1
|
Lynn T, Kelleher ME, Georges HM, McCauley EM, Logan RW, Yonkers KA, Abrahams VM. Buprenorphine induces human fetal membrane sterile inflammation. J Reprod Immunol 2025; 168:104445. [PMID: 39914058 PMCID: PMC11890952 DOI: 10.1016/j.jri.2025.104445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Accepted: 01/28/2025] [Indexed: 02/12/2025]
Abstract
Opioid-use disorder (OUD) during pregnancy has increased in the United States to critical levels and is a leading cause of maternal morbidity and mortality. Untreated OUD is associated with pregnancy complications in particular, preterm birth. Medications for OUD, such as buprenorphine, are recommended with the added benefit that treatment during pregnancy increases treatment post-partum. However, the rate of preterm birth in individuals using illicit opioids or being treated with opioid agonist therapeutics is double that of the general population. Since inflammation in the placenta and the associated fetal membranes (FM) is a common underlying cause of preterm birth, we sought to determine if the opioid, buprenorphine, induces sterile inflammation in human FMs and to examine the mechanisms involved. Using an established in vitro human FM explant system, we report that buprenorphine significantly increased FM secretion of the inflammatory cytokine IL-6; the neutrophilic chemokine IL-8; and the inflammasome-mediated cytokine IL-1β, mirroring the inflammatory profile commonly seen at the maternal-fetal interface in preterm birth. Other factors that were elevated in FMs exposed to buprenorphine included the mediators of membrane weakening, prostaglandin E2 (PGE2), and matrix metalloproteinases, MMP1 and MMP9. This sterile inflammatory and weakening FM response induced by buprenorphine was mediated in part by innate immune Toll-like receptor 4 (TLR4), the NLRP3 inflammasome, the μ-opioid receptor, and downstream NFκB and ERK/JNK/MAPK signaling. This may provide the mechanistic link between opioid use in pregnancy and the elevated risk for preterm birth.
Collapse
Affiliation(s)
- Tatyana Lynn
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Megan E Kelleher
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Hanah M Georges
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Elle M McCauley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Ryan W Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Kimberly A Yonkers
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
2
|
Lynn T, Kelleher ME, Georges HM, McCauley EM, Logan RW, Yonkers KA, Abrahams VM. Buprenorphine Induces Human Fetal Membrane Sterile Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624850. [PMID: 39605446 PMCID: PMC11601656 DOI: 10.1101/2024.11.22.624850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Opioid-use disorder (OUD) during pregnancy has increased in the United States to critical levels and is a leading cause of maternal morbidity and mortality. Untreated OUD is associated with pregnancy complications in particular, preterm birth. Medications for OUD, such as buprenorphine, are recommended with the added benefit that treatment during pregnancy increases treatment post-partum. However, the rate of preterm birth in individuals using illicit opioids or being treated with opioid agonist therapeutics is double that of the general population. Since inflammation in the placenta and the associated fetal membranes (FM) is a common underlying cause of preterm birth, we sought to determine if the opioid, buprenorphine, induces sterile inflammation in human FMs and to examine the mechanisms involved. Using an established in vitro human FM explant system, we report that buprenorphine significantly increased FM secretion of the inflammatory cytokine IL-6; the neutrophilic chemokine IL-8; and the inflammasome-mediated cytokine IL-1β, mirroring the inflammatory profile commonly seen at the maternal-fetal interface in preterm birth. Other factors that were elevated in FMs exposed to buprenorphine included the mediators of membrane weakening, prostaglandin E2 (PGE2), and matrix metalloproteinases, MMP1 and MMP9. Furthermore, this sterile inflammatory and weakening FM response induced by buprenorphine was mediated in part by innate immune Toll-like receptor 4 (TLR4), the NLRP3 inflammasome, the μ-opioid receptor, and downstream NFκB and ERK/JNK/MAPK signaling. This may provide the mechanistic link between opioid use in pregnancy and the elevated risk for preterm birth. Since there are adverse consequences of not treating OUD, our findings may help identify ways to mitigate the impact opioids have on pregnancy outcomes while allowing the continuation of maintenance therapy.
Collapse
|
3
|
Echarte L, Grazioli G, Pereira L, Francia A, Pérez H, Kuzuian W, Vicentino W, Pardo H, Mombrú A, Maglia Á, Touriño C, Álvarez I. Processing methods for human amniotic membrane as scaffold for tissue engineering with mesenchymal stromal human cells. Cell Tissue Bank 2024; 25:269-283. [PMID: 35906514 DOI: 10.1007/s10561-022-10014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function. The aims of this work were to compare chemically and physically processed human Amniotic Membranes (hAM) and analyze the cytocompatibility and proliferation rate (PR) of two primary human mesenchymal stromal cell lines, from different sources and donor conditions seeded over these scaffolds. The evaluated hAM processes were: cold shock to obtain a frozen amniotic membrane (FEAM) with remaining dead epithelial cells, denudation of hAM with trypsin for 20/10 min (DEAM20/10) or treatment with sodium dodecyl sulfate to decellularized hAM (DAM). All samples were sterilized with gamma radiation. The selection of the treated hAM to then generate composites was performed by scanning and transmission electron microscopy and characterization by X-ray diffraction, selecting DEAM10 and FEAM as scaffolds for cell seeding. Two sources of primary human stromal cells were used, both developed by our researchers, human Dental Pulp Stem Cells (hDPSC) from living donors and human Mesenchymal Stromal Cells (hMSC) from bone marrow isolated from brain dead donors. This last line of cells conveys a novel source of human cells that, to our knowledge, have not been tested as part of this type of construct. We developed four in vitro constructs without cytotoxicity signs and with different PR depending on the scaffolds and cells. hDPSC and hMSC grew over both FEAM and DEAM10, but DEAM10 allowed higher PR.
Collapse
Affiliation(s)
- L Echarte
- Área Terapia Celular y Medicina Regenerativa (ATCMR), Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - G Grazioli
- Cátedra de Materiales Dentales, Facultad de Odontología UdelaR, Montevideo, Uruguay
| | - L Pereira
- Departamento de Biomateriales, Facultad de Química, Parque Científico Tecnológico de Pando, UdelaR, Canelones, Uruguay
| | - A Francia
- Facultad de Odontología UdelaR, Fisiología General y Bucodental, Montevideo, Uruguay
| | - H Pérez
- Facultad de Medicina, Instituto Nacional de Donación y Trasplante (INDT), Ministerio de Salud Pública- Hospital de Clínicas, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - W Kuzuian
- Facultad de Medicina, Instituto Nacional de Donación y Trasplante (INDT), Ministerio de Salud Pública- Hospital de Clínicas, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - W Vicentino
- Facultad de Medicina, Instituto Nacional de Donación y Trasplante (INDT), Ministerio de Salud Pública- Hospital de Clínicas, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - H Pardo
- Departamento de Biomateriales, Facultad de Química, Parque Científico Tecnológico de Pando, UdelaR, Canelones, Uruguay
| | - A Mombrú
- Departamento de Biomateriales, Facultad de Química, Parque Científico Tecnológico de Pando, UdelaR, Canelones, Uruguay
| | - Á Maglia
- Facultad de Odontología UdelaR, Cátedra de Histología y Embriología Bucodental, Montevideo, Uruguay
| | - C Touriño
- Área Terapia Celular y Medicina Regenerativa (ATCMR), Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - I Álvarez
- Facultad de Medicina, Instituto Nacional de Donación y Trasplante (INDT), Ministerio de Salud Pública- Hospital de Clínicas, Universidad de La República (UdelaR), Montevideo, Uruguay.
| |
Collapse
|
4
|
Pfister P, Wendel-Garcia PD, Meneau I, Vasella M, Watson JA, Bühler P, Rittirsch D, Lindenblatt N, Kim BS. Human amniotic membranes as an allogenic biological dressing for the treatment of burn wounds: Protocol for a randomized-controlled study. Contemp Clin Trials Commun 2023; 36:101209. [PMID: 37753391 PMCID: PMC10518583 DOI: 10.1016/j.conctc.2023.101209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Background Burn wounds pose significant challenges in medical treatment due to their devastating nature and resource-intensive requirements. Temporary coverage of burn wounds using synthetic or biological dressings allows for reepithelization before definitive skin grafting. Allogenic skin grafts have been widely used but come with drawbacks such as rejection and disease transmission. The use of amniotic membranes (AMs) offers a promising alternative for temporary coverage, as they possess biological properties that promote faster healing and improved scar quality. The various components of the amniotic membrane, including pluripotent stem cells, extracellular matrix proteins, and regenerative factors, contribute to cell growth, migration, and differentiation, as well as preservation of the original epithelial phenotype. Objective Reliable information on the treatment of burn wounds with AM is needed. The knowledge gained in this project may help to include this advantageous modern concept of biological dressings in clinical practice. The purpose of this study is to use human amniotic membranes from our in hospital laboratory, as an allogenic biological dressing after enzymatic debridement in superficial partial thickness, deep partial thickness or full thickness burn wounds. Methods We will include 30 patients in a randomized-controlled trial with each patient receiving the study intervention and the control intervention. Two 7 × 7 cm burn wound areas will be compared regarding percentage of skin graft take, healing time, healing percentage value and total healing time. Human amniotic membranes will be compared to allogenic skin grafts.
Collapse
Affiliation(s)
- Pablo Pfister
- Department of Intensive Care, Burn Center, University Hospital Zurich, Zurich, Switzerland
| | | | - Isabelle Meneau
- Department of Ophtalmology, Eye Bank Laboratory, University Hospital Zurich, Zurich, Switzerland
| | - Mauro Vasella
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland
| | - Jennifer Ashley Watson
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Bühler
- Department of Intensive Care, Burn Center, University Hospital Zurich, Zurich, Switzerland
- Department of Intensive Care, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Daniel Rittirsch
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Non-Solvent- and Temperature-Induced Phase Separations of Polylaurolactam Solutions in Benzyl Alcohol as Methods for Producing Microfiltration Membranes. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The possibility of obtaining porous films through solutions of polylaurolactam (PA12) in benzyl alcohol (BA) was considered. The theoretical calculation of the phase diagram showed the presence of the upper critical solution temperature (UCST) for the PA12/BA system at 157 °C. The PA12 completely dissolved in BA at higher temperatures, but the resulting solutions underwent phase separation upon cooling down to 120–140 °C because of the PA12’s crystallization. The viscosity of the 10–40% PA12 solutions increased according to a power law but remained low and did not exceed 5 Pa·s at 160 °C. Regardless of the concentration, PA12 formed a dispersed phase when its solutions were cooled, which did not allow for the obtention of strong films. On the contrary, the phase separation of the 20–30% PA12 solutions under the action of a non-solvent (isopropanol) leads to the formation of flexible microporous films. The measurement of the porosity, wettability, strength, permeability, and rejection of submicron particles showed the best results for a porous film produced from a 30% solution by non-solvent-induced phase separation. This process makes it possible to obtain a membrane material with a 240 nm particle rejection of 99.6% and a permeate flow of 1.5 kg/m2hbar for contaminated water and 69.9 kg/m2hbar for pure water.
Collapse
|
6
|
Ashouri Sharafshadeh S, Mehdinavaz Aghdam R, Akhlaghi P, Heirani-Tabasi A. Amniotic membrane/silk fibroin-alginate nanofibrous scaffolds containing Cu-based metal organic framework for wound dressing. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Sina Ashouri Sharafshadeh
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Parisa Akhlaghi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Asieh Heirani-Tabasi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular, Tehran Heart Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Garcia-Ayuso D, Di Pierdomenico J, García-Bernal D, Vidal-Sanz M, Villegas-Pérez MP. Bone marrow-derived mononuclear stem cells in the treatment of retinal degenerations. Neural Regen Res 2022; 17:1937-1944. [PMID: 35142670 PMCID: PMC8848608 DOI: 10.4103/1673-5374.335692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Retinal degenerative diseases affecting the outer retina in its many forms (inherited, acquired or induced) are characterized by photoreceptor loss, and represent currently a leading cause of irreversible vision loss in the world. At present, there are very few treatments capable of preventing, recovering or reversing photoreceptor degeneration or the secondary retinal remodeling, which follows photoreceptor loss and can also cause the death of other retinal cells. Thus, these diseases are nowadays one of the greatest challenges in the field of ophthalmological research. Bone marrow derived-mononuclear stem cell transplantation has shown promising results for the treatment of photoreceptor degenerations. These cells may have the potential to slow down photoreceptor loss, and therefore should be applied in the early stages of photoreceptor degenerations. Furthermore, because of their possible paracrine effects, they may have a wide range of clinical applications, since they can potentially impact on several retinal cell types at once and photoreceptor degenerations can involve different cells and/or begin in one cell type and then affect adjacent cells. The intraocular injection of bone marrow derived-mononuclear stem cells also enhances the outcomes of other treatments aimed to protect photoreceptors. Therefore, it is likely that future investigations may combine bone marrow derived-mononuclear stem cell therapy with other systemic or intraocular treatments to obtain greater therapeutic effects in degenerative retinal diseases.
Collapse
Affiliation(s)
- Diego Garcia-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - David García-Bernal
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca); Servicio de Hematología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| |
Collapse
|
8
|
Lakkireddy C, Vishwakarma SK, Raju N, Ahmed SI, Bardia A, Khan MA, Annamaneni S, Khan AA. Fabrication of Decellularized Amnion and Chorion Scaffolds to Develop Bioengineered Cell-Laden Constructs. Cell Mol Bioeng 2022; 15:137-150. [PMID: 35096189 PMCID: PMC8761215 DOI: 10.1007/s12195-021-00707-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Human mesenchymal stem cells (hMSCs) holds great promise for managing several clinical conditions. However, the low engraftment efficiency and obscurity to harvest these cells without compromising the cellular viability, structural and functional properties from the culture niche still remain major obstacles for preparing intact regenerative constructs. Although few studies have demonstrate different methods for generating cell-liberated amniotic scaffolds, a common method for producing completely cell-liberated amnion (D-HAM) and chorion (D-HCM) scaffolds and their cytocompatibility with hMSCs yet to be demonstrated. METHODS A common process was developed for preparing D-HAM and D-HCM scaffolds for assessing hMSCs engraftment efficiency, proliferation and molecular shifts to generate cell-laden biological discs. The structural and functional integrity of D-HAM and D-HCM was evaluated using different parameters. The compatibility and proliferation efficiency of hMSCs with D-HAM and D-HCM was evaluated. RESULTS Histological analysis revealed completely nucleic acid-free D-HAM and D-HCM scaffolds with intact extracellular matrix, mechanical and biological properties almost similar to the native membranes. Human MSCs were able to adhere and engraft on D-HCM better than D-HAM and expanded faster. Ultrastructural observations, crystal violet staining and expression studies showed better structural and functional integrity of hMSCs on D-HCM than D-HAM and control conditions. CONCLUSION A common, simple and reliable process of decellularization can generate large number of cell-liberated amniotic scaffolds in lesser time. D-HCM has better efficiency for hMSCs engraftment and proliferation and can be utilized for preparing suitable cell-laden constructs for tissue engineering applications.
Collapse
Affiliation(s)
- Chandrakala Lakkireddy
- Central Laboratory for Stem Cell Research & Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana 500058 India
| | - Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research & Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana 500058 India
| | - Nagarapu Raju
- Central Laboratory for Stem Cell Research & Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana 500058 India
| | - Shaik Iqbal Ahmed
- Central Laboratory for Stem Cell Research & Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana 500058 India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research & Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana 500058 India
| | - Mazharuddin Ali Khan
- Department of Orthopedics, OHRC, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana India
| | | | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research & Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana 500058 India
| |
Collapse
|
9
|
Miller AS, Hidalgo TN, Abrahams VM. Human fetal membrane IL-1β production in response to bacterial components is mediated by uric-acid induced NLRP3 inflammasome activation. J Reprod Immunol 2022; 149:103457. [PMID: 34875574 PMCID: PMC8792319 DOI: 10.1016/j.jri.2021.103457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Inflammatory interleukin-1β (IL-1β) is an important mediator of preterm birth. IL-1β secretion is mediated by the inflammasome that processes pro-IL-1β into its active form. However the mechanisms involved at the level of the fetal membrane (FM) are not fully understood. This study sought to determine the FM compartment involved in IL-1β production in response to bacterial components and to evaluate the mechanism of inflammasome activation. Since IL-18 is also mediated by the inflammasome and IL-8 is a chemoattractant that contributes to neutrophil recruitment in chorioamnionitis, we also evaluated the production of these factors. A human explant system was used to evaluate the response of the chorion, amnion, and intact FMs to the bacterial components lipopolysaccharide (LPS), peptidoglycan (PGN), or muramyl dipeptide (MDP). The chorion was the major source of IL-1β and IL-8 production in response to LPS, PGN, and MDP. LPS, PGN, and MDP induced FM IL-1β and IL-18 secretion in a non-pyroptotic manner through activation of the NLRP3 inflammasome with contributions from ATP release through Pannexin-1, and ROS signaling. Since LPS, PGN, and MDP are not known to activate NLRP3 directly, the role of uric acid as a potential mediator was assessed. FMs produced elevated uric acid in response to LPS, PGN and MDP. FM IL-1β secretion was inhibited by allopurinol, which blocks uric acid production, for LPS and PGN, and to a lesser degree, MDP. These findings shed light on the mechanisms by which fetal membrane inflammation and subsequent preterm birth may arise.
Collapse
Affiliation(s)
- Alex S. Miller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Tiffany N. Hidalgo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Vikki M. Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT,Corresponding Author: Vikki M. Abrahams PhD. Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, LSOG 305C, New Haven, CT 06510, USA. ; Phone: 203-785-2175
| |
Collapse
|
10
|
de Sousa BR, de Oliveira VC, Pinheiro AO, Ambrósio CE. Characterization of hematopoietic stem cells from the canine yolk sac. Anim Reprod 2021; 18:e20210012. [PMID: 34306214 PMCID: PMC8291774 DOI: 10.1590/1984-3143-ar2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
The characterization of hematopoietic stem cells (HSC) from the canine yolk sac (cYS) can contribute to future gene therapies because it is possible to obtain information about the beginning of the development of the circulatory system through the characterization. The cYS is a likely source of HSC, which is a source of blood cell development in mammals. Studies in this field have been conducted for decades; however, interest in cellular therapy is currently at its peak with greater visibility, and these cells are a promising therapeutic tool for the treatment of diseases related to animals and humans. The aim of this study was to isolate and characterize HSC from the cYS embryos at 30 to 45 days of gestational age. Our results showed that the cYS was macroscopically located in the ventral region with a central portion and extremities. The cells in culture presented a circular morphology and cell clusters. The average cell viability was 22.55% dead cells out of 6.5 × 104 total cells. The cells were also able to form colonies on methylcellulose. Flow cytometry analysis revealed the expression of CD34, CD117, and CD45. Our results suggest that the cYS can be used as a source of hematopoietic cells, and this study is very important to understand the mechanism and development of the hematopoietic system in dogs.
Collapse
Affiliation(s)
- Bárbara Rossi de Sousa
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Vanessa Cristina de Oliveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Alessandra Oliveira Pinheiro
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Carlos Eduardo Ambrósio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
11
|
DEMİR S, ERTÜRK A, ZENGİN M, YILDIZ D, KARAHAN S, ŞENEL E. Contribution of amniotic membrane to the healing of iatrogenic vas deferens injury. Turk J Med Sci 2021; 51:1564-1571. [PMID: 33726480 PMCID: PMC8283458 DOI: 10.3906/sag-2012-287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background/aim Iatrogenic vas deferens injury is one of the most serious complications of operations in the inguinal region. Vasovasostomy is performed as treatment. However, stenosis is common after vasovasostomy. Oligospermia or azoospermia may develop and result in infertility. This study aimed to investigate the effect of amniotic membrane on healing in vas deferens injuries. Materials and methods Four groups consisting of 10 rats each were formed. No procedure was performed in Group-I. In Group- II, the left vas deferens was transected and left to spontaneous healing. In Group-III, the left vas deferens was transected, and end- to-end anastomosis was performed. In Group-IV, the left vas deferens was transected, end-to-end anastomosis was performed, and it was closed with a wrapping of amniotic membrane on the anastomosis line. Rats were sacrificed after 60 days, and each left vas deferens was evaluated. Lumen patency was checked by passing methylene blue through the vas deferens. Subsequently, the vas deferens was evaluated both macroscopically and histopathologically. Data were evaluated using SPSS version 21.0. p < 0.05 was considered statistically significant for all variables. Results The anastomosis lines in Group-IV healed better than those in Group-III, and less stenosis was observed. There were differences between the groups in terms of luminal patency (p = 0.009), adhesions to surrounding tissues (p = 0.02) and separation of the ends of the vas deferens (p = 0.03). Conclusion We observed improvement on luminal patency and histology of rat vas deferens injury after surrounding human amniotic membrane on the transected and repaired surface. Further studies are needed to apply this promising result on human beings.
Collapse
Affiliation(s)
- Sabri DEMİR
- Department of Pediatric Surgery, Faculty of Medicine, KırıkkaleUniversity, KırıkkaleTurkey
- Department of Pediatric Surgery, Children Hospital, Ankara City Hospital, AnkaraTurkey
| | - Ahmet ERTÜRK
- Department of Pediatric Surgery, Faculty of Medicine, KırıkkaleUniversity, KırıkkaleTurkey
- Department of Pediatric Surgery, Children Hospital, Ankara City Hospital, AnkaraTurkey
| | - Mehmet ZENGİN
- Department of Pathology, Faculty of Medicine, KırıkkaleUniversity, KırıkkaleTurkey
| | - Dinçer YILDIZ
- Department of Anatomy, Faculty of Veterinary, Kırıkkale University, KırıkkaleTurkey
| | - Siyami KARAHAN
- Department of Hystology, Faculty of Veterinary, Kırıkkale University, KırıkkaleTurkey
| | - Emrah ŞENEL
- Department of Pediatric Surgery, Faculty of Medicine, Yıldırım Beyazıt University, AnkaraTurkey
| |
Collapse
|
12
|
Ramuta TŽ, Šket T, Starčič Erjavec M, Kreft ME. Antimicrobial Activity of Human Fetal Membranes: From Biological Function to Clinical Use. Front Bioeng Biotechnol 2021; 9:691522. [PMID: 34136474 PMCID: PMC8201995 DOI: 10.3389/fbioe.2021.691522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
The fetal membranes provide a supportive environment for the growing embryo and later fetus. Due to their versatile properties, the use of fetal membranes in tissue engineering and regenerative medicine is increasing in recent years. Moreover, as microbial infections present a crucial complication in various treatments, their antimicrobial properties are gaining more attention. The antimicrobial peptides (AMPs) are secreted by cells from various perinatal derivatives, including human amnio-chorionic membrane (hACM), human amniotic membrane (hAM), and human chorionic membrane (hCM). By exhibiting antibacterial, antifungal, antiviral, and antiprotozoal activities and immunomodulatory activities, they contribute to ensuring a healthy pregnancy and preventing complications. Several research groups investigated the antimicrobial properties of hACM, hAM, and hCM and their derivatives. These studies advanced basic knowledge of antimicrobial properties of perinatal derivatives and also provided an important insight into the potential of utilizing their antimicrobial properties in a clinical setting. After surveying the studies presenting assays on antimicrobial activity of hACM, hAM, and hCM, we identified several considerations to be taken into account when planning future studies and eventual translation of fetal membranes and their derivatives as antimicrobial agents from bench to bedside. Namely, (1) the standardization of hACM, hAM, and hCM preparation to guarantee rigorous antimicrobial activity, (2) standardization of the antimicrobial susceptibility testing methods to enable comparison of results between various studies, (3) investigation of the antimicrobial properties of fetal membranes and their derivatives in the in vivo setting, and (4) designation of donor criteria that enable the optimal donor selection. By taking these considerations into account, future studies will provide crucial information that will enable reaching the optimal treatment outcomes using the fetal membranes and their derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Šket
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | | | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Moraes JTGDO, Costa MM, Alves PCS, Sant'Anna LB. Effects of Preservation Methods in the Composition of the Placental and Reflected Regions of the Human Amniotic Membrane. Cells Tissues Organs 2021; 210:66-76. [PMID: 34010831 DOI: 10.1159/000515448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 02/20/2021] [Indexed: 11/19/2022] Open
Abstract
The human amniotic membrane (AM) is emerging as an interesting biomaterial for regenerative medicine due to its biological and mechanical proprieties. The beneficial effects of the AM are probably related to its bioactive factors produced by local cells and stored in the stromal matrix. However, the search for a preservation method capable of preserving AM properties remains a challenge. The aim of this study was to evaluate important features of 2 anatomical regions of the human AM (reflected and placental amnion) after different preservation methods. For this purpose, human placentas were harvested and processed for AM isolation and storage at 2 different conditions: room temperature for 18 h in DMEM (fresh AM) and -80°C in DMEM/glycerol solution for 30 days (cryopreserved AM). After the storage period, the structural integrity of the membrane was assessed by histological and Picrosirius polarization analysis, cellular viability analysis was performed using the MTT assay, and the soluble proteins were quantified with the Qubit Protein Assay Kit. Both preservation protocols reduced the cell viability, mainly in the placental amnion region of the AM, but preserved the morphology of epithelial and stromal layers, as well as the organization and distribution of collagen fibers. There was a reduction in soluble proteins only in fresh AM. Importantly, the cryopreserved AM group presented the same concentration as the control group. In conclusion, the cryopreservation using DMEM/glycerol was ideal for preserving the structural integrity and soluble protein content, indicating the feasibility of this method in preserving AM for its use in regenerative medicine.
Collapse
Affiliation(s)
- Jéssica Tereza Guedes de Oliveira Moraes
- Laboratory of Histology and Regenerative Therapy, Institute of Research and Development (IPD), University of Vale do Paraíba (UNIVAP), São José dos Campos, Brazil
| | - Maíra Maftoum Costa
- Laboratory of Histology and Regenerative Therapy, Institute of Research and Development (IPD), University of Vale do Paraíba (UNIVAP), São José dos Campos, Brazil
| | - Paula Cristina Santos Alves
- Laboratory of Histology and Regenerative Therapy, Institute of Research and Development (IPD), University of Vale do Paraíba (UNIVAP), São José dos Campos, Brazil
| | - Luciana Barros Sant'Anna
- Laboratory of Histology and Regenerative Therapy, Institute of Research and Development (IPD), University of Vale do Paraíba (UNIVAP), São José dos Campos, Brazil
| |
Collapse
|
14
|
Schwab RHM, Goonetilleke M, Zhu D, Kusuma GD, Wallace EM, Sievert W, Lim R. Amnion Epithelial Cells — a Therapeutic Source. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Cargnoni A, Papait A, Masserdotti A, Pasotti A, Stefani FR, Silini AR, Parolini O. Extracellular Vesicles From Perinatal Cells for Anti-inflammatory Therapy. Front Bioeng Biotechnol 2021; 9:637737. [PMID: 33614619 PMCID: PMC7892960 DOI: 10.3389/fbioe.2021.637737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Perinatal cells, including cells from placenta, fetal annexes (amniotic and chorionic membranes), umbilical cord, and amniotic fluid display intrinsic immunological properties which very likely contribute to the development and growth of a semiallogeneic fetus during pregnancy. Many studies have shown that perinatal cells can inhibit the activation and modulate the functions of various inflammatory cells of the innate and adaptive immune systems, including macrophages, neutrophils, natural killer cells, dendritic cells, and T and B lymphocytes. These immunological properties, along with their easy availability and lack of ethical concerns, make perinatal cells very useful/promising in regenerative medicine. In recent years, extracellular vesicles (EVs) have gained great interest as a new therapeutic tool in regenerative medicine being a cell-free product potentially capable, thanks to the growth factors, miRNA and other bioactive molecules they convey, of modulating the inflammatory microenvironment thus favoring tissue regeneration. The immunomodulatory actions of perinatal cells have been suggested to be mediated by still not fully identified factors (secretoma) secreted either as soluble proteins/cytokines or entrapped in EVs. In this review, we will discuss how perinatal derived EVs may contribute toward the modulation of the immune response in various inflammatory pathologies (acute and chronic) by directly targeting different elements of the inflammatory microenvironment, ultimately leading to the repair and regeneration of damaged tissues.
Collapse
Affiliation(s)
- Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alice Masserdotti
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Pasotti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
16
|
Leal-Marin S, Kern T, Hofmann N, Pogozhykh O, Framme C, Börgel M, Figueiredo C, Glasmacher B, Gryshkov O. Human Amniotic Membrane: A review on tissue engineering, application, and storage. J Biomed Mater Res B Appl Biomater 2020; 109:1198-1215. [PMID: 33319484 DOI: 10.1002/jbm.b.34782] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/07/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Human amniotic membrane (hAM) has been employed as scaffolding material in a wide range of tissue engineering applications, especially as a skin dressing and as a graft for corneal treatment, due to the structure of the extracellular matrix and excellent biological properties that enhance both wound healing and tissue regeneration. This review highlights recent work and current knowledge on the application of native hAM, and/or production of hAM-based tissue-engineered products to create scaffolds mimicking the structure of the native membrane to enhance the hAM performance. Moreover, an overview is presented on the available (cryo) preservation techniques for storage of native hAM and tissue-engineered products that are necessary to maintain biological functions such as angiogenesis, anti-inflammation, antifibrotic and antibacterial activity.
Collapse
Affiliation(s)
- Sara Leal-Marin
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Thomas Kern
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Nicola Hofmann
- German Society for Tissue Transplantation (DGFG), Hannover, Germany
| | - Olena Pogozhykh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Carsten Framme
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Martin Börgel
- German Society for Tissue Transplantation (DGFG), Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| |
Collapse
|
17
|
Ren SY, Liu YS, Zhu GJ, Liu M, Shi SH, Ren XD, Hao YG, Gao RD. Strategies and challenges in the treatment of chronic venous leg ulcers. World J Clin Cases 2020; 8:5070-5085. [PMID: 33269244 DOI: 10.12998/wjcc.v8.i21.5070.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
Evaluating patients with chronic venous leg ulcers (CVLUs) is essential to find the underlying etiology. The basic tenets in managing CVLUs are to remove the etiological causes, to address systemic and metabolic conditions, to examine the ulcers and artery pulses, and to control wound infection with debridement and eliminating excessive pressure on the wound. The first-line treatments of CVLUs remain wound care, debridement, bed rest with leg elevation, and compression. Evidence to support the efficacy of silver-based dressings in healing CVLUs is unavailable. Hydrogen peroxide is harmful to the growth of granulation tissue in the wound. Surgery options include a high ligation with or without stripping or ablation of the GSVs depending on venous reflux or insufficiency. Yet, not all CVLUs are candidates for surgical treatment because of comorbidities. When standard care of wound for 4 wk failed to heal CVLUs effectively, use of advanced wound care should be considered based on the available evidence. Negative pressure wound therapy facilitates granulation tissue development, thereby helping closure of CVLUs. Autologous split-thickness skin grafting is still the gold standard approach to close huge CVLUs. Hair punch graft appears to have a better result than traditional hairless punch graft for CVLUs. Application of adipose tissue or placenta-derived mesenchymal stem cells is a promising therapy for wound healing. Autologous platelet-rich plasma provides an alternative strategy for surgery for safe and natural healing of the ulcer. The confirmative efficacy of current advanced ulcer therapies needs more robust evidence.
Collapse
Affiliation(s)
- Shi-Yan Ren
- Department of General Surgery and Vascular Surgery, Aviation General Hospital, China Medical University, Beijing 100012, China.
| | - Yong-Sheng Liu
- Department of Dermatology, Aviation General Hospital, Beijing 100012, China
| | - Guo-Jian Zhu
- Department of General Surgery, Taian Communications Hospital, Taian 271000, Shandong Province, China
| | - Meng Liu
- Department of Surgery, Tianjin Hexi Hospital, Tianjin 300202, Tianjin, China
| | - Shao-Hui Shi
- Department of Orthopaedic Surgery, Aviation General Hospital, China Medical University, Beijing 100012, China
| | - Xiao-Dong Ren
- Department of Surgery, Wanquanqu Zhongyi Hospital, Zhangjiakou 076250, Hebei Province, China
| | - Ya-Guang Hao
- Department of Medical Administrative, Aviation General Hospital, China Medical University, Beijing 100012, China
| | - Rong-Ding Gao
- Department of General Surgery, Aviation General Hospital, China Medical University, Beijing 100012, China
| |
Collapse
|
18
|
Ren SY, Liu YS, Zhu GJ, Liu M, Shi SH, Ren XD, Hao YG, Gao RD. Strategies and challenges in the treatment of chronic venous leg ulcers. World J Clin Cases 2020; 8:5070-5085. [PMID: 33269244 PMCID: PMC7674718 DOI: 10.12998/wjcc.v8.i21.5070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
Evaluating patients with chronic venous leg ulcers (CVLUs) is essential to find the underlying etiology. The basic tenets in managing CVLUs are to remove the etiological causes, to address systemic and metabolic conditions, to examine the ulcers and artery pulses, and to control wound infection with debridement and eliminating excessive pressure on the wound. The first-line treatments of CVLUs remain wound care, debridement, bed rest with leg elevation, and compression. Evidence to support the efficacy of silver-based dressings in healing CVLUs is unavailable. Hydrogen peroxide is harmful to the growth of granulation tissue in the wound. Surgery options include a high ligation with or without stripping or ablation of the GSVs depending on venous reflux or insufficiency. Yet, not all CVLUs are candidates for surgical treatment because of comorbidities. When standard care of wound for 4 wk failed to heal CVLUs effectively, use of advanced wound care should be considered based on the available evidence. Negative pressure wound therapy facilitates granulation tissue development, thereby helping closure of CVLUs. Autologous split-thickness skin grafting is still the gold standard approach to close huge CVLUs. Hair punch graft appears to have a better result than traditional hairless punch graft for CVLUs. Application of adipose tissue or placenta-derived mesenchymal stem cells is a promising therapy for wound healing. Autologous platelet-rich plasma provides an alternative strategy for surgery for safe and natural healing of the ulcer. The confirmative efficacy of current advanced ulcer therapies needs more robust evidence.
Collapse
Affiliation(s)
- Shi-Yan Ren
- Department of General Surgery and Vascular Surgery, Aviation General Hospital, China Medical University, Beijing 100012, China
| | - Yong-Sheng Liu
- Department of Dermatology, Aviation General Hospital, Beijing 100012, China
| | - Guo-Jian Zhu
- Department of General Surgery, Taian Communications Hospital, Taian 271000, Shandong Province, China
| | - Meng Liu
- Department of Surgery, Tianjin Hexi Hospital, Tianjin 300202, Tianjin, China
| | - Shao-Hui Shi
- Department of Orthopaedic Surgery, Aviation General Hospital, China Medical University, Beijing 100012, China
| | - Xiao-Dong Ren
- Department of Surgery, Wanquanqu Zhongyi Hospital, Zhangjiakou 076250, Hebei Province, China
| | - Ya-Guang Hao
- Department of Medical Administrative, Aviation General Hospital, China Medical University, Beijing 100012, China
| | - Rong-Ding Gao
- Department of General Surgery, Aviation General Hospital, China Medical University, Beijing 100012, China
| |
Collapse
|
19
|
Nonoperative Applications of Placental Tissue Matrix in Orthopaedic Sports Injuries: A Review of Literature. Clin J Sport Med 2020; 30:383-389. [PMID: 30365472 DOI: 10.1097/jsm.0000000000000684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Recently, various amniotic tissue and placental-based tissue matrix (PTM) products have become increasingly available as a nonoperative treatment for tendinopathies and orthopaedic sports injuries. The aim of this review was to evaluate: (1) safety and efficacy of nonoperative use of PTM products, in acute and chronic tendon injuries and (2) the commercially available tissue options to better understand their differences. DATA SOURCES A comprehensive literature search was performed. Inclusion criteria were studies reporting on: (1) nonoperative uses of PTM therapy in sports injuries; and (2) clinical outcomes; in (3) human subjects. We excluded: (1) animal studies; (2) basic science studies; (3) non-English language literature; (4) review articles; and (5) duplicate studies. In addition, to determine the various product formulations, their tissue contents, and indications for use, we searched publicly available website content, marketing literature, and Food and Drug Administration (FDA) registration documents. MAIN RESULTS Current evidence investigated various PTM products for the treatment of various tendon injuries with demonstrated efficacy mainly in the short term with follow-up ranging between 6 weeks and 3 months. In addition, across all studies, no specific adverse events were reported. Substantial differences exist among the currently available products due to variations in their tissue source, formulations, processing methods, method of sterilization, preservation, and storage, indications for use, and FDA regulation. CONCLUSIONS Placental- and amniotic membrane-derived tissues seem to be safe for the nonoperative treatment of tendinopathies. However, several factors may affect the efficacy and safety profile of these products, and the orthopaedic surgeons should be aware of the differences.
Collapse
|
20
|
Brain inflammation and injury at 48 h is not altered by human amnion epithelial cells in ventilated preterm lambs. Pediatr Res 2020; 88:27-37. [PMID: 32120374 DOI: 10.1038/s41390-020-0815-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/18/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mechanical ventilation of preterm neonates is associated with neuroinflammation and an increased risk of adverse neurological outcomes. Human amnion epithelial cells (hAECs) have anti-inflammatory and regenerative properties. We aimed to determine if intravenous administration of hAECs to preterm lambs would reduce neuroinflammation and injury at 2 days of age. METHODS Preterm lambs were delivered by cesarean section at 128-130 days' gestation (term is ~147 days) and either ventilated for 48 h or humanely killed at birth. Lambs received 3 mL surfactant (Curosurf) via endotracheal tube prior to delivery (either with or without 90 × 106 hAECs) and 3 mL intravenous phosphate-buffered saline (with or without 90 × 106 hAECs, consistent with intratracheal treatment) after birth. RESULTS Ventilation increased microglial activation, total oligodendrocyte cell number, cell proliferation and blood-brain barrier permeability (P < 0.05, PBS + ventilation and hAEC + ventilation vs. control), but did not affect numbers of immature and mature oligodendrocytes. Ventilation reduced astrocyte and neuron survival (P < 0.05, PBS + ventilation and hAEC + ventilation vs. control). hAEC administration did not alter markers of neuroinflammation or injury within the white or gray matter. CONCLUSIONS Mechanical ventilation for 48 h upregulated markers of neuroinflammation and injury in preterm lambs. Administration of hAECs did not affect markers of neuroinflammation or injury. IMPACT Mechanical ventilation of preterm lambs for 48 h, in a manner consistent with contemporary neonatal intensive care, causes neuroinflammation, neuronal loss and pathological changes in oligodendrocyte and astrocyte survival consistent with evolving neonatal brain injury.Intravenous administration of hAECs immediately after birth did not affect neonatal cardiorespiratory function and markers of neuroinflammation or injury.Reassuringly, our findings in a translational large animal model demonstrate that intravenous hAEC administration to the preterm neonate is safe.Considering that hAECs are being used in phase 1 trials for the treatment of BPD in preterm infants, with future trials planned for neonatal neuroprotection, we believe these observations are highly relevant.
Collapse
|
21
|
Mathew SA, Naik C, Cahill PA, Bhonde RR. Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis. Cell Mol Life Sci 2020; 77:253-265. [PMID: 31468060 PMCID: PMC11104823 DOI: 10.1007/s00018-019-03268-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/24/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Dysregulation of angiogenesis is a phenomenon observed in several disorders such as diabetic foot, critical limb ischemia and myocardial infarction. Mesenchymal stromal cells (MSCs) possess angiogenic potential and have recently emerged as a powerful tool for cell therapy to promote angiogenesis. Although bone marrow-derived MSCs are the primary cell of choice, obtaining them has become a challenge. The placenta has become a popular alternative as it is a highly vascular organ, easily available and ethically more favorable with a rich supply of MSCs. Comparatively, placenta-derived MSCs (PMSCs) are clinically promising due to their proliferative, migratory, clonogenic and immunomodulatory properties. PMSCs release a plethora of cytokines and chemokines key to angiogenic signaling and facilitate the possibility of delivering PMSC-derived exosomes as a targeted therapy to promote angiogenesis. However, there still remains the challenge of heterogeneity in the isolated populations, questions on the maternal or fetal origin of these cells and the diversity in previously reported isolation and culture conditions. Nonetheless, the growing rate of clinical trials using PMSCs clearly indicates a shift in favor of PMSCs. The overall aim of the review is to highlight the importance of this rather poorly understood cell type and emphasize the need for further investigations into their angiogenic potential as an alternative source for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Suja Ann Mathew
- School of Regenerative Medicine, Manipal Academy of Higher Education, MAHE, Allalasandra, Near Royal Orchid, Yellahanka, Bangalore, 560 065, India.
| | - Charuta Naik
- School of Regenerative Medicine, Manipal Academy of Higher Education, MAHE, Allalasandra, Near Royal Orchid, Yellahanka, Bangalore, 560 065, India
| | - Paul A Cahill
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin Dublin 9, Ireland
| | - Ramesh R Bhonde
- Dr. D.Y. Patil Vidyapeeth (DPU), Pimpri, Pune, 411018, India.
| |
Collapse
|
22
|
Human Amnion Epithelial Cell Therapy for Chronic Liver Disease. Stem Cells Int 2019; 2019:8106482. [PMID: 31485235 PMCID: PMC6702811 DOI: 10.1155/2019/8106482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
Liver fibrosis is a common consequence of chronic liver disease. Over time, liver fibrosis can develop into liver cirrhosis. Current therapies for liver fibrosis are limited, and liver transplant is the only curative therapy for patients who progress to end-stage disease. A potential approach to treat chronic liver disease with increasing interest is cell-based therapy. Among the multiple cell types which have been proposed for therapeutic uses, human amnion epithelial cells and amniotic fluid-derived mesenchymal cells are promising. These cells are highly abundant, and their use poses no ethical concern. Furthermore, they exert potent anti-inflammatory and antifibrotic effects in animal models of liver injury. This review highlights the therapeutic characteristics and discusses how human amnion epithelial cells can be utilised as a therapeutic tool for chronic liver disease.
Collapse
|
23
|
Togarrati PP, Dinglasan N, Yee E, Heitman JW, Jackman RP, Geisberg M, Norris PJ, Bárcena A, Muench MO. Potential of Membranes Surrounding the Fetus as Immunoprotective Cell-Carriers for Allogeneic Transplantations. Transplant Direct 2019; 5:e460. [PMID: 31321294 PMCID: PMC6553624 DOI: 10.1097/txd.0000000000000901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Membranes surrounding the fetus play a crucial role in providing a physical and immunological barrier between a semiallogeneic fetus and mother during pregnancy. In this study, we tested whether cotransplantation of fetal membranes (FMs) and allogeneic donor cells would improve the retention and function of allografts in mice. METHODS Intact and enzyme-digested membranes obtained from E18-E19 pregnant mice were subcutaneously cotransplanted with 10F7MN hybridoma cells that are of BALB/cByJ (Balb) origin and secrete anti-human CD235a antibody. Cells were transplanted into C57BL/6J (B6, allogeneic), Balb (syngeneic), and FVB/NJ (third-party) mice. Serum was collected after 1 and 3 weeks of cell transplantation and tested using flow cytometry for the presence of anti-human CD235a antibody. Immunosuppressive functions of membranes were further investigated by analyzing the cytokine profile of supernatants collected from allo-reactive mixed lymphocyte reactions (MLRs) using a multiplex cytokine assay. RESULTS B6 mice transplanted with 10F7MN cells along with membranes syngeneic to the host had significantly higher levels of CD235a antibody when compared to B6 mice that received cells without membranes, allogenic membranes, or third-party membranes. Syngeneic membranes significantly inhibited T-cell proliferation in the presence of allogeneic stimuli and suppressed the release of Th1-cytokines such as IFNγ, TNFα, and IL-2 in MLRs. Additionally, increases in the levels of Th2-cytokines were found in MLRs containing membrane-derived cells. CONCLUSIONS Our study highlights the potential use of syngeneic FMs to act as potent cell-carriers that could improve graft retention as well as graft-specific immunoprotection during allograft transplantation.
Collapse
Affiliation(s)
| | | | | | | | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | | | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Alicia Bárcena
- The Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA
- Center of Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| |
Collapse
|
24
|
Zarei H, Karimpour A, Reza Khalatbary A, Talebpour Amiri F. Homing of adipose stem cells on the human amniotic membrane as a scaffold: A histological study. Int J Reprod Biomed 2019; 18:21-32. [PMID: 32043068 PMCID: PMC6996125 DOI: 10.18502/ijrm.v18i1.6193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/03/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The human amniotic membrane (HAM) is a suitable and effective scaffold for cell culture and delivery, and adipose-derived stem cells (ADSCs) are an important source of stem cells for transplantation and chondrogenic differentiation. OBJECTIVE To assess the practicability of a cryopreserved HAM as a scaffold in cell proliferation and differentiation in vitro. MATERIALS AND METHODS In this experimental study, adipose tissue samples were harvested from the inguinal region of male patients aged 15-30 years. Flow cytometry was used to identify CD31, CD45, CD90, and CD105 markers in adipose stem cells. HAM was harvested from donor placenta after cesarean section, washed, trypsin-based decellularized trypsinized decellularized, and used as a scaffold via three methods: 1) ADSCs were differentiated into chondrocytes on cell culture flasks (monolayer method), and after 14 days of culture, the cells were transferred and cultured on both sides of the HAM; 2) ADSCs were cultured and differentiated directly on both sides of the HAM for 14 days (scaffold-mediated differentiation); and 3) chondrocytes were differentiated with micromass culture for 14 days, transferred on HAM, and tissue slides were histologically analyzed qualitatively. RESULTS Flow cytometry confirmed the presence of mesenchymal stem cells. Histological findings revealed that the cells adhered and grew well on the stromal layer of HAM. Among the three methods, scaffold-mediated differentiation of ADSCs showed the best results. CONCLUSION ADSCs have excellent attachment, viability, and differentiation capacity in the stromal side of HAM. Additionally, the direct culture and differentiation of ADSCs on HAM is more suitable than the culture of differentiated cells on HAM.
Collapse
Affiliation(s)
- Hooman Zarei
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbasali Karimpour
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Khalatbary
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
25
|
Gaggi G, Izzicupo P, Di Credico A, Sancilio S, Di Baldassarre A, Ghinassi B. Spare Parts from Discarded Materials: Fetal Annexes in Regenerative Medicine. Int J Mol Sci 2019; 20:ijms20071573. [PMID: 30934825 PMCID: PMC6479500 DOI: 10.3390/ijms20071573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
One of the main aims in regenerative medicine is to find stem cells that are easy to obtain and are safe and efficient in either an autologous or allogenic host when transplanted. This review provides an overview of the potential use of the fetal annexes in regenerative medicine: we described the formation of the annexes, their immunological features, the new advances in the phenotypical characterization of fetal annexes-derived stem cells, the progressions obtained in the analysis of both their differentiative potential and their secretoma, and finally, the potential use of decellularized fetal membranes. Normally discarded as medical waste, the umbilical cord and perinatal tissue not only represent a rich source of stem cells but can also be used as a scaffold for regenerative medicine, providing a suitable environment for the growth and differentiation of stem cells.
Collapse
Affiliation(s)
- Giulia Gaggi
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Pascal Izzicupo
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Andrea Di Credico
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Silvia Sancilio
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
26
|
Shpichka A, Butnaru D, Bezrukov EA, Sukhanov RB, Atala A, Burdukovskii V, Zhang Y, Timashev P. Skin tissue regeneration for burn injury. Stem Cell Res Ther 2019; 10:94. [PMID: 30876456 PMCID: PMC6419807 DOI: 10.1186/s13287-019-1203-3] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The skin is the largest organ of the body, which meets the environment most directly. Thus, the skin is vulnerable to various damages, particularly burn injury. Skin wound healing is a serious interaction between cell types, cytokines, mediators, the neurovascular system, and matrix remodeling. Tissue regeneration technology remarkably enhances skin repair via re-epidermalization, epidermal-stromal cell interactions, angiogenesis, and inhabitation of hypertrophic scars and keloids. The success rates of skin healing for burn injuries have significantly increased with the use of various skin substitutes. In this review, we discuss skin replacement with cells, growth factors, scaffolds, or cell-seeded scaffolds for skin tissue reconstruction and also compare the high efficacy and cost-effectiveness of each therapy. We describe the essentials, achievements, and challenges of cell-based therapy in reducing scar formation and improving burn injury treatment.
Collapse
Affiliation(s)
- Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Denis Butnaru
- Sechenov Biomedical Science and Technology Park, Sechenov University, Moscow, Russia
| | | | | | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Vitaliy Burdukovskii
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Research Center “Crystallography and Photonics” RAS, Institute of Photonic Technologies, Troitsk, Moscow, Russia
- Departments of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, Moscow, Russia
| |
Collapse
|
27
|
Lucas-Ruiz F, Galindo-Romero C, García-Bernal D, Norte-Muñoz M, Rodríguez-Ramírez KT, Salinas-Navarro M, Millán-Rivero JE, Vidal-Sanz M, Agudo-Barriuso M. Mesenchymal stromal cell therapy for damaged retinal ganglion cells, is gold all that glitters? Neural Regen Res 2019; 14:1851-1857. [PMID: 31290434 PMCID: PMC6676874 DOI: 10.4103/1673-5374.259601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stromal cells are an excellent source of stem cells because they are isolated from adult tissues or perinatal derivatives, avoiding the ethical concerns that encumber embryonic stem cells. In preclinical models, it has been shown that mesenchymal stromal cells have neuroprotective and immunomodulatory properties, both of which are ideal for central nervous system treatment and repair. Here we will review the current literature on mesenchymal stromal cells, focusing on bone marrow mesenchymal stromal cells, adipose-derived mesenchymal stromal cells and mesenchymal stromal cells from the umbilical cord stroma, i.e., Wharton's jelly mesenchymal stromal cells. Finally, we will discuss the use of these cells to alleviate retinal ganglion cell degeneration following axonal trauma.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Caridad Galindo-Romero
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - David García-Bernal
- Unidad de Terapia Celular y Trasplante Hematopoyético, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - María Norte-Muñoz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Kristy T Rodríguez-Ramírez
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Manuel Salinas-Navarro
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Jose E Millán-Rivero
- Unidad de Terapia Celular y Trasplante Hematopoyético, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Manuel Vidal-Sanz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Marta Agudo-Barriuso
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
28
|
Arrizabalaga JH, Nollert MU. Human Amniotic Membrane: A Versatile Scaffold for Tissue Engineering. ACS Biomater Sci Eng 2018; 4:2226-2236. [PMID: 33435098 DOI: 10.1021/acsbiomaterials.8b00015] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human amniotic membrane (hAM) is a collagen-based extracellular matrix derived from the human placenta. It is a readily available, inexpensive, and naturally biocompatible material. Over the past decade, the development of tissue engineering and regenerative medicine, along with new decellularization protocols, has recast this simple biomaterial as a tunable matrix for cellularized tissue engineered constructs. Thanks to its biocompatibility, decellularized hAM is now commonly used in a broad range of medical fields. New preparation techniques and composite scaffold strategies have also emerged as ways to tune the properties of this scaffold. The current state of understanding about the hAM as a biomaterial is summarized in this review. We examine the processing techniques available for the hAM, addressing their effect on the mechanical properties, biodegradation, and cellular response of processed scaffolds. The latest in vitro applications, in vivo studies, clinical trials, and commercially available products based on the hAM are reported, organized by medical field. We also look at the possible alterations to the hAM to tune its properties, either through composite materials incorporating decellularized hAM, chemical cross-linking, or innovative layering and tissue preparation strategies. Overall, this review compiles the current literature about the myriad capabilities of the human amniotic membrane, providing a much-needed update on this biomaterial.
Collapse
Affiliation(s)
- Julien H Arrizabalaga
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Matthias U Nollert
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.,School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|