1
|
Ilic D. Engineered proxies and the illusion of de-extinction. Stem Cell Reports 2025:102505. [PMID: 40378842 DOI: 10.1016/j.stemcr.2025.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/19/2025] [Accepted: 04/20/2025] [Indexed: 05/19/2025] Open
Abstract
The recent creation of dire wolf-like canids by Colossal Biosciences marks a technical achievement in genome editing and synthetic embryology. But the project also demands a reevaluation of what we mean by "de-extinction"-and whether a phenotypic approximation constitutes species restoration.
Collapse
Affiliation(s)
- Dusko Ilic
- Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Assisted Conception Unit, 11th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
2
|
Liu X, Zhang X, Wang X, Yue O, Jiang H. Engineered, environmentally friendly leather-like bio-based materials. Trends Biotechnol 2025; 43:1104-1115. [PMID: 39616086 DOI: 10.1016/j.tibtech.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 05/10/2025]
Abstract
Leather is important to the global manufacturing industry, contributing to both the economy and society. However, because of ecological and ethical considerations, alternative bio-based materials to natural leather are now being investigated. Advancements in biotechnology and bio-based materials, combined with flourishing biomanufacturing, have driven product development. In recent years, animal-free, biotechnology-based leather-like material has seen significant growth. Recent progress in leather-like bio-based materials development has been achieved using proteins, mycelium, cellulose, and other sustainable natural materials. This review provides a comprehensive overview of these bio-based materials, addressing their challenges, practical implications, and potential to play a growing role in the emerging field of animal-free alternative. The development of 'future leather' has significant economic and environmental potential.
Collapse
Affiliation(s)
- Xinhua Liu
- Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Xiaoyu Zhang
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xuechuan Wang
- Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ouyang Yue
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Huie Jiang
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
3
|
Zahoor N, Arif A, Shuaib M, Jin K, Li B, Li Z, Pei X, Zhu X, Zuo Q, Niu Y, Song J, Chen G. Induced Pluripotent Stem Cells in Birds: Opportunities and Challenges for Science and Agriculture. Vet Sci 2024; 11:666. [PMID: 39729006 DOI: 10.3390/vetsci11120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The only cells in an organism that could do any other sort of cell until 2006 (except sperm or egg) were known as embryonic stem cells, ESC [...].
Collapse
Affiliation(s)
- Nousheen Zahoor
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Areej Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Shuaib
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Zeyu Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiaomeng Pei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xilin Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Li X, Cao Y, Liu Y, Fang W, Xiao C, Cao Y, Zhao Y. Effect of IGF1 on Myogenic Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells Through PI3K/AKT Signaling Pathway. Genes (Basel) 2024; 15:1494. [PMID: 39766763 PMCID: PMC11675145 DOI: 10.3390/genes15121494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Cultivated meat, an alternative to conventional meat, has substantial potential for alleviating environmental and ethical concerns. This method of manufacturing meat involves the isolation of skeletal muscle satellite cells (SMSCs) from donor animals, after which they proliferate in vitro and differentiate into primitive muscle fibers. The aim of this research was to evaluate how the insulin-like growth factor 1 (IGF1) gene regulates the myogenic differentiation of bovine skeletal muscle satellite cells (bSMSCs). Methods: bSMSCs isolated from newborn calves were cultured to the third generation in vitro and differentiated into myoblasts via the serum withdrawal method. An overexpression lentivirus and siRNA targeting the IGF1 gene were constructed and transduced into bSMSCs, which were subsequently analyzed via real-time fluorescence quantitative PCR(qRT-PCR) and Western blots. The mRNA and protein levels of the myogenic differentiation markers myosin heavy chain (MyHC) and myogenin (MyoG) were determined. Results: The results revealed that the lentivirus overexpressing the IGF1 gene significantly increased the expression of MyHC and MyoG, whereas the expression of both the MyHC and MyoG mRNAs and proteins was strongly reduced by si-IGF1. Conclusions: IGF1 positively regulates the myogenic differentiation of bSMSCs. This study provides a reference for further elucidating the molecular mechanism by which the IGF1 gene regulates the myogenic differentiation of bSMSCs via the PI3K/Akt signaling pathway and lays a foundation for establishing a regulatory network of bovine muscle growth and development.
Collapse
Affiliation(s)
- Xin Li
- Institute of Animal Husbandry and Veterinary Medicine, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China; (X.L.); (Y.C.); (Y.L.); (W.F.); (C.X.)
| | - Yang Cao
- Institute of Animal Husbandry and Veterinary Medicine, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China; (X.L.); (Y.C.); (Y.L.); (W.F.); (C.X.)
| | - Yu Liu
- Institute of Animal Husbandry and Veterinary Medicine, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China; (X.L.); (Y.C.); (Y.L.); (W.F.); (C.X.)
| | - Wenwen Fang
- Institute of Animal Husbandry and Veterinary Medicine, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China; (X.L.); (Y.C.); (Y.L.); (W.F.); (C.X.)
| | - Cheng Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China; (X.L.); (Y.C.); (Y.L.); (W.F.); (C.X.)
| | - Yang Cao
- Institute of Animal Biotechnology, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yumin Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China; (X.L.); (Y.C.); (Y.L.); (W.F.); (C.X.)
| |
Collapse
|
5
|
Wang Z, Gong W, Yao Z, Jin K, Niu Y, Li B, Zuo Q. Mechanisms of Embryonic Stem Cell Pluripotency Maintenance and Their Application in Livestock and Poultry Breeding. Animals (Basel) 2024; 14:1742. [PMID: 38929361 PMCID: PMC11201147 DOI: 10.3390/ani14121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Embryonic stem cells (ESCs) are remarkably undifferentiated cells that originate from the inner cell mass of the blastocyst. They possess the ability to self-renew and differentiate into multiple cell types, making them invaluable in diverse applications such as disease modeling and the creation of transgenic animals. In recent years, as agricultural practices have evolved from traditional to biological breeding, it has become clear that pluripotent stem cells (PSCs), either ESCs or induced pluripotent stem cells (iPSCs), are optimal for continually screening suitable cellular materials. However, the technologies for long-term in vitro culture or establishment of cell lines for PSCs in livestock are still immature, and research progress is uneven, which poses challenges for the application of PSCs in various fields. The establishment of a robust in vitro system for these cells is critically dependent on understanding their pluripotency maintenance mechanisms. It is believed that the combined effects of pluripotent transcription factors, pivotal signaling pathways, and epigenetic regulation contribute to maintaining their pluripotent state, forming a comprehensive regulatory network. This article will delve into the primary mechanisms underlying the maintenance of pluripotency in PSCs and elaborate on the applications of PSCs in the field of livestock.
Collapse
Affiliation(s)
- Ziyu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wei Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zeling Yao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Wu Y, Wang C, Fan X, Ma Y, Liu Z, Ye X, Shen C, Wu C. The impact of induced pluripotent stem cells in animal conservation. Vet Res Commun 2024; 48:649-663. [PMID: 38228922 DOI: 10.1007/s11259-024-10294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
It is widely acknowledged that we are currently facing a critical tipping point with regards to global extinction, with human activities driving us perilously close to the brink of a devastating sixth mass extinction. As a promising option for safeguarding endangered species, induced pluripotent stem cells (iPSCs) hold great potential to aid in the preservation of threatened animal populations. For endangered species, such as the northern white rhinoceros (Ceratotherium simum cottoni), supply of embryos is often limited. After the death of the last male in 2019, only two females remained in the world. IPSC technology offers novel approaches and techniques for obtaining pluripotent stem cells (PSCs) from rare and endangered animal species. Successful generation of iPSCs circumvents several bottlenecks that impede the development of PSCs, including the challenges associated with establishing embryonic stem cells, limited embryo sources and immune rejection following embryo transfer. To provide more opportunities and room for growth in our work on animal welfare, in this paper we will focus on the progress made with iPSC lines derived from endangered and extinct species, exploring their potential applications and limitations in animal welfare research.
Collapse
Affiliation(s)
- Yurou Wu
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Chengwei Wang
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Xinyun Fan
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Yuxiao Ma
- Department of Biology, New York University, New York, NY, USA
| | - Zibo Liu
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Xun Ye
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Chongyang Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| | - Chunjie Wu
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu Univesity of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
- Sichuan Engineering Research Center for Endangered Medicinal Animals, Chengdu, China.
| |
Collapse
|
7
|
Bao Q, Tay NL, Lim CY, Chua DHH, Kee SK, Choolani M, Loh YH, Ng SC, Chai C. Integration-free induced pluripotent stem cells from three endangered Southeast Asian non-human primate species. Sci Rep 2024; 14:2391. [PMID: 38287040 PMCID: PMC10825216 DOI: 10.1038/s41598-023-50510-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Advanced molecular and cellular technologies provide promising tools for wildlife and biodiversity conservation. Induced pluripotent stem cell (iPSC) technology offers an easily accessible and infinite source of pluripotent stem cells, and have been derived from many threatened wildlife species. This paper describes the first successful integration-free reprogramming of adult somatic cells to iPSCs, and their differentiation, from three endangered Southeast Asian primates: the Celebes Crested Macaque (Macaca nigra), the Lar Gibbon (Hylobates lar), and the Siamang (Symphalangus syndactylus). iPSCs were also generated from the Proboscis Monkey (Nasalis larvatus). Differences in mechanisms could elicit new discoveries regarding primate evolution and development. iPSCs from endangered species provides a safety net in conservation efforts and allows for sustainable sampling for research and conservation, all while providing a platform for the development of further in vitro models of disease.
Collapse
Affiliation(s)
- Qiuye Bao
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Nicole Liling Tay
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Christina Yingyan Lim
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | | | - Su Keyau Kee
- Cytogenetics Laboratory, Department of Pathology, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Yuin-Han Loh
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Soon Chye Ng
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.
- Sincere Healthcare Group, 8 Sinaran Drive, Singapore, 307470, Singapore.
| | - Chou Chai
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| |
Collapse
|
8
|
Nogueira IPM, Costa GMJ, Lacerda SMDSN. Avian iPSC Derivation to Recover Threatened Wild Species: A Comprehensive Review in Light of Well-Established Protocols. Animals (Basel) 2024; 14:220. [PMID: 38254390 PMCID: PMC10812705 DOI: 10.3390/ani14020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) were first generated by Yamanaka in 2006, revolutionizing research by overcoming limitations imposed by the use of embryonic stem cells. In terms of the conservation of endangered species, iPSC technology presents itself as a viable alternative for the manipulation of target genetics without compromising specimens. Although iPSCs have been successfully generated for various species, their application in nonmammalian species, particularly avian species, requires further in-depth investigation to cover the diversity of wild species at risk and their different protocol requirements. This study aims to provide an overview of the workflow for iPSC induction, comparing well-established protocols in humans and mice with the limited information available for avian species. Here, we discuss the somatic cell sources to be reprogrammed, genetic factors, delivery methods, enhancers, a brief history of achievements in avian iPSC derivation, the main approaches for iPSC characterization, and the future perspectives and challenges for the field. By examining the current protocols and state-of-the-art techniques employed in iPSC generation, we seek to contribute to the development of efficient and species-specific iPSC methodologies for at-risk avian species. The advancement of iPSC technology holds great promise for achieving in vitro germline competency and, consequently, addressing reproductive challenges in endangered species, providing valuable tools for basic research, bird genetic preservation and rescue, and the establishment of cryobanks for future conservation efforts.
Collapse
Affiliation(s)
| | | | - Samyra Maria dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (I.P.M.N.); (G.M.J.C.)
| |
Collapse
|
9
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
10
|
Zhu G, Gao D, Li L, Yao Y, Wang Y, Zhi M, Zhang J, Chen X, Zhu Q, Gao J, Chen T, Zhang X, Wang T, Cao S, Ma A, Feng X, Han J. Generation of three-dimensional meat-like tissue from stable pig epiblast stem cells. Nat Commun 2023; 14:8163. [PMID: 38071210 PMCID: PMC10710416 DOI: 10.1038/s41467-023-44001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Cultured meat production has emerged as a breakthrough technology for the global food industry with the potential to reduce challenges associated with environmental sustainability, global public health, animal welfare, and competition for food between humans and animals. The muscle stem cell lines currently used for cultured meat cannot be passaged in vitro for extended periods of time. Here, we develop a directional differentiation system of porcine pre-gastrulation epiblast stem cells (pgEpiSCs) with stable cellular features and achieve serum-free myogenic differentiation of the pgEpiSCs. We show that the pgEpiSCs-derived skeletal muscle progenitor cells and skeletal muscle fibers have typical muscle cell characteristics and display skeletal muscle transcriptional features during myogenic differentiation. Importantly, we establish a three-dimensional differentiation system for shaping cultured tissue by screening plant-based edible scaffolds of non-animal origin, followed by the generation of pgEpiSCs-derived cultured meat. These advances provide a technical approach for the development of cultured meat.
Collapse
Affiliation(s)
- Gaoxiang Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Linzi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinze Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tianzhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tong Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Skrivergaard S, Krøyer Rasmussen M, Sahebekhtiari N, Feveile Young J, Therkildsen M. Satellite cells sourced from bull calves and dairy cows differs in proliferative and myogenic capacity - Implications for cultivated meat. Food Res Int 2023; 173:113217. [PMID: 37803537 DOI: 10.1016/j.foodres.2023.113217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 10/08/2023]
Abstract
Cultivated meat produced with primary muscle satellite cells (SCs) will need a continuous supply of isolated cell material from relevant animal donors. Factors such as age, sex, and breed, along with the sustainability and availability of donor animals, could determine the most appropriate donor type for an efficient production. In this study, we focus on the proliferation and differentiation of bovine SCs isolated from bull calf and dairy cow muscle samples. The proliferative performance of bull calf SCs was significantly better than SCs from dairy cows, however a dynamic differentiation assay revealed that the degree of fusion and formation of myotubes were similar between donor types. Furthermore, the proliferation of SCs from both donor types was enhanced using an in-house developed serum-free media compared to 10% FBS, which also delayed myogenic differentiation and increased final cell population density. Using gene chip transcriptomics, we identified several differentially expressed genes between the two donor types, which could help explain the observed cellular differences. This data also revealed a high biological variance between the three replicate animals within donor type, which seemed to be decreased when using our in-house serum-free media. With the use of the powerful imaging modalities of Cytation 5, we developed a novel high contrast brightfield-enabled label-free myotube quantification method along with a more efficient end-point fusion analysis using Phalloidin-staining. The results give new insights into the bovine SC biology and potential use of bull calves and dairy cows as relevant donor animals for cultivated beef cell sourcing. The newly developed differentiation assays will further enhance future research within the field of cultivated meat and SC biology.
Collapse
|
12
|
Zhu Q, Wang F, Gao D, Gao J, Li G, Jiao D, Zhu G, Xu K, Guo J, Chen T, Cao S, Zhi M, Zhang J, Wang Y, Zhang X, Zhang D, Yao Y, Song J, Wei H, Han J. Generation of stable integration-free pig induced pluripotent stem cells under chemically defined culture condition. Cell Prolif 2023; 56:e13487. [PMID: 37190930 PMCID: PMC10623960 DOI: 10.1111/cpr.13487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Genome integration-free pig induced pluripotent stem cells (iPSCs) bring tremendous value in pre-clinical testing of regenerative medicine, as well as conservation and exploitation of endangered or rare local pig idioplasmatic resources. However, due to a lack of appropriate culture medium, efficient induction and stable maintenance of pig iPSCs with practical value remains challenging. Here, we established an efficient induction system for exogenous gene-independent iPSCs under chemically defined culture condition previously used for generation of stable pig pre-gastrulation epiblast stem cells (pgEpiSCs). WNT suppression was found to play an essential role in establishment of exogenous gene-independent iPSCs. Strikingly, stable integration-free pig iPSCs could be established from pig somatic cells using episomal vectors in this culture condition. The iPSCs had pluripotency features and transcriptome characteristics approximating pgEpiSCs. More importantly, this induction system may be used to generate integration-free iPSCs from elderly disabled rare local pig somatic cells and the iPSCs could be gene-edited and used as donor cells for nuclear transfer. Our results provide novel insights into potential applications for genetic breeding of livestock species and pre-clinical evaluation of regenerative medicine.
Collapse
Affiliation(s)
- Qianqian Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Fengchong Wang
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jie Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Guilin Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Deling Jiao
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Gaoxiang Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Kaixiang Xu
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Jianxiong Guo
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Tianzhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Suying Cao
- Animal Science and Technology CollegeBeijing University of AgricultureBeijingChina
| | - Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Danru Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jian Song
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Hong‐Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
13
|
Velazquez MA, Idriss A, Chavatte-Palmer P, Fleming TP. The mammalian preimplantation embryo: Its role in the environmental programming of postnatal health and performance. Anim Reprod Sci 2023; 256:107321. [PMID: 37647800 DOI: 10.1016/j.anireprosci.2023.107321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
During formation of the preimplantation embryo several cellular and molecular milestones take place, making the few cells forming the early embryo vulnerable to environmental stressors than can impair epigenetic reprogramming and controls of gene expression. Although these molecular alterations can result in embryonic death, a significant developmental plasticity is present in the preimplantation embryo that promotes full-term pregnancy. Prenatal epigenetic modifications are inherited during mitosis and can perpetuate specific phenotypes during early postnatal development and adulthood. As such, the preimplantation phase is a developmental window where developmental programming can take place in response to the embryonic microenvironment present in vivo or in vitro. In this review, the relevance of the preimplantation embryo as a developmental stage where offspring health and performance can be programmed is discussed, with emphasis on malnutrition and assisted reproductive technologies; two major environmental insults with important implications for livestock production and human reproductive medicine.
Collapse
Affiliation(s)
- Miguel A Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Abdullah Idriss
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Pathology and laboratory medicine, King Faisal Specialist Hospital and Research Centre, P.O. Box 40047, MBC J-10, Jeddah 21499, Kingdom of Saudi Arabia
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | - Tom P Fleming
- Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
14
|
Holt WV. Biobanks, offspring fitness and the influence of developmental plasticity in conservation biology. Anim Reprod 2023; 20:e20230026. [PMID: 37700907 PMCID: PMC10494884 DOI: 10.1590/1984-3143-ar2023-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 09/14/2023] Open
Abstract
Mitigation of the widely known threats to the world's biodiversity is difficult, despite the strategies and actions proposed by international agreements such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Convention on Biological Diversity (CBD). Nevertheless, many scientists devote their time and effort to finding and implementing various solutions to the problem. One potential way forward that is gaining popularity involves the establishment of biobank programs aimed at preserving and storing germplasm from threatened species, and then using it to support the future viability and health of threatened populations. This involves developing and using assisted reproductive technologies to achieve their goals. Despite considerable advances in the effectiveness of reproductive technologies, differences between the reproductive behavior and physiology of widely differing taxonomic groups mean that this approach cannot be applied with equal success to many species. Moreover, evidence that epigenetic influences and developmental plasticity, whereby it is now understood that embryonic development, and subsequent health in later life, can be affected by peri-conceptional environmental conditions, is raising the possibility that cryopreservation methods themselves may have to be reviewed and revised when planning the biobanks. Here, I describe the benefits and problems associated with germplasm biobanking across various species, but also offer some realistic assessments of current progress and applications.
Collapse
Affiliation(s)
- William Vincent Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
15
|
The challenge of assisted reproduction for conservation of wild felids - A reality check. Theriogenology 2023; 197:133-138. [PMID: 36502591 DOI: 10.1016/j.theriogenology.2022.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022]
Abstract
Threats to the Earth's biodiversity are increasing exponentially, driven by human population growth and resource consumption. As many as one million wildlife species may disappear within the next few decades due to this human-induced extinction event. This represents our current reality and has profound implications for wildlife conservation. Within this context, application of assisted reproductive technology (ART) to conservation management is unlikely to mitigate broad-scale species loss, but for select species, such as wild cats, ART may determine if populations survive or disappear. In North American and European zoos, 20 of the world's 38 wild felid species are managed within structured breeding programs, but most are not sustainable with natural breeding alone. Zoo-based breeding programs are facing tenuous futures due to triage-based responses to this growing sustainability crisis. Theoretically, ART could benefit conservation management, but only by recognizing and addressing its present challenges. The application of ART to wildlife has been rarely successful, with only 62 mammal species (including 15 cat species) ever propagated by AI, and just 35 of these species (6 cats) reproduced following frozen semen AI. Even this most basic form of ART has a minimal impact on wildlife sustainability. The drivers of this deficit include lack of species-specific reproductive knowledge and limited access to animals for study, but also is exacerbated by a science-conservation disconnect that attempts to apply advanced reproductive technologies to species in which basic ART remains unproven. For a few felid species, these scientific challenges have been overcome and AI with frozen semen is becoming feasible as a practical management tool; for other felids, further research is needed. Non-scientific issues also impair our ability to use ART to implement global management plans. Political dysfunction, regulatory barriers and societal indifference create inertia that interferes with achieving meaningful progress in applying ART to wildlife. Collectively, these challenges may seem insurmountable but human resiliency is essential if we are to resolve these issues in a systematic manner. It will require expanding collaborative efforts substantially and intensifying efforts to conserve wildlife species that are literally running out of time. Our goal is to create a new reality that includes a sustainable future for wild felids and other imperiled wildlife species.
Collapse
|
16
|
Verma R, Lee Y, Salamone DF. iPSC Technology: An Innovative Tool for Developing Clean Meat, Livestock, and Frozen Ark. Animals (Basel) 2022; 12:3187. [PMID: 36428414 PMCID: PMC9686897 DOI: 10.3390/ani12223187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology is an emerging technique to reprogram somatic cells into iPSCs that have revolutionary benefits in the fields of drug discovery, cellular therapy, and personalized medicine. However, these applications are just the tip of an iceberg. Recently, iPSC technology has been shown to be useful in not only conserving the endangered species, but also the revival of extinct species. With increasing consumer reliance on animal products, combined with an ever-growing population, there is a necessity to develop alternative approaches to conventional farming practices. One such approach involves the development of domestic farm animal iPSCs. This approach provides several benefits in the form of reduced animal death, pasture degradation, water consumption, and greenhouse gas emissions. Hence, it is essentially an environmentally-friendly alternative to conventional farming. Additionally, this approach ensures decreased zoonotic outbreaks and a constant food supply. Here, we discuss the iPSC technology in the form of a "Frozen Ark", along with its potential impact on spreading awareness of factory farming, foodborne disease, and the ecological footprint of the meat industry.
Collapse
Affiliation(s)
- Rajneesh Verma
- VG Biomed Thailand Ltd., 888 Polaris Tower, 6th Floor, Soi Sukhumvit 20, Bangkok 10110, Thailand
| | - Younghyun Lee
- VG Biomed Thailand Ltd., 888 Polaris Tower, 6th Floor, Soi Sukhumvit 20, Bangkok 10110, Thailand
- Laboratory of Reproductive Biotechnology, Building 454, Rm 343, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Republic of Korea
| | - Daniel F. Salamone
- Department de Produccion Animal, Facultad de Agronomia, University of Buenos Aires, Av. San Martin 4453 Ciudad Autonoma de Buenos Aires, Buenos Aires B1406, Argentina
| |
Collapse
|
17
|
Holt WV, Comizzoli P. Conservation Biology and Reproduction in a Time of Developmental Plasticity. Biomolecules 2022; 12:1297. [PMID: 36139136 PMCID: PMC9496186 DOI: 10.3390/biom12091297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this review is to ask whether, and how, principles in conservation biology may need to be revisited in light of new knowledge about the power of epigenetics to alter developmental pathways. Importantly, conservation breeding programmes, used widely by zoological parks and aquariums, may appear in some cases to reduce fitness by decreasing animals' abilities to cope when confronted with the 'wild side' of their natural habitats. Would less comfortable captive conditions lead to the selection of individuals that, despite being adapted to life in a captive environment, be better able to thrive if relocated to a more natural environment? While threatened populations may benefit from advanced reproductive technologies, these may actually induce undesirable epigenetic changes. Thus, there may be inherent risks to the health and welfare of offspring (as is suspected in humans). Advanced breeding technologies, especially those that aim to regenerate the rarest species using stem cell reprogramming and artificial gametes, may also lead to unwanted epigenetic modifications. Current knowledge is still incomplete, and therefore ethical decisions about novel breeding methods remain controversial and difficult to resolve.
Collapse
Affiliation(s)
- William V. Holt
- Department of Oncology & Metabolism, The Medical School Beech Hill Road, Sheffield S10 2RX, UK
| | - Pierre Comizzoli
- Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| |
Collapse
|
18
|
Abegglen LM, Harrison TM, Moresco A, Fowles JS, Troan BV, Kiso WK, Schmitt D, Boddy AM, Schiffman JD. Of Elephants and Other Mammals: A Comparative Review of Reproductive Tumors and Potential Impact on Conservation. Animals (Basel) 2022; 12:2005. [PMID: 35953994 PMCID: PMC9367617 DOI: 10.3390/ani12152005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Reproductive tumors can impact conception, pregnancy, and birth in mammals. These impacts are well documented in humans, while data in other mammals are limited. An urgent need exists to understand the reproductive impact of these lesions in endangered species, because some endangered species have a documented high prevalence of reproductive tumors. This article documents that the prevalence of both benign and malignant neoplasia differs between African and Asian elephants, with Asian elephants more frequently diagnosed and negatively affected by both. The prevalence of these tumors across mammalian species is compared, and impact plus treatment options in human medicine are reviewed to inform decision making in elephants. Evidence suggests that reproductive tumors can negatively impact elephant conservation. Future studies that document reproductive outcomes, including the success of various treatment approaches in elephants with tumors will benefit conservation efforts.
Collapse
Affiliation(s)
- Lisa M. Abegglen
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Tara M. Harrison
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Anneke Moresco
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Reproductive Health Surveillance Program, Morrison, CO 80465, USA
| | - Jared S. Fowles
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Brigid V. Troan
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Wendy K. Kiso
- White Oak Conservation Foundation, Yulee, FL 32097, USA
| | - Dennis Schmitt
- Department of Animal Science, William H. Darr College of Agriculture, Missouri State University, Springfield, MO 65809, USA
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Joshua D. Schiffman
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Peel Therapeutics, Inc., Salt Lake City, UT 84108, USA
| |
Collapse
|
19
|
Bartlett AP, Harman RM, Weiss JR, Van de Walle GR. Establishment and characterization of equine mammary organoids using a method translatable to other non-traditional model species. Development 2022; 149:274742. [DOI: 10.1242/dev.200412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mammary organoid (MaO) models are only available for a few traditional model organisms, limiting our ability to investigate mammary gland development and cancer across mammals. This study established equine mammary organoids (EqMaOs) from cryopreserved mammary tissue, in which mammary tissue fragments were isolated and embedded into a 3D matrix to produce EqMaOs. We evaluated viability, proliferation and budding capacity of EqMaOs at different time points during culture, showing that although the number of proliferative cells decreased over time, viability was maintained and budding increased. We further characterized EqMaOs based on expression of stem cell, myoepithelial and luminal markers, and found that EqMaOs expressed these markers throughout culture and that a bilayered structure as seen in vivo was recapitulated. We used the milk-stimulating hormone prolactin to induce milk production, which was verified by the upregulation of milk proteins, most notably β-casein. Additionally, we showed that our method is also applicable to additional non-traditional mammalian species, particularly domesticated animals such as cats, pigs and rabbits. Collectively, MaO models across species will be a useful tool for comparative developmental and cancer studies.
Collapse
Affiliation(s)
- Arianna P. Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer R. Weiss
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
Lira GPO, Borges AA, Nascimento MB, Aquino LVC, Moura LFMP, Silva HVR, Ribeiro LR, Silva AR, Pereira AF. Morphological, Ultrastructural, and Immunocytochemical Characterization and Assessment of Puma ( Puma concolor Linnaeus, 1771) Cell Lines After Extended Culture and Cryopreservation. Biopreserv Biobank 2022; 20:557-566. [PMID: 35049356 DOI: 10.1089/bio.2021.0117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Cell lines are valuable tools to safeguard genetic material from species threatened with extinction that is mainly due to human action. In this scenario, the puma constitutes a species whose population is being rapidly reduced in the ecosystems it inhabits. For the first time, we characterized puma skin-derived cell lines and assessed these cells after extended culture (experiment 1) and cryopreservation (experiment 2). Initially, we identified and characterized four dermal fibroblast lines using morphology, ultrastructure, and immunofluorescence assays. Moreover, we evaluated the effects of culture time (1st, 3rd, and 10th passages) and cryopreservation on their morphology, ultrastructure, viability, metabolism, proliferative activity, reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), and apoptosis. The cells showed a typical spindle-shaped morphology with centrally located oval nuclei. The cells were identified as fibroblasts by staining for vimentin. In vitro culture after the 1st, 3rd, and 10th passages did not alter most of the evaluated parameters. Cells in the 3rd and 10th passages showed a reduction in ROS levels (p < 0.05). The ultrastructure revealed morphological damage in the prolongments, and nuclei of cells derived from the 3rd and 10th passages. Moreover, cryopreservation resulted in a reduction in ΔΨm compared with that of noncryopreserved cells, suggesting that the optimization of cryopreservation methods for puma fibroblasts is essential. In conclusion, we found that viable fibroblasts could be obtained from puma skin, with slight changes after the 10th passage in in vitro culture and cryopreservation. This is the first report on the development of cell lines derived from pumas.
Collapse
Affiliation(s)
- Gabriela P O Lira
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Brazil
| | - Alana A Borges
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Brazil
| | - Matheus B Nascimento
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Brazil
| | - Leonardo V C Aquino
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Brazil
| | - Luiz F M P Moura
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Brazil
| | - Herlon V R Silva
- Laboratory of Reproduction of Carnivores, Ceara State University (UECE), Fortaleza, Brazil
| | - Leandro R Ribeiro
- Laboratory of Reproduction of Carnivores, Ceara State University (UECE), Fortaleza, Brazil
| | - Alexandre R Silva
- Laboratory of Animal Germplasm Conservation, UFERSA, Mossoró, Brazil
| | - Alexsandra F Pereira
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Brazil
| |
Collapse
|
21
|
Xu W, Li H, Peng L, Pu L, Xiang S, Li Y, Tao L, Liu W, Liu J, Xiao Y, Liu S. Fish Pluripotent Stem-Like Cell Line Induced by Small-Molecule Compounds From Caudal Fin and its Developmental Potentiality. Front Cell Dev Biol 2022; 9:817779. [PMID: 35127728 PMCID: PMC8811452 DOI: 10.3389/fcell.2021.817779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022] Open
Abstract
The technique of induced pluripotent stem cells has significant application value in breeding and preserving the genetic integrity of fish species. However, it is still unclear whether the chemically induced pluripotent stem cells can be induced from non-mammalian cells or not. In this article, we first verify that fibroblasts of fish can be chemically reprogrammed into pluripotent stem cells. These induced pluripotent stem-like cells possess features of colony morphology, expression of pluripotent marker genes, formation of embryoid bodies, teratoma formation, and the potential to differentiate into germ cell-like cells in vitro. Our findings will offer a new way to generate induced pluripotent stem cells in teleost fish and a unique opportunity to breed commercial fish and even save endangered fish species.
Collapse
Affiliation(s)
- Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huajin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Liangyue Peng, ; Yamei Xiao, ; Shaojun Liu,
| | - Liyu Pu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Sijia Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yue Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Leiting Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Liangyue Peng, ; Yamei Xiao, ; Shaojun Liu,
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Liangyue Peng, ; Yamei Xiao, ; Shaojun Liu,
| |
Collapse
|
22
|
Wang DH, Wu XM, Chen JS, Cai ZG, An JH, Zhang MY, Li Y, Li FP, Hou R, Liu YL. Isolation and characterization mesenchymal stem cells from red panda ( Ailurus fulgens styani) endometrium. CONSERVATION PHYSIOLOGY 2022; 10:coac004. [PMID: 35211318 PMCID: PMC8862722 DOI: 10.1093/conphys/coac004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/30/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Endometrial mesenchymal stem cells (eMSCs) are undifferentiated endometrial cells with self-renewal, multidirectional differentiation and high proliferation potential. Nowadays, eMSCs have been found in a few species, but it has never been reported in endangered wild animals, especially the red panda. In this study, we successfully isolated and characterized the eMSCs derived from red panda. Red panda eMSCs were fibroblast-like, had a strong proliferative potential and a stable chromosome number. Pluripotency genes including Klf4, Sox2 and Thy1 were highly expressed in eMSCs. Besides, cultured eMSCs were positive for MSC markers CD44, CD49f and CD105 and negative for endothelial cell marker CD31 and haematopoietic cell marker CD34. Moreover, no reference RNA-seq was used to analyse the eMSCs transcriptional expression profile and key pathways. Compared with skin fibroblast cell group, 9104 differentially expressed genes (DEGs) were identified, among which are 5034 genes upregulated, 4070 genes downregulated and the top 20 enrichment pathways of DEGs in Gene Ontology (GO) and the Kyoto Encyclopedia of Genes Genomes (KEGG) mainly associated with G-protein coupled receptor signalling pathway, carbohydrate derivative binding, nucleoside binding, ribosome biogenesis, cell cycle, DNA replication, Ras signalling pathway and purine metabolism. Among the DEGs, some representative genes about promoting MSCs differentiation and proliferation were upregulated and promoting fibroblasts proliferation were downregulated in eMSCs group. Red panda eMSCs also had multiple differentiation ability and could differentiate into adipocytes, chondrocytes and hepatocytes. In conclusion, we, for the first time, isolated and characterized the red panda eMSCs with ability of multiplication and multilineage differentiation in vitro. The new multipotential stem cell could be beneficial not only for the germ plasm resources conservation of red panda, but also for basic or pre-clinical studies in the future.
Collapse
Affiliation(s)
- Dong-Hui Wang
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Xue-Mei Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Jia-Song Chen
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Zhi-Gang Cai
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Jun-Hui An
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Ming-Yue Zhang
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Yuan Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Fei-Ping Li
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Yu-Liang Liu
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| |
Collapse
|
23
|
van der Weijden VA, Bulut-Karslioglu A. Molecular Regulation of Paused Pluripotency in Early Mammalian Embryos and Stem Cells. Front Cell Dev Biol 2021; 9:708318. [PMID: 34386497 PMCID: PMC8353277 DOI: 10.3389/fcell.2021.708318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
The energetically costly mammalian investment in gestation and lactation requires plentiful nutritional sources and thus links the environmental conditions to reproductive success. Flexibility in adjusting developmental timing enhances chances of survival in adverse conditions. Over 130 mammalian species can reversibly pause early embryonic development by switching to a near dormant state that can be sustained for months, a phenomenon called embryonic diapause. Lineage-specific cells are retained during diapause, and they proliferate and differentiate upon activation. Studying diapause thus reveals principles of pluripotency and dormancy and is not only relevant for development, but also for regeneration and cancer. In this review, we focus on the molecular regulation of diapause in early mammalian embryos and relate it to maintenance of potency in stem cells in vitro. Diapause is established and maintained by active rewiring of the embryonic metabolome, epigenome, and gene expression in communication with maternal tissues. Herein, we particularly discuss factors required at distinct stages of diapause to induce, maintain, and terminate dormancy.
Collapse
|
24
|
Chicken Mesenchymal Stem Cells and Their Applications: A Mini Review. Animals (Basel) 2021; 11:ani11071883. [PMID: 34202772 PMCID: PMC8300106 DOI: 10.3390/ani11071883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Mesenchymal stem cells (MSCs) are multipotent stem cells that are capable of differentiation into bone, muscle, fat, and closely related lineages and express unique and specific cell surface markers. They can be used as an avian culture model to better understand osteogenic, adipogenic, and myogenic pathways. Moreover, MSCs could also be used as a model to study various developmental and physiological processes in avian and other species. To obtain a comprehensive overview of this topic, the keywords “mesenchymal stem cells”, “chicken”, “disease”, “chicken dermatitis”, “viral infections in chicken”, and “antibiotics in chicken” were searched in WOS and PUBMED databases to obtain relevant information. Abstract Mesenchymal stem cells (MSCs) are multipotent progenitor cells that adhere to plastic; express the specific markers CD29, CD44, CD73, CD90, and CD105; and produce cytokines and growth factors supporting and regulating hematopoiesis. MSCs have capacity for differentiating into osteocytes, chondrocytes, adipocytes, and myocytes. They are useful for research toward better understanding the pathogenic potential of the infectious bursal disease virus, mineralization during osteogenesis, and interactions between MSCs as a feeder layer to other cells. MSCs are also important for immunomodulatory cell therapy, can provide a suitable strategy model for coculture with pathogens causing dermatitis disorders in chickens, can be cultured in vitro with probiotics and prebiotics with a view to eliminate the feeding of antibiotic growth promoters, and offer cell-based meat production. Moreover, bone marrow-derived MSCs (BM-MSCs) in coculture with hematopoietic progenitor/stem cells (HPCs/HSCs) can support expansion and regulation of the hematopoiesis process using the 3D-culture system in future research in chickens. MSCs’ several advantages, including ready availability, strong proliferation, and immune modulatory properties make them a suitable model in the field of stem cell research. This review summarizes current knowledge about the general characterization of MSCs and their application in chicken as a model organism.
Collapse
|
25
|
Zheng C, Ballard EB, Wu J. The road to generating transplantable organs: from blastocyst complementation to interspecies chimeras. Development 2021; 148:dev195792. [PMID: 34132325 PMCID: PMC10656466 DOI: 10.1242/dev.195792] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growing human organs in animals sounds like something from the realm of science fiction, but it may one day become a reality through a technique known as interspecies blastocyst complementation. This technique, which was originally developed to study gene function in development, involves injecting donor pluripotent stem cells into an organogenesis-disabled host embryo, allowing the donor cells to compensate for missing organs or tissues. Although interspecies blastocyst complementation has been achieved between closely related species, such as mice and rats, the situation becomes much more difficult for species that are far apart on the evolutionary tree. This is presumably because of layers of xenogeneic barriers that are a result of divergent evolution. In this Review, we discuss the current status of blastocyst complementation approaches and, in light of recent progress, elaborate on the keys to success for interspecies blastocyst complementation and organ generation.
Collapse
Affiliation(s)
- Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Emily B. Ballard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
26
|
The ART of bringing extinction to a freeze - History and future of species conservation, exemplified by rhinos. Theriogenology 2021; 169:76-88. [PMID: 33940218 DOI: 10.1016/j.theriogenology.2021.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022]
Abstract
The ongoing mass extinction of animal species at an unprecedented rate is largely caused by human activities. Progressive habitat destruction and fragmentation is resulting in accelerated loss of biodiversity on a global scale. Over decades, captive breeding programs of non-domestic species were characterized by efforts to optimize species-specific husbandry, to increase studbook-based animal exchange, and to improve enclosure designs. To counter the ongoing dramatic loss of biodiversity, new approaches are warranted. Recently, new ideas, particularly the application of assisted reproduction technologies (ART), have been incorporated into classical zoo breeding programs. These technologies include semen and oocyte collection, artificial insemination, and in-vitro embryo generation. More futuristic ideas of advanced ART (aART) implement recent advances in biotechnology and stem-cell related approaches such as cloning, inner cell mass transfer (ICM), and the stem-cell-associated techniques (SCAT) for the generation of gametes and ultimately embryos of highly endangered species, such as the northern white rhinoceros (Ceratotherium simum cottoni) of which only two female individuals are left. Both, ART and aART greatly depend on and benefit from the rapidly evolving cryopreservation techniques and biobanking not only of genetic, but also of viable cellular materials suitable for the generation of induced pluripotent stem cells (iPSC). The availability of cryopreserved materials bridges gaps in time and space, thereby optimizing the available genetic variability and enhancing the chance to restore viable populations.
Collapse
|
27
|
Eibl R, Senn Y, Gubser G, Jossen V, van den Bos C, Eibl D. Cellular Agriculture: Opportunities and Challenges. Annu Rev Food Sci Technol 2021; 12:51-73. [PMID: 33770467 DOI: 10.1146/annurev-food-063020-123940] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular agriculture is the controlled and sustainable manufacture of agricultural products with cells and tissues without plant or animal involvement. Today, microorganisms cultivated in bioreactors already produce egg and milk proteins, sweeteners, and flavors for human nutrition as well as leather and fibers for shoes, bags, and textiles. Furthermore, plant cell and tissue cultures provide ingredients that stimulate the immune system and improve skin texture, with another precommercial cellular agriculture product, in vitro meat, currently receiving a great deal of attention. All these approaches could assist traditional agriculture in continuing to provide for the dietary requirements of a growing world population while freeing up important resources such as arable land. Despite early successes, challenges remain and are discussed in this review, with a focus on production processes involving plant and animal cell and tissue cultures.
Collapse
Affiliation(s)
- Regine Eibl
- Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil 8820, Switzerland;
| | - Yannick Senn
- Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil 8820, Switzerland;
| | - Géraldine Gubser
- Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil 8820, Switzerland;
| | - Valentin Jossen
- Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil 8820, Switzerland;
| | | | - Dieter Eibl
- Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil 8820, Switzerland;
| |
Collapse
|
28
|
A non-invasive method to generate induced pluripotent stem cells from primate urine. Sci Rep 2021; 11:3516. [PMID: 33568724 PMCID: PMC7876031 DOI: 10.1038/s41598-021-82883-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Comparing the molecular and cellular properties among primates is crucial to better understand human evolution and biology. However, it is difficult or ethically impossible to collect matched tissues from many primates, especially during development. An alternative is to model different cell types and their development using induced pluripotent stem cells (iPSCs). These can be generated from many tissue sources, but non-invasive sampling would decisively broaden the spectrum of non-human primates that can be investigated. Here, we report the generation of primate iPSCs from urine samples. We first validate and optimize the procedure using human urine samples and show that suspension- Sendai Virus transduction of reprogramming factors into urinary cells efficiently generates integration-free iPSCs, which maintain their pluripotency under feeder-free culture conditions. We demonstrate that this method is also applicable to gorilla and orangutan urinary cells isolated from a non-sterile zoo floor. We characterize the urinary cells, iPSCs and derived neural progenitor cells using karyotyping, immunohistochemistry, differentiation assays and RNA-sequencing. We show that the urine-derived human iPSCs are indistinguishable from well characterized PBMC-derived human iPSCs and that the gorilla and orangutan iPSCs are well comparable to the human iPSCs. In summary, this study introduces a novel and efficient approach to non-invasively generate iPSCs from primate urine. This will extend the zoo of species available for a comparative approach to molecular and cellular phenotypes.
Collapse
|
29
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|
30
|
COVID-19 Pandemic Is a Call to Search for Alternative Protein Sources as Food and Feed: A Review of Possibilities. Nutrients 2021; 13:nu13010150. [PMID: 33466241 PMCID: PMC7830574 DOI: 10.3390/nu13010150] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is a global health challenge with substantial adverse effects on the world economy. It is beyond any doubt that it is, again, a call-to-action to minimize the risk of future zoonoses caused by emerging human pathogens. The primary response to contain zoonotic diseases is to call for more strict regulations on wildlife trade and hunting. This is because the origins of coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), as well as other viral pathogens (e.g., Ebola, HIV) are traceable to wild animals. Although COVID-19 is not related to livestock animals, the pandemic increased general attention given to zoonotic viral infections—the risk of which can also be associated with livestock. Therefore, this paper discusses the potential transformation of industrial livestock farming and the production of animal products, particularly meat, to decrease the risks for transmission of novel human pathogens. Plant-based diets have a number of advantages, but it is unrealistic to consider them as the only solution offered to the problem. Therefore, a search for alternative protein sources in insect-based foods and cultured meat, important technologies enabling safer meat production. Although both of these strategies offer a number of potential advantages, they are also subject to the number of challenges that are discussed in this paper. Importantly, insect-based foods and cultured meat can provide additional benefits in the context of ecological footprint, an aspect important in light of predicted climate changes. Furthermore, cultured meat can be regarded as ethically superior and supports better food security. There is a need to further support the implementation and expansion of all three approaches discussed in this paper, plant-based diets, insect-based foods, and cultured meat, to decrease the epidemiological risks and ensure a sustainable future. Furthermore, cultured meat also offers a number of additional benefits in the context of environmental impact, ethical issues, and food security.
Collapse
|
31
|
Hayashi K, Galli C, Diecke S, Hildebrandt TB. Artificially produced gametes in mice, humans and other species. Reprod Fertil Dev 2021; 33:91-101. [PMID: 38769675 DOI: 10.1071/rd20265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
The production of gametes from pluripotent stem cells in culture, also known as invitro gametogenesis, will make an important contribution to reproductive biology and regenerative medicine, both as a unique tool for understanding germ cell development and as an alternative source of gametes for reproduction. Invitro gametogenesis was developed using mouse pluripotent stem cells but is increasingly being applied in other mammalian species, including humans. In principle, the entire process of germ cell development is nearly reconstitutable in culture using mouse pluripotent stem cells, although the fidelity of differentiation processes and the quality of resultant gametes remain to be refined. The methodology in the mouse system is only partially applicable to other species, and thus it must be optimised for each species. In this review, we update the current status of invitro gametogenesis in mice, humans and other animals, and discuss challenges for further development of this technology.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-0054, Japan; and Corresponding author
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies, 26100 Cremona, Italy; and Fondazione Avantea, 26100 Cremona, Italy
| | - Sebastian Diecke
- Max-Delbrueck-Center for Molecular Medicine, 13092 Berlin, Germany
| | - Thomas B Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany; and Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
32
|
Singh A, Verma V, Kumar M, Kumar A, Sarma DK, Singh B, Jha R. Stem cells-derived in vitro meat: from petri dish to dinner plate. Crit Rev Food Sci Nutr 2020; 62:2641-2654. [PMID: 33291952 DOI: 10.1080/10408398.2020.1856036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sustainable food supply to the world is possibly the greatest challenge that human civilization has ever faced. Among animal sourced foods, meat plays a starring role in human food chain. Traditional meat production necessitates high proportion of agricultural land, energy and clean water for rearing meat-producing animals; also massive emission of greenhouse gases from the unutilized nutrients of the digestive process into the environment is a major challenge to the world. Also, conventional meat production is associated with evolution and spread of superbugs and zoonotic infections. In vitro meat has the potential to provide a healthy alternative nutritious meal and to avoid the issues associated with animal slaughtering and environmental effects. Stem cell technology may provide a fascinating approach to produce meat in an animal-free environment. Theoretically, in vitro meat can supplement the meat produced by culling the animals and satisfy the global demand. This article highlights the necessity and potential of stem cell-derived in vitro meat as an alternative source of animal protein vis-a-vis the constraints of conventional approaches of meat production.
Collapse
Affiliation(s)
- Anshuman Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ashok Kumar
- Department of Zoology, MLK Post Graduate College, Balrampur, India
| | | | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Rajneesh Jha
- Curi Bio, University of Washington, Seattle, Washington, USA
| |
Collapse
|
33
|
Gavin-Plagne L, Perold F, Osteil P, Voisin S, Moreira SC, Combourieu Q, Saïdou V, Mure M, Louis G, Baudot A, Buff S, Joly T, Afanassieff M. Insights into Species Preservation: Cryobanking of Rabbit Somatic and Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21197285. [PMID: 33023104 PMCID: PMC7582889 DOI: 10.3390/ijms21197285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are obtained by genetically reprogramming adult somatic cells via the overexpression of specific pluripotent genes. The resulting cells possess the same differentiation properties as blastocyst-stage embryonic stem cells (ESCs) and can be used to produce new individuals by embryonic complementation, nuclear transfer cloning, or in vitro fertilization after differentiation into male or female gametes. Therefore, iPSCs are highly valuable for preserving biodiversity and, together with somatic cells, can enlarge the pool of reproductive samples for cryobanking. In this study, we subjected rabbit iPSCs (rbiPSCs) and rabbit ear tissues to several cryopreservation conditions with the aim of defining safe and non-toxic slow-freezing protocols. We compared a commercial synthetic medium (STEM ALPHA.CRYO3) with a biological medium based on fetal bovine serum (FBS) together with low (0-5%) and high (10%) concentrations of dimethyl sulfoxide (DMSO). Our data demonstrated the efficacy of a CRYO3-based medium containing 4% DMSO for the cryopreservation of skin tissues and rbiPSCs. Specifically, this medium provided similar or even better biological results than the commonly used freezing medium composed of FBS and 10% DMSO. The results of this study therefore represent an encouraging first step towards the use of iPSCs for species preservation.
Collapse
Affiliation(s)
- Lucie Gavin-Plagne
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
- Univ Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UPSP ICE 2016.A104, F-69280 Marcy l’Etoile, France; (S.B.); (T.J.)
| | - Florence Perold
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Pierre Osteil
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Sophie Voisin
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Synara Cristina Moreira
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Quitterie Combourieu
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Véronique Saïdou
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Magali Mure
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Gérard Louis
- Univ Paris, Université Descartes Paris V, LVTS, Inserm UMRS 1148, F-75018 Paris, France; (G.L.); (A.B.)
| | - Anne Baudot
- Univ Paris, Université Descartes Paris V, LVTS, Inserm UMRS 1148, F-75018 Paris, France; (G.L.); (A.B.)
| | - Samuel Buff
- Univ Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UPSP ICE 2016.A104, F-69280 Marcy l’Etoile, France; (S.B.); (T.J.)
| | - Thierry Joly
- Univ Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UPSP ICE 2016.A104, F-69280 Marcy l’Etoile, France; (S.B.); (T.J.)
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA-Lyon, UPSP ICE 2016.A104, F-69007 Lyon, France
| | - Marielle Afanassieff
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
- Correspondence: ; Tel.: +33-472-913-458
| |
Collapse
|
34
|
Mavaro I, De Felice E, Palladino A, D'Angelo L, de Girolamo P, Attanasio C. Anatomical templates for tissue (re)generation and beyond. Biotechnol Bioeng 2020; 117:3938-3951. [PMID: 32776516 DOI: 10.1002/bit.27533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 11/12/2022]
Abstract
Induced pluripotent stem cells (iPSCs) represent a valuable alternative to stem cells in regenerative medicine overcoming their ethical limitations, like embryo disruption. Takahashi and Yamanaka in 2006 reprogrammed, for the first time, mouse fibroblasts into iPSCs through the retroviral delivery of four reprogramming factors: Oct3/4, Sox2, c-Myc, and Klf4. Since then, several studies started reporting the derivation of iPSC lines from animals other than rodents for translational and veterinary medicine. Here, we review the potential of using these cells for further intriguing applications, such as "cellular agriculture." iPSCs, indeed, can be a source of in vitro, skeletal muscle tissue, namely "cultured meat," a product that improves animal welfare and encourages the consumption of healthier meat along with environmental preservation. Also, we report the potential of using iPSCs, obtained from endangered species, for therapeutic treatments for captive animals and for assisted reproductive technologies as well. This review offers a unique opportunity to explore the whole spectrum of iPSC applications from regenerative translational and veterinary medicine to the production of artificial meat and the preservation of currently endangered species.
Collapse
Affiliation(s)
- Isabella Mavaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Interdepartmental Center for Research in Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Antonio Palladino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Chiara Attanasio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Interdepartmental Center for Research in Biomaterials (CRIB), University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
35
|
Jiang Y, An XL, Yu H, Cai NN, Zhai YH, Li Q, Cheng H, Zhang S, Tang B, Li ZY, Zhang XM. Transcriptome profile of bovine iPSCs derived from Sertoli Cells. Theriogenology 2020; 146:120-132. [DOI: 10.1016/j.theriogenology.2019.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 12/18/2022]
|
36
|
Mostajo-Radji MA, Schmitz MT, Montoya ST, Pollen AA. Reverse engineering human brain evolution using organoid models. Brain Res 2020; 1729:146582. [PMID: 31809699 PMCID: PMC7058376 DOI: 10.1016/j.brainres.2019.146582] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
Primate brains vary dramatically in size and organization, but the genetic and developmental basis for these differences has been difficult to study due to lack of experimental models. Pluripotent stem cells and brain organoids provide a potential opportunity for comparative and functional studies of evolutionary differences, particularly during the early stages of neurogenesis. However, many challenges remain, including isolating stem cell lines from additional great ape individuals and species to capture the breadth of ape genetic diversity, improving the reproducibility of organoid models to study evolved differences in cell composition and combining multiple brain regions to capture connectivity relationships. Here, we describe strategies for identifying evolved developmental differences between humans and non-human primates and for isolating the underlying cellular and genetic mechanisms using comparative analyses, chimeric organoid culture, and genome engineering. In particular, we focus on how organoid models could ultimately be applied beyond studies of progenitor cell evolution to decode the origin of recent changes in cellular organization, connectivity patterns, myelination, synaptic development, and physiology that have been implicated in human cognition.
Collapse
Affiliation(s)
- Mohammed A Mostajo-Radji
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew T Schmitz
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sebastian Torres Montoya
- Health Co-creation Laboratory, Medellin General Hospital, Medellin, Antioquia, Colombia; Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alex A Pollen
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
37
|
Moradi S, Mahdizadeh H, Šarić T, Kim J, Harati J, Shahsavarani H, Greber B, Moore JB. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther 2019; 10:341. [PMID: 31753034 PMCID: PMC6873767 DOI: 10.1186/s13287-019-1455-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) can self-renew indefinitely in culture and differentiate into all specialized cell types including gametes. iPSCs do not exist naturally and are instead generated (“induced” or “reprogrammed”) in culture from somatic cells through ectopic co-expression of defined pluripotency factors. Since they can be generated from any healthy person or patient, iPSCs are considered as a valuable resource for regenerative medicine to replace diseased or damaged tissues. In addition, reprogramming technology has provided a powerful tool to study mechanisms of cell fate decisions and to model human diseases, thereby substantially potentiating the possibility to (i) discover new drugs in screening formats and (ii) treat life-threatening diseases through cell therapy-based strategies. However, various legal and ethical barriers arise when aiming to exploit the full potential of iPSCs to minimize abuse or unauthorized utilization. In this review, we discuss bioethical, legal, and societal concerns associated with research and therapy using iPSCs. Furthermore, we present key questions and suggestions for stem cell scientists, legal authorities, and social activists investigating and working in this field.
Collapse
Affiliation(s)
- Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Isar 11, 47138-18983, Babol, Iran.
| | - Hamid Mahdizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for NeurophysiologyMedical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Javad Harati
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Hosein Shahsavarani
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran.,Department of Cellular and Molecular Sciences, Faculty of Bioscience and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Boris Greber
- RheinCell Therapeutics GmbH, 40764, Langenfeld, Germany
| | - Joseph B Moore
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA.,The Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
| |
Collapse
|