal endothelial dysfunction.
Collapse
|
37
|
Xian D, Gao X, Xiong X, Xu J, Yang L, Pan L, Zhong J. Photoprotection against UV-induced damage by skin-derived precursors in hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:73-82. [PMID: 28865317 DOI: 10.1016/j.jphotobiol.2017.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/20/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Skin photodamage is associated with UV-induced overproduction of reactive oxygen species (ROS) and the inactivation of NF-E2-related factor 2 (Nrf2). Skin-derived precursor cells (SKPs), a population of dermal stem cells, are considered to be involved in wound repair and skin regeneration through the activation of Nrf2. However, no reports concentrate on the treatment of skin photodamage with SKPs. OBJECTIVE To investigate the photoprotective role of SKPs against UV-induced damage in mice. METHODS Fifty Balb/c hairless mice were divided into five groups (n=10), namely, normal (no intervention), model, prevention, treatment, and control groups. The latter four groups were dorsally exposed to UVA+UVB irradiation over a 2-week period. Mice in the prevention group received weekly SKP injections for 2weeks the day before irradiation. Mice in the treatment and Hanks groups received a two-time injection of SKPs and Hanks, respectively, after irradiation. One week after final intervention, skin appearance, pathological alterations, and oxidative indicators were evaluated by enzyme-linked immunosorbent assay, immunohistochemical analysis, and western blotting. RESULTS After irradiation, lesions were observed on the dorsal skin of mice, including erythema, edema, scales, and wrinkles; however, these were significantly ameliorated by subcutaneous SKP injection. Hyperkeratosis, acanthosis, and spongiosis in the epidermis, as well as dermal papillae edema and inflammatory cell infiltration, were observed in both model and control groups; however, these conditions resolved with either pretreatment or posttreatment with SKPs. In addition, SKPs increased Nrf2, heme oxygenase-1, glutathione peroxidase, superoxide dismutase, catalase, and gluthathione expression, while decreasing levels of ROS, MDA, and H2O2. CONCLUSIONS These findings suggest that SKPs have a photoprotective role against UV-induced damage in mice, which may be associated with their ability to scavenge photo-oxidative insults and activate Nrf2.
Collapse
Affiliation(s)
- Dehai Xian
- Department of Neurobiology, Southwest Medical University, Luzhou 646000, China
| | - Xiaoqing Gao
- Department of Neurobiology, Southwest Medical University, Luzhou 646000, China
| | - Xia Xiong
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jixiang Xu
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lingyu Yang
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lun Pan
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianqiao Zhong
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|