1
|
Ashmore-Harris C, Ayabe H, Yoshizawa E, Arisawa T, Takada Y, Takebe T, Fruhwirth GO. Gene editing enables non-invasive in vivo PET imaging of human induced pluripotent stem cell-derived liver bud organoids. Mol Ther Methods Clin Dev 2025; 33:101406. [PMID: 39927149 PMCID: PMC11803834 DOI: 10.1016/j.omtm.2025.101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025]
Abstract
Human induced pluripotent stem cell (hiPSC)-derived liver cell therapies such as hepatocyte-like cells and liver organoids could provide unlimited therapeutic cells for clinical transplantation, but an inadequate understanding of their in vivo fate impedes translation. Whole body in vivo imaging could enable monitoring of transplanted cell survival and/or expansion non-invasively over time, permitting robust comparisons between emerging therapies to identify those most effective. The human sodium iodide symporter (hNIS) is a radionuclide reporter gene facilitating whole body in vivo cell tracking by positron emission tomography (PET). We gene-edited a clinical Good Manufacturing Practice-compliant hiPSC line at the AAVS1 safe harbor locus enabling constitutive expression of a hNIS-monomeric(m)GFP fusion reporter in hiPSCs and their differentiated progeny. We confirmed reporter integration did not impact pluripotency or differentiation capacity, and radiotracer uptake capacity was retained post-differentiation. In vivo trackable liver bud (LB) organoids were generated from traceable hNIS fused to monomeric GFP (hNIS-mGFP)-hiPSCs and transplanted into healthy and liver-injured mice. LB were imaged quantitatively by 18FBF4 --PET with imaging results confirmed histologically. We report, for the first time, hNIS-mGFP-hiPSC progeny retain differentiated function and PET trackability in vivo using LB. In vivo monitoring could accelerate regenerative cell therapy development by identifying efficacious candidate cells, successful engraftment/survival strategies and addressing safety concerns.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 1UL, UK
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Hiroaki Ayabe
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Emi Yoshizawa
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Tetsu Arisawa
- Department of Physiology, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yuuki Takada
- Department of Physiology, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Takanori Takebe
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
- Center for Stem Cell & Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Division of Stem Cell and Organoid Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Gilbert O. Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 1UL, UK
| |
Collapse
|
2
|
Shi H, Ding Y, Sun P, Lv Z, Wang C, Ma H, Lu J, Yu B, Li W, Wang C. Chemical approaches targeting the hurdles of hepatocyte transplantation: mechanisms, applications, and advances. Front Cell Dev Biol 2024; 12:1480226. [PMID: 39544361 PMCID: PMC11560891 DOI: 10.3389/fcell.2024.1480226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatocyte transplantation (HTx) has been a novel cell-based therapy for severe liver diseases, as the donor livers for orthotopic liver transplantation are of great shortage. However, HTx has been confronted with two main hurdles: limited high-quality hepatocyte sources and low cell engraftment and repopulation rate. To cope with, researchers have investigated on various strategies, including small molecule drugs with unique advantages. Small molecules are promising chemical tools to modulate cell fate and function for generating high quality hepatocyte sources. In addition, endothelial barrier, immune responses, and low proliferative efficiency of donor hepatocytes mainly contributes to low cell engraftment and repopulation rate. Interfering these biological processes with small molecules is beneficial for improving cell engraftment and repopulation. In this review, we will discuss the applications and advances of small molecules in modulating cell differentiation and reprogramming for hepatocyte resources and in improving cell engraftment and repopulation as well as its underlying mechanisms.
Collapse
Affiliation(s)
- Huanxiao Shi
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Yi Ding
- Experimental Teaching Center, Naval Medical University, Shanghai, China
| | - Pingxin Sun
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Zhuman Lv
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Chunyan Wang
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Haoxin Ma
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Junyu Lu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Bing Yu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Wenlin Li
- Department of Cell Biology, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai, China
| | - Chao Wang
- Department of Cell Biology, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Gantier M, Rispal R, Fourrier A, Ménoret S, Delbos F, Anegon I, Nguyen TH. Cryopreserved cGMP-compliant human pluripotent stem cell-derived hepatic progenitors rescue mice from acute liver failure through rapid paracrine effects on liver cells. Stem Cell Res Ther 2024; 15:71. [PMID: 38475825 DOI: 10.1186/s13287-024-03673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Liver transplantation remains the only curative treatment for end-stage liver diseases. Unfortunately, there is a drastic organ donor shortage. Hepatocyte transplantation emerged as a viable alternative to liver transplantation. Considering their unique expansion capabilities and their potency to be driven toward a chosen cell fate, pluripotent stem cells are extensively studied as an unlimited cell source of hepatocytes for cell therapy. It has been previously shown that freshly prepared hepatocyte-like cells can cure mice from acute and chronic liver failure and restore liver function. METHODS Human PSC-derived immature hepatic progenitors (GStemHep) were generated using a new protocol with current good manufacturing practice compliant conditions from PSC amplification and hepatic differentiation to cell cryopreservation. The therapeutic potential of these cryopreserved cells was assessed in two clinically relevant models of acute liver failure, and the mode of action was studied by several analytical methods, including unbiased proteomic analyses. RESULTS GStemHep cells present an immature hepatic phenotype (alpha-fetoprotein positive, albumin negative), secrete hepatocyte growth factor and do not express major histocompatibility complex. A single dose of thawed GStemHep rescue mice from sudden death caused by acetaminophen and thioacetamide-induced acute liver failure, both in immunodeficient and immunocompetent animals in the absence of immunosuppression. Therapeutic biological effects were observed as soon as 3 h post-cell transplantation with a reduction in serum transaminases and in liver necrosis. The swiftness of the therapeutic effect suggests a paracrine mechanism of action of GStemHep leading to a rapid reduction of inflammation as well as a rapid cytoprotective effect with as a result a proteome reprograming of the host hepatocytes. The mode of action of GStemHep relie on the alleviation of inhibitory factors of liver regeneration, an increase in proliferation-promoting factors and a decrease in liver inflammation. CONCLUSIONS We generated cryopreserved and current good manufacturing practice-compliant human pluripotent stem cell-derived immature hepatic progenitors that were highly effective in treating acute liver failure through rapid paracrine effects reprogramming endogenous hepatocytes. This is also the first report highlighting that human allogeneic cells could be used as cryopreserved cells and in the absence of immunosuppression for human PSC-based regenerative medicine for acute liver failure.
Collapse
Affiliation(s)
- Malika Gantier
- GoLiver Therapeutics, 44007, Nantes, France.
- Nantes Université, Inserm, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France.
| | - Raphaël Rispal
- Nantes Université, Inserm, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | | | - Séverine Ménoret
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, 44000, Nantes, France
| | | | - Ignacio Anegon
- Nantes Université, Inserm, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | | |
Collapse
|
4
|
Mazza T, Roumeliotis TI, Garitta E, Drew D, Rashid ST, Indiveri C, Choudhary JS, Linton KJ, Beis K. Structural basis for the modulation of MRP2 activity by phosphorylation and drugs. Nat Commun 2024; 15:1983. [PMID: 38438394 PMCID: PMC10912322 DOI: 10.1038/s41467-024-46392-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Multidrug resistance-associated protein 2 (MRP2/ABCC2) is a polyspecific efflux transporter of organic anions expressed in hepatocyte canalicular membranes. MRP2 dysfunction, in Dubin-Johnson syndrome or by off-target inhibition, for example by the uricosuric drug probenecid, elevates circulating bilirubin glucuronide and is a cause of jaundice. Here, we determine the cryo-EM structure of rat Mrp2 (rMrp2) in an autoinhibited state and in complex with probenecid. The autoinhibited state exhibits an unusual conformation for this class of transporter in which the regulatory domain is folded within the transmembrane domain cavity. In vitro phosphorylation, mass spectrometry and transport assays show that phosphorylation of the regulatory domain relieves this autoinhibition and enhances rMrp2 transport activity. The in vitro data is confirmed in human hepatocyte-like cells, in which inhibition of endogenous kinases also reduces human MRP2 transport activity. The drug-bound state reveals two probenecid binding sites that suggest a dynamic interplay with autoinhibition. Mapping of the Dubin-Johnson mutations onto the rodent structure indicates that many may interfere with the transition between conformational states.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, OX11 0FA, UK
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Theodoros I Roumeliotis
- Functional Proteomics group, Chester Beatty Laboratories, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Elena Garitta
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, E1 2A, London, UK
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - S Tamir Rashid
- Department of Metabolism, Digestion & Reproduction, Imperial College London, W12 0NN, London, UK
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036, Arcavacata di Rende, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), 70126, Bari, Italy
| | - Jyoti S Choudhary
- Functional Proteomics group, Chester Beatty Laboratories, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Kenneth J Linton
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, E1 2A, London, UK
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK.
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, OX11 0FA, UK.
| |
Collapse
|
5
|
Septiana WL, Ayudyasari W, Gunardi H, Pawitan JA, Balachander GM, Yu H, Antarianto RD. Liver organoids cocultured on decellularized native liver scaffolds as a bridging therapy improves survival from liver failure in rabbits. In Vitro Cell Dev Biol Anim 2023; 59:747-763. [PMID: 38110841 DOI: 10.1007/s11626-023-00817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/28/2023] [Indexed: 12/20/2023]
Abstract
The present study aimed to develop viable liver organoids using decellularized native liver scaffolds and evaluate the efficacy of human liver organoid transplantation in a rabbit model of cirrhosis. Liver organoids were formed by coculture of hepatocyte-like cells derived from the human-induced pluripotent stem cells with three other cell types. Twelve 3-mo-old New Zealand White Rabbits underwent a sham operation, bile duct ligation, or biliary duct ligation followed by liver organoid transplantation. Liver organoid structure and function before and after transplantation were evaluated using histological and molecular analyses. A survival analysis using the Kaplan-Meier method was performed to determine the cumulative probability of survival according to liver organoid transplantation with significantly greater overall survival observed in rabbits that underwent liver organoid transplantation (P = 0.003, log-rank test). The short-term group had higher hepatic expression levels of ALB and CYP3A mRNA and lower expression levels of AST mRNA compared to the long-term group. The short-term group also had lower collagen deposition in liver tissues. Transplantation of human liver organoids cocultured in decellularized native liver scaffold into rabbits that had undergone bile duct ligation improved short-term survival and hepatic function. The results of the present study highlight the potential of liver organoid transplantation as a bridging therapy in liver failure; however, rejection and poor liver organoid function may limit the long-term efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Wahyunia Likhayati Septiana
- Program Doktor Ilmu Biomedik, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Histology, Faculty of Medicine, Universitas Gunadarma, Depok, Indonesia
| | - Wulan Ayudyasari
- Department of Surgery, Fakultas Kedokteran Universitas Indonesia, Jakarta, Indonesia
| | - Hardian Gunardi
- Department of Surgery, Fakultas Kedokteran Universitas Indonesia, Jakarta, Indonesia
| | - Jeanne Adiwinata Pawitan
- Department of Histology, Fakultas Kedokteran Universitas Indonesia, Jl Salemba Raya No 6. Jakarta Pusat 10430, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Research Cluster, (IMERI) Indonesian Medical Education and Research Institute, Jakarta, Indonesia
- Integrated Service Unit of Stem Cell Medical Technology (IPT TK Sel Punca), Dr. Cipto Mangunkusumo General Hospital (RSCM), Jakarta, Indonesia
| | - Gowri Manohari Balachander
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore, 117593, Singapore
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India, 221005
| | - Hanry Yu
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore, 117593, Singapore
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India, 221005
- Institute of Bioengineering & Bioimaging, A*STAR, 31 Biopolis Way, #07-01, Singapore, 138669, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Level 4 Enterprise Wing, Singapore, 138602, Singapore
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Radiana Dhewayani Antarianto
- Department of Histology, Fakultas Kedokteran Universitas Indonesia, Jl Salemba Raya No 6. Jakarta Pusat 10430, Jakarta, Indonesia.
- Stem Cell and Tissue Engineering Research Cluster, (IMERI) Indonesian Medical Education and Research Institute, Jakarta, Indonesia.
| |
Collapse
|
6
|
Huang K, Li Q, Xue Y, Wang Q, Chen Z, Gu Z. Application of colloidal photonic crystals in study of organoids. Adv Drug Deliv Rev 2023; 201:115075. [PMID: 37625595 DOI: 10.1016/j.addr.2023.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/09/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
As alternative disease models, other than 2D cell lines and patient-derived xenografts, organoids have preferable in vivo physiological relevance. However, both endogenous and exogenous limitations impede the development and clinical translation of these organoids. Fortunately, colloidal photonic crystals (PCs), which benefit from favorable biocompatibility, brilliant optical manipulation, and facile chemical decoration, have been applied to the engineering of organoids and have achieved the desirable recapitulation of the ECM niche, well-defined geometrical onsets for initial culture, in situ multiphysiological parameter monitoring, single-cell biomechanical sensing, and high-throughput drug screening with versatile functional readouts. Herein, we review the latest progress in engineering organoids fabricated from colloidal PCs and provide inputs for future research.
Collapse
Affiliation(s)
- Kai Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yufei Xue
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
7
|
Sun Z, Yuan X, Wu J, Wang C, Zhang K, Zhang L, Hui L. Hepatocyte transplantation: The progress and the challenges. Hepatol Commun 2023; 7:e0266. [PMID: 37695736 PMCID: PMC10497249 DOI: 10.1097/hc9.0000000000000266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/26/2023] [Indexed: 09/13/2023] Open
Abstract
Numerous studies have shown that hepatocyte transplantation is a promising approach for liver diseases, such as liver-based metabolic diseases and acute liver failure. However, it lacks strong evidence to support the long-term therapeutic effects of hepatocyte transplantation in clinical practice. Currently, major hurdles include availability of quality-assured hepatocytes, efficient engraftment and repopulation, and effective immunosuppressive regimens. Notably, cell sources have been advanced recently by expanding primary human hepatocytes by means of dedifferentiation in vitro. Moreover, the transplantation efficiency was remarkably improved by the established preparative hepatic irradiation in combination with hepatic mitogenic stimuli regimens. Finally, immunosuppression drugs, including glucocorticoid and inhibitors for co-stimulating signals of T cell activation, were proposed to prevent innate and adaptive immune rejection of allografted hepatocytes. Despite remarkable progress, further studies are required to improve in vitro cell expansion technology, develop clinically feasible preconditioning regimens, and further optimize immunosuppression regimens or establish ex vivo gene correction-based autologous hepatocyte transplantation.
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiang Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jingqi Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kun Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
8
|
Zhang ZJ, Ding LY, Zuo XL, Feng H, Xia Q. A new paradigm in transplant immunology: At the crossroad of synthetic biology and biomaterials. MED 2023:S2666-6340(23)00142-3. [PMID: 37244257 DOI: 10.1016/j.medj.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/04/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Solid organ transplant (SOT) recipients require meticulously tailored immunosuppressive regimens to minimize graft loss and mortality. Traditional approaches focus on inhibiting effector T cells, while the intricate and dynamic immune responses mediated by other components remain unsolved. Emerging advances in synthetic biology and material science have provided novel treatment modalities with increased diversity and precision to the transplantation community. This review investigates the active interface between these two fields, highlights how living and non-living structures can be engineered and integrated for immunomodulation, and discusses their potential application in addressing the challenges in SOT clinical practice.
Collapse
Affiliation(s)
- Zi-Jie Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China
| | - Lu-Yue Ding
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao-Lei Zuo
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; Shanghai Institute of Transplantation, Shanghai 200127, China; Punan Branch (Shanghai Punan Hospital), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; Shanghai Institute of Transplantation, Shanghai 200127, China.
| |
Collapse
|
9
|
Hussein M, Pasqua M, Pereira U, Benzoubir N, Duclos-Vallée JC, Dubart-Kupperschmitt A, Legallais C, Messina A. Microencapsulated Hepatocytes Differentiated from Human Induced Pluripotent Stem Cells: Optimizing 3D Culture for Tissue Engineering Applications. Cells 2023; 12:cells12060865. [PMID: 36980206 PMCID: PMC10047414 DOI: 10.3390/cells12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Liver cell therapy and in vitro models require functional human hepatocytes, the sources of which are considerably limited. Human induced pluripotent stem cells (hiPSCs) represent a promising and unlimited source of differentiated human hepatocytes. However, when obtained in two-dimensional (2D) cultures these hepatocytes are not fully mature and functional. As three-dimensional culture conditions offer advantageous strategies for differentiation, we describe here a combination of three-dimensional (3D) approaches enabling the successful differentiation of functional hepatocytes from hiPSCs by the encapsulation of hiPSC-derived hepatoblasts in alginate beads of preformed aggregates. The resulting encapsulated and differentiated hepatocytes (E-iHep-Orgs) displayed a high level of albumin synthesis associated with the disappearance of α-fetoprotein (AFP) synthesis, thus demonstrating that the E-iHep-Orgs had reached a high level of maturation, similar to that of adult hepatocytes. Gene expression analysis by RT-PCR and immunofluorescence confirmed this maturation. Further functional assessments demonstrated their enzymatic activities, including lactate and ammonia detoxification, as well as biotransformation activities of Phase I and Phase II enzymes. This study provides proof of concept regarding the benefits of combining three-dimensional techniques (guided aggregation and microencapsulation) with liver differentiation protocols as a robust approach to generate mature and functional hepatocytes that offer a permanent and unlimited source of hepatocytes. Based on these encouraging results, our combined conditions to produce mature hepatocytes from hiPSCs could be extended to liver tissue engineering and bioartificial liver (BAL) applications at the human scale for which large biomasses are mandatory.
Collapse
Affiliation(s)
- Marwa Hussein
- UMR_S 1193, INSERM/Université Paris Saclay, F-94800 Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
| | - Mattia Pasqua
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, F-60203 Compiegne, France
| | - Ulysse Pereira
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, F-60203 Compiegne, France
| | - Nassima Benzoubir
- UMR_S 1193, INSERM/Université Paris Saclay, F-94800 Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
| | - Jean-Charles Duclos-Vallée
- UMR_S 1193, INSERM/Université Paris Saclay, F-94800 Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
| | - Anne Dubart-Kupperschmitt
- UMR_S 1193, INSERM/Université Paris Saclay, F-94800 Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
| | - Cecile Legallais
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, F-60203 Compiegne, France
- Correspondence: (C.L.); (A.M.)
| | - Antonietta Messina
- UMR_S 1193, INSERM/Université Paris Saclay, F-94800 Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
- Correspondence: (C.L.); (A.M.)
| |
Collapse
|
10
|
Blackford SJI, Yu TTL, Norman MDA, Syanda AM, Manolakakis M, Lachowski D, Yan Z, Guo Y, Garitta E, Riccio F, Jowett GM, Ng SS, Vernia S, Del Río Hernández AE, Gentleman E, Rashid ST. RGD density along with substrate stiffness regulate hPSC hepatocyte functionality through YAP signalling. Biomaterials 2023; 293:121982. [PMID: 36640555 DOI: 10.1016/j.biomaterials.2022.121982] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Human pluripotent stem cell-derived hepatocytes (hPSC-Heps) may be suitable for treating liver diseases, but differentiation protocols often fail to yield adult-like cells. We hypothesised that replicating healthy liver niche biochemical and biophysical cues would produce hepatocytes with desired metabolic functionality. Using 2D synthetic hydrogels which independently control mechanical properties and biochemical cues, we found that culturing hPSC-Heps on surfaces matching the stiffness of fibrotic liver tissue upregulated expression of genes for RGD-binding integrins, and increased expression of YAP/TAZ and their transcriptional targets. Alternatively, culture on soft, healthy liver-like substrates drove increases in cytochrome p450 activity and ureagenesis. Knockdown of ITGB1 or reducing RGD-motif-containing peptide concentration in stiff hydrogels reduced YAP activity and improved metabolic functionality; however, on soft substrates, reducing RGD concentration had the opposite effect. Furthermore, targeting YAP activity with verteporfin or forskolin increased cytochrome p450 activity, with forskolin dramatically enhancing urea synthesis. hPSC-Heps could also be successfully encapsulated within RGD peptide-containing hydrogels without negatively impacting hepatic functionality, and compared to 2D cultures, 3D cultured hPSC-Heps secreted significantly less fetal liver-associated alpha-fetoprotein, suggesting furthered differentiation. Our platform overcomes technical hurdles in replicating the liver niche, and allowed us to identify a role for YAP/TAZ-mediated mechanosensing in hPSC-Hep differentiation.
Collapse
Affiliation(s)
- Samuel J I Blackford
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Centre for Craniofacial & Regenerative Biology, King's College London, UK; Centre for Gene Therapy & Regenerative Medicine, King's College London, UK; NIHR Imperial BRC iPSC and Organoid Core Facility, Imperial College London, UK.
| | - Tracy T L Yu
- Centre for Craniofacial & Regenerative Biology, King's College London, UK
| | - Michael D A Norman
- Centre for Craniofacial & Regenerative Biology, King's College London, UK
| | - Adam M Syanda
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; NIHR Imperial BRC iPSC and Organoid Core Facility, Imperial College London, UK
| | - Michail Manolakakis
- MRC London Institute of Medical Sciences, UK; Institute of Clinical Sciences, Imperial College London, UK
| | - Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, UK
| | - Ziqian Yan
- Centre for Craniofacial & Regenerative Biology, King's College London, UK
| | - Yunzhe Guo
- Centre for Craniofacial & Regenerative Biology, King's College London, UK
| | - Elena Garitta
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; NIHR Imperial BRC iPSC and Organoid Core Facility, Imperial College London, UK
| | - Federica Riccio
- Centre for Gene Therapy & Regenerative Medicine, King's College London, UK
| | - Geraldine M Jowett
- Centre for Craniofacial & Regenerative Biology, King's College London, UK; Centre for Gene Therapy & Regenerative Medicine, King's College London, UK
| | - Soon Seng Ng
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; NIHR Imperial BRC iPSC and Organoid Core Facility, Imperial College London, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, UK; Institute of Clinical Sciences, Imperial College London, UK
| | | | - Eileen Gentleman
- Centre for Craniofacial & Regenerative Biology, King's College London, UK.
| | - S Tamir Rashid
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; NIHR Imperial BRC iPSC and Organoid Core Facility, Imperial College London, UK.
| |
Collapse
|
11
|
Paterson HAB, Yu S, Artigas N, Prado MA, Haberman N, Wang YF, Jobbins AM, Pahita E, Mokochinski J, Hall Z, Guerin M, Paulo JA, Ng SS, Villarroya F, Rashid ST, Le Goff W, Lenhard B, Cebola I, Finley D, Gygi SP, Sibley CR, Vernia S. Liver RBFOX2 regulates cholesterol homeostasis via Scarb1 alternative splicing in mice. Nat Metab 2022; 4:1812-1829. [PMID: 36536133 PMCID: PMC9771820 DOI: 10.1038/s42255-022-00681-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/10/2022] [Indexed: 12/24/2022]
Abstract
RNA alternative splicing (AS) expands the regulatory potential of eukaryotic genomes. The mechanisms regulating liver-specific AS profiles and their contribution to liver function are poorly understood. Here, we identify a key role for the splicing factor RNA-binding Fox protein 2 (RBFOX2) in maintaining cholesterol homeostasis in a lipogenic environment in the liver. Using enhanced individual-nucleotide-resolution ultra-violet cross-linking and immunoprecipitation, we identify physiologically relevant targets of RBFOX2 in mouse liver, including the scavenger receptor class B type I (Scarb1). RBFOX2 function is decreased in the liver in diet-induced obesity, causing a Scarb1 isoform switch and alteration of hepatocyte lipid homeostasis. Our findings demonstrate that specific AS programmes actively maintain liver physiology, and underlie the lipotoxic effects of obesogenic diets when dysregulated. Splice-switching oligonucleotides targeting this network alleviate obesity-induced inflammation in the liver and promote an anti-atherogenic lipoprotein profile in the blood, underscoring the potential of isoform-specific RNA therapeutics for treating metabolism-associated diseases.
Collapse
Affiliation(s)
- Helen A B Paterson
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Sijia Yu
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Natalia Artigas
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida Hospital Universitario, Oviedo, Spain
| | - Nejc Haberman
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Andrew M Jobbins
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Elena Pahita
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Joao Mokochinski
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Zoe Hall
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Maryse Guerin
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Paris, France
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Soon Seng Ng
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Francesc Villarroya
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
| | - Sheikh Tamir Rashid
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Wilfried Le Goff
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Paris, France
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christopher R Sibley
- Institute of Quantitative Biology, Biochemistry and Biotechnology. School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
12
|
Regeneration of insulin-producing cells from iPS cells using functionalized scaffolds and solid lipid nanoparticles. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Jobbins AM, Haberman N, Artigas N, Amourda C, Paterson HAB, Yu S, Blackford SJI, Montoya A, Dore M, Wang YF, Sardini A, Cebola I, Zuber J, Rashid ST, Lenhard B, Vernia S. Dysregulated RNA polyadenylation contributes to metabolic impairment in non-alcoholic fatty liver disease. Nucleic Acids Res 2022; 50:3379-3393. [PMID: 35293570 PMCID: PMC8989518 DOI: 10.1093/nar/gkac165] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Pre-mRNA processing is an essential mechanism for the generation of mature mRNA and the regulation of gene expression in eukaryotic cells. While defects in pre-mRNA processing have been implicated in a number of diseases their involvement in metabolic pathologies is still unclear. Here, we show that both alternative splicing and alternative polyadenylation, two major steps in pre-mRNA processing, are significantly altered in non-alcoholic fatty liver disease (NAFLD). Moreover, we find that Serine and Arginine Rich Splicing Factor 10 (SRSF10) binding is enriched adjacent to consensus polyadenylation motifs and its expression is significantly decreased in NAFLD, suggesting a role mediating pre-mRNA dysregulation in this condition. Consistently, inactivation of SRSF10 in mouse and human hepatocytes in vitro, and in mouse liver in vivo, was found to dysregulate polyadenylation of key metabolic genes such as peroxisome proliferator-activated receptor alpha (PPARA) and exacerbate diet-induced metabolic dysfunction. Collectively our work implicates dysregulated pre-mRNA polyadenylation in obesity-induced liver disease and uncovers a novel role for SRSF10 in this process.
Collapse
Affiliation(s)
- Andrew M Jobbins
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Nejc Haberman
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Natalia Artigas
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Christopher Amourda
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Helen A B Paterson
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Sijia Yu
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Samuel J I Blackford
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London W12 0NN, UK
| | - Alex Montoya
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Marian Dore
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alessandro Sardini
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion & Reproduction, Imperial College London, London W12 0NN, UK
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Sheikh Tamir Rashid
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London W12 0NN, UK
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
14
|
Li CZ, Ogawa H, Ng SS, Chen X, Kishimoto E, Sakabe K, Fukami A, Hu YC, Mayhew CN, Hellmann J, Miethke A, Tasnova NL, Blackford SJ, Tang ZM, Syanda AM, Ma L, Xiao F, Sambrotta M, Tavabie O, Soares F, Baker O, Danovi D, Hayashi H, Thompson RJ, Rashid ST, Asai A. Human iPSC-derived hepatocyte system models cholestasis with tight junction protein 2 deficiency. JHEP Rep 2022; 4:100446. [PMID: 35284810 PMCID: PMC8904612 DOI: 10.1016/j.jhepr.2022.100446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND & AIMS The truncating mutations in tight junction protein 2 (TJP2) cause progressive cholestasis, liver failure, and hepatocyte carcinogenesis. Due to the lack of effective model systems, there are no targeted medications for the liver pathology with TJP2 deficiency. We leveraged the technologies of patient-specific induced pluripotent stem cells (iPSC) and CRISPR genome-editing, and we aim to establish a disease model which recapitulates phenotypes of patients with TJP2 deficiency. METHODS We differentiated iPSC to hepatocyte-like cells (iHep) on the Transwell membrane in a polarized monolayer. Immunofluorescent staining of polarity markers was detected by a confocal microscope. The epithelial barrier function and bile acid transport of bile canaliculi were quantified between the two chambers of Transwell. The morphology of bile canaliculi was measured in iHep cultured in the Matrigel sandwich system using a fluorescent probe and live-confocal imaging. RESULTS The iHep differentiated from iPSC with TJP2 mutations exhibited intracellular inclusions of disrupted apical membrane structures, distorted canalicular networks, altered distribution of apical and basolateral markers/transporters. The directional bile acid transport of bile canaliculi was compromised in the mutant hepatocytes, resembling the disease phenotypes observed in the liver of patients. CONCLUSIONS Our iPSC-derived in vitro hepatocyte system revealed canalicular membrane disruption in TJP2 deficient hepatocytes and demonstrated the ability to model cholestatic disease with TJP2 deficiency to serve as a platform for further pathophysiologic study and drug discovery. LAY SUMMARY We investigated a genetic liver disease, progressive familial intrahepatic cholestasis (PFIC), which causes severe liver disease in newborns and infants due to a lack of gene called TJP2. By using cutting-edge stem cell technology and genome editing methods, we established a novel disease modeling system in cell culture experiments. Our experiments demonstrated that the lack of TJP2 induced abnormal cell polarity and disrupted bile acid transport. These findings will lead to the subsequent investigation to further understand disease mechanisms and develop an effective treatment.
Collapse
Key Words
- ALB, albumin
- ASGR2, asialoglycoprotein receptor 2
- ATP1a1, ATPases subunit alpha-1
- BMP4, bone morphogenetic protein 4
- BSA-FAF, bovine serum albumin fatty acid-free
- BSEP, bile salt export pump
- Bile acid transport
- CDFDA, 5-(and-6)-carboxy-2′,7′-dichlorofluorescein
- Cellular polarity
- DE, definitive endoderm
- DILI, drug-induced liver injury
- FGF2, fibroblast growth factor 2
- GCA, glycocholate
- GCDCA, glycochenodeoxycholate
- HCM, Hepatocyte Culture Medium
- HE, hepatic endodermal
- HGF, hepatocyte growth factor
- HNF4a, hepatic nuclear factor 4a
- MDCKII, Madin–Darby canine kidney II
- MRP2, multidrug resistance-associated protein 2
- NTCP, Na+-TCA cotransporter
- PFIC (progressive familial intrahepatic cholestasis)
- PFIC, progressive familial intrahepatic cholestasis
- PI, propidium iodide
- RT-qPCR, quantitative reverse transcription PCR
- TCA, taurocholic acid
- TCDCA, taurochenodeoxycholate
- TEER, transepithelial electrical resistance
- TEM, transmission electron microscopy
- TJP1, tight junction protein 1
- TJP2, tight junction protein 2
- iHep, iPSC-derived hepatocytes
- iPSC, induced pluripotent stem cell
- sgRNA, single-guide RNA
- ssODN, single-stranded oligonucleotide-DNA
Collapse
Affiliation(s)
- Chao Zheng Li
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Hiromi Ogawa
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Soon Seng Ng
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Xindi Chen
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Eriko Kishimoto
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kokoro Sakabe
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Aiko Fukami
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Yueh-Chiang Hu
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | | | - Jennifer Hellmann
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, The University of Cincinnati, Cincinnati, OH, USA
| | - Alexander Miethke
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, The University of Cincinnati, Cincinnati, OH, USA
| | - Nahrin L. Tasnova
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | | | - Zu Ming Tang
- Stem Cell Hotel, King’s College London, London, UK
| | - Adam M. Syanda
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Liang Ma
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Fang Xiao
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Melissa Sambrotta
- Institute of Liver Studies King’s College London, London, United Kingdom
| | - Oliver Tavabie
- Institute of Liver Studies King’s College London, London, United Kingdom
| | | | - Oliver Baker
- Genome Editing and Embryology Core Facility, King’s College London, London, UK
| | - Davide Danovi
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Hisamitsu Hayashi
- Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | | | - S. Tamir Rashid
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Akihiro Asai
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, The University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
15
|
Syanda AM, Kringstad VI, Blackford SJI, Kjesbu JS, Ng SS, Ma L, Xiao F, Coron AE, Rokstad AMA, Modi S, Rashid ST, Strand BL. Sulfated Alginate Reduces Pericapsular Fibrotic Overgrowth on Encapsulated cGMP-Compliant hPSC-Hepatocytes in Mice. Front Bioeng Biotechnol 2022; 9:816542. [PMID: 35308825 PMCID: PMC8928731 DOI: 10.3389/fbioe.2021.816542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Intra-peritoneal placement of alginate encapsulated human induced pluripotent stem cell-derived hepatocytes (hPSC-Heps) represents a potential new bridging therapy for acute liver failure. One of the rate-limiting steps that needs to be overcome to make such a procedure more efficacious and safer is to reduce the accumulation of fibrotic tissue around the encapsulated cells to allow the free passage of relevant molecules in and out for metabolism. Novel chemical compositions of alginate afford the possibility of achieving this aim. We accordingly used sulfated alginate and demonstrated that this material reduced fibrotic overgrowth whilst not impeding the process of encapsulation nor cell function. Cumulatively, this suggests sulfated alginate could be a more suitable material to encapsulate hPSC-hepatocyte prior to human use.
Collapse
Affiliation(s)
- Adam M. Syanda
- Department of Metabolism, Digestion and Reproduction, Imperial College London (ICL), London, United Kingdom
| | - Vera I. Kringstad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Samuel J. I. Blackford
- Department of Metabolism, Digestion and Reproduction, Imperial College London (ICL), London, United Kingdom
| | - Joachim S. Kjesbu
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Soon Seng Ng
- Department of Metabolism, Digestion and Reproduction, Imperial College London (ICL), London, United Kingdom
| | - Liang Ma
- Department of Metabolism, Digestion and Reproduction, Imperial College London (ICL), London, United Kingdom
| | - Fang Xiao
- Department of Metabolism, Digestion and Reproduction, Imperial College London (ICL), London, United Kingdom
| | - Abba E. Coron
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne Mari A. Rokstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sunil Modi
- Department of Metabolism, Digestion and Reproduction, Imperial College London (ICL), London, United Kingdom
| | - S. Tamir Rashid
- Department of Metabolism, Digestion and Reproduction, Imperial College London (ICL), London, United Kingdom
| | - Berit Løkensgard Strand
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- *Correspondence: Berit Løkensgard Strand,
| |
Collapse
|
16
|
Ashmore-Harris C, Fruhwirth GO. Generation of In Vivo Traceable Hepatocyte-Like Cells from Human iPSCs. Methods Mol Biol 2022; 2544:15-49. [PMID: 36125708 DOI: 10.1007/978-1-0716-2557-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this chapter, we describe a protocol for differentiation of human-induced pluripotent stem cells (iPSCs) into hepatocyte-like cells (HLCs) and their transduction with a lentivirus for gene transfer. Here, we engineer them to express the human sodium iodide symporter, which can be exploited as a radionuclide reporter gene, thereby enabling these cells to be tracked in vivo by single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. Differentiation of HLCs from iPSCs involves three steps: induction of iPSCs to definitive endoderm, differentiation to a hepatic progenitor cell population, and maturation of immature HLCs. Once proliferation of hepatic progenitors has ceased and an immature HLC population is generated, lentiviral transduction can be performed. The immature hepatic gene expression profile/morphology at the stage of transduction will be compatible with further maturation following transgene expression either in vitro or in vivo, with expression of the transgene retained. We detail how transgenic cells can be imaged in vivo. While we provide a protocol for the NIS reporter gene, the cell engineering aspects of this protocol are transferable for use with other (reporter) genes if desired.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Gilbert O Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK.
| |
Collapse
|
17
|
Wang YC, Wang ZJ, Zhang C, Ning BF. Cell reprogramming in liver with potential clinical correlations. J Dig Dis 2022; 23:13-21. [PMID: 34921720 DOI: 10.1111/1751-2980.13072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
The theory of cell reprogramming has developed rapidly during the past decades. Cell reprogramming has been widely used in the construction of experimental models and cytotherapy for certain diseases. Hepatocyte-like cells that are important for the treatment of end-stage liver disease can now be obtained with a variety of reprogramming techniques. However, improving the differentiation status and physiological function of these cells remains challenging. Hepatocytes can transdifferentiate into other types of cells directly, whereas other types of cells can also transdifferentiate into hepatocyte-like cells both in vitro and in vivo. Moreover, cell reprogramming is to some extent similar to malignant cell transformation. During the initiation and progression of liver cancer, cell reprogramming is always associated with cancer metastasis and chemoresistance. In this review, we summarized the research related to cell reprogramming in liver and highlighted the potential effects of cell reprogramming in the pathogenesis and treatment of liver diseases.
Collapse
Affiliation(s)
- Yi Chuan Wang
- Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, China
| | - Zhi Jie Wang
- Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, China
| | - Cheng Zhang
- Department of Gastroenterology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Bei Fang Ning
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
18
|
de Hoyos-Vega JM, Hong HJ, Stybayeva G, Revzin A. Hepatocyte cultures: From collagen gel sandwiches to microfluidic devices with integrated biosensors. APL Bioeng 2021; 5:041504. [PMID: 34703968 PMCID: PMC8519630 DOI: 10.1063/5.0058798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocytes are parenchymal cells of the liver responsible for drug detoxification, urea and bile production, serum protein synthesis, and glucose homeostasis. Hepatocytes are widely used for drug toxicity studies in bioartificial liver devices and for cell-based liver therapies. Because hepatocytes are highly differentiated cells residing in a complex microenvironment in vivo, they tend to lose hepatic phenotype and function in vitro. This paper first reviews traditional culture approaches used to rescue hepatic function in vitro and then discusses the benefits of emerging microfluidic-based culture approaches. We conclude by reviewing integration of hepatocyte cultures with bioanalytical or sensing approaches.
Collapse
Affiliation(s)
- Jose M. de Hoyos-Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Hye Jin Hong
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| |
Collapse
|
19
|
Anand H, Nulty J, Dhawan A. Cell therapy in congenital inherited hepatic disorders. Best Pract Res Clin Gastroenterol 2021; 56-57:101772. [PMID: 35331403 DOI: 10.1016/j.bpg.2021.101772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 01/31/2023]
Abstract
Congenital inherited hepatic disorders (CIHDs) are a set of diverse and heterogeneous group of genetic disorders leading to a defect in an enzyme or transporter. Most of these disorders are currently treated by liver transplantation as standard of care. Improved surgical techniques and post-operative care has led to a wider availability and success of liver transplantation program worldwide. However liver transplantation has its own limitations due to invasive surgery and lifelong use of immunosuppressive agents. Our experience from auxiliary liver transplantation (where right or the left lobe of the patient liver is replaced with a healthy liver donor) demonstrated successful treatment of the underlying defect of noncirrhotic metabolic disorder suggesting that whole liver replacement may not be necessary to achieve a change in phenotype. Large number of animal studies in human models of CIHD have shown success of hepatocyte transplantation leading to its human use. This review addresses the current state of human hepatocyte transplantation in the management of CIHDs with bottlenecks to its wider application and future perspectives.
Collapse
Affiliation(s)
- Hanish Anand
- King's College Hospital NHS Trust: King's College Hospital NHS Foundation Trust, United Kingdom; DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - Jessica Nulty
- King's College Hospital NHS Trust: King's College Hospital NHS Foundation Trust, United Kingdom; DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - Anil Dhawan
- King's College Hospital NHS Trust: King's College Hospital NHS Foundation Trust, United Kingdom; DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK.
| |
Collapse
|
20
|
Luce E, Messina A, Caillaud A, Si-Tayeb K, Cariou B, Bur E, Dubart-Kupperschmitt A, Duclos-Vallée JC. [Hepatic organoids: What are the challenges?]. Med Sci (Paris) 2021; 37:902-909. [PMID: 34647879 DOI: 10.1051/medsci/2021119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The study and understanding of liver organogenesis have allowed the development of protocols for pluripotent stem cells differentiation to overcome the lack of primary cells, providing an almost unlimited source of liver cells. However, as their differentiation in conventional 2D culture systems has shown serious limits, hepatic organoids derived from human pluripotent stem cells represent a promising alternative. These complex and organized structures, containing one or more cell types, make it possible to recapitulate in vitro some of the organ functions, thus enabling numerous applications such as the study of the liver development, the mass production of functional liver cells for transplantation or the development of bioartificial livers, as well as the in vitro modeling of hepatic pathologies allowing high throughput applications in drug screening or toxicity studies. Economic and ethical issues must also be taken into account before using these organoids in therapeutic applications.
Collapse
Affiliation(s)
- Eléanor Luce
- Inserm UMRS 1193, Université Paris-Saclay, 12-14 avenue Paul Vaillant Couturier, F-94800 Villejuif, France - Fédération hospitalo-universitaire Hépatinov, hôpital Paul Brousse, F-94800 Villejuif, France
| | - Antonietta Messina
- Inserm UMRS 1193, Université Paris-Saclay, 12-14 avenue Paul Vaillant Couturier, F-94800 Villejuif, France - Fédération hospitalo-universitaire Hépatinov, hôpital Paul Brousse, F-94800 Villejuif, France
| | - Amandine Caillaud
- Université de Nantes, CHU Nantes, CNRS, Inserm, Institut du thorax, F-44000 Nantes, France
| | - Karim Si-Tayeb
- Université de Nantes, CHU Nantes, CNRS, Inserm, Institut du thorax, F-44000 Nantes, France
| | - Bertrand Cariou
- Université de Nantes, CHU Nantes, CNRS, Inserm, Institut du thorax, F-44000 Nantes, France
| | - Etienne Bur
- Fédération hospitalo-universitaire Hépatinov, hôpital Paul Brousse, F-94800 Villejuif, France - Institut français de BioFabrication, hôpital Paul Brousse, F-94800 Villejuif, France
| | - Anne Dubart-Kupperschmitt
- Inserm UMRS 1193, Université Paris-Saclay, 12-14 avenue Paul Vaillant Couturier, F-94800 Villejuif, France - Fédération hospitalo-universitaire Hépatinov, hôpital Paul Brousse, F-94800 Villejuif, France - Institut français de BioFabrication, hôpital Paul Brousse, F-94800 Villejuif, France
| | - Jean-Charles Duclos-Vallée
- Inserm UMRS 1193, Université Paris-Saclay, 12-14 avenue Paul Vaillant Couturier, F-94800 Villejuif, France - Fédération hospitalo-universitaire Hépatinov, hôpital Paul Brousse, F-94800 Villejuif, France - Institut français de BioFabrication, hôpital Paul Brousse, F-94800 Villejuif, France
| |
Collapse
|
21
|
Luce E, Messina A, Duclos-Vallée JC, Dubart-Kupperschmitt A. Advanced Techniques and Awaited Clinical Applications for Human Pluripotent Stem Cell Differentiation into Hepatocytes. Hepatology 2021; 74:1101-1116. [PMID: 33420753 PMCID: PMC8457237 DOI: 10.1002/hep.31705] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/16/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022]
Abstract
Liver transplantation is currently the only curative treatment for several liver diseases such as acute liver failure, end-stage liver disorders, primary liver cancers, and certain genetic conditions. Unfortunately, despite improvements to transplantation techniques, including live donor transplantation, the number of organs available remains insufficient to meet patient needs. Hepatocyte transplantation has enabled some encouraging results as an alternative to organ transplantation, but primary hepatocytes are little available and cannot be amplified using traditional two-dimensional culture systems. Indeed, although recent studies have tended to show that three-dimensional culture enables long-term hepatocyte culture, it is still agreed that, like most adult primary cell types, hepatocytes remain refractory to in vitro expansion. Because of their exceptional properties, human pluripotent stem cells (hPSCs) can be amplified indefinitely and differentiated into any cell type, including liver cells. While many teams have worked on hepatocyte differentiation, there has been a consensus that cells obtained after hPSC differentiation have more fetal than adult hepatocyte characteristics. New technologies have been used to improve the differentiation process in recent years. This review discusses the technical improvements made to hepatocyte differentiation protocols and the clinical approaches developed to date and anticipated in the near future.
Collapse
Affiliation(s)
- Eléanor Luce
- INSERMUniversité Paris-SaclayUnité Mixte de Recherche (UMR_S) 1193VillejuifFrance.,Fédération Hospitalo-Universitaire HépatinovHôpital Paul-BrousseVillejuifFrance
| | - Antonietta Messina
- INSERMUniversité Paris-SaclayUnité Mixte de Recherche (UMR_S) 1193VillejuifFrance.,Fédération Hospitalo-Universitaire HépatinovHôpital Paul-BrousseVillejuifFrance
| | - Jean-Charles Duclos-Vallée
- INSERMUniversité Paris-SaclayUnité Mixte de Recherche (UMR_S) 1193VillejuifFrance.,Fédération Hospitalo-Universitaire HépatinovHôpital Paul-BrousseVillejuifFrance
| | - Anne Dubart-Kupperschmitt
- INSERMUniversité Paris-SaclayUnité Mixte de Recherche (UMR_S) 1193VillejuifFrance.,Fédération Hospitalo-Universitaire HépatinovHôpital Paul-BrousseVillejuifFrance
| |
Collapse
|
22
|
Sinenko SA, Ponomartsev SV, Tomilin AN. Pluripotent stem cell-based gene therapy approach: human de novo synthesized chromosomes. Cell Mol Life Sci 2021; 78:1207-1220. [PMID: 33011821 PMCID: PMC11072874 DOI: 10.1007/s00018-020-03653-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
A novel approach in gene therapy was introduced 20 years ago since artificial non-integrative chromosome-based vectors containing gene loci size inserts were engineered. To date, different human artificial chromosomes (HAC) were generated with the use of de novo construction or "top-down" engineering approaches. The HAC-based therapeutic approach includes ex vivo gene transferring and correction of pluripotent stem cells (PSCs) or highly proliferative modified stem cells. The current progress in the technology of induced PSCs, integrating with the HAC technology, resulted in a novel platform of stem cell-based tissue replacement therapy for the treatment of genetic disease. Nowadays, the sophisticated and laborious HAC technology has significantly improved and is now closer to clinical studies. In here, we reviewed the achievements in the technology of de novo synthesized HACs for a chromosome transfer for developing gene therapy tissue replacement models of monogenic human diseases.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, St-Petersburg, 194064, Russia.
| | - Sergey V Ponomartsev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, St-Petersburg, 194064, Russia
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, St-Petersburg, 194064, Russia.
- Institute of Translational Biomedicine, St-Petersburg State University, 7-9, Universitetskaya Emb, St-Petersburg, 199034, Russia.
| |
Collapse
|
23
|
Cell therapy for advanced liver diseases: Repair or rebuild. J Hepatol 2021; 74:185-199. [PMID: 32976865 DOI: 10.1016/j.jhep.2020.09.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/18/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Advanced liver disease presents a significant worldwide health and economic burden and accounts for 3.5% of global mortality. When liver disease progresses to organ failure the only effective treatment is liver transplantation, which necessitates lifelong immunosuppression and carries associated risks. Furthermore, the shortage of suitable donor organs means patients may die waiting for a suitable transplant organ. Cell therapies have made their way from animal studies to a small number of early clinical trials. Herein, we review the current state of cell therapies for liver disease and the mechanisms underpinning their actions (to repair liver tissue or rebuild functional parenchyma). We also discuss cellular therapies that are on the clinical horizon and challenges that must be overcome before routine clinical use is a possibility.
Collapse
|
24
|
Abstract
Organoids are in vitro miniaturized and simplified model systems of organs that have gained enormous interest for modelling tissue development and disease, and for personalized medicine, drug screening and cell therapy. Despite considerable success in culturing physiologically relevant organoids, challenges remain to achieve real-life applications. In particular, the high variability of self-organizing growth and restricted experimental and analytical access hamper the translatability of organoid systems. In this Review, we argue that many limitations of traditional organoid culture can be addressed by engineering approaches at all levels of organoid systems. We investigate cell surface and genetic engineering approaches, and discuss stem cell niche engineering based on the design of matrices that allow spatiotemporal control of organoid growth and shape-guided morphogenesis. We examine how microfluidic approaches and lessons learnt from organs-on-a-chip enable the integration of mechano-physiological parameters and increase accessibility of organoids to improve functional readouts. Applying engineering principles to organoids increases reproducibility and provides experimental control, which will, ultimately, be required to enable clinical translation.
Collapse
Affiliation(s)
- Moritz Hofer
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthias P. Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, School of Basic Science (SB), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
25
|
Faruqu FN, Liam‐Or R, Zhou S, Nip R, Al‐Jamal KT. Defined serum-free three-dimensional culture of umbilical cord-derived mesenchymal stem cells yields exosomes that promote fibroblast proliferation and migration in vitro. FASEB J 2021; 35:e21206. [PMID: 33368666 PMCID: PMC7986687 DOI: 10.1096/fj.202001768rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
Stem cell-derived exosomes are emerging as novel and clinically relevant cell-free therapeutics for regenerative therapy. This work focused on investigating the stimulation of fibroblasts by exosomes derived from umbilical cord-derived mesenchymal stem cells (ucMSC) in a defined serum-free three-dimensional (3D) culture. 3D culture of ucMSC was carried out in medium supplemented with KnockOut serum replacement (KO-medium) using the Aggrewell system. ucMSC in KO-medium formed spheroids with maintained size and integrity throughout culture. This enabled the isolation of vesicles from ucMSC spheroids in KO-medium with sizes that fall within the exosomal size range and were positive for the expression of canonical exosomal markers CD63, CD9, CD81, Alix, and TSG101. The ucMSC-derived exosomes (ExoucMSC ) were shown to significantly increase the migration and proliferation of murine fibroblasts in vitro. To conclude, 3D culture of ucMSC in defined serum-free KO-medium formed viable spheroids which enabled the isolation of ExoucMSC with the potential of accelerating wound healing.
Collapse
Affiliation(s)
- Farid N. Faruqu
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | - Revadee Liam‐Or
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | - Shuai Zhou
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | - Rebecca Nip
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | | |
Collapse
|
26
|
Nath SC, Harper L, Rancourt DE. Cell-Based Therapy Manufacturing in Stirred Suspension Bioreactor: Thoughts for cGMP Compliance. Front Bioeng Biotechnol 2020; 8:599674. [PMID: 33324625 PMCID: PMC7726241 DOI: 10.3389/fbioe.2020.599674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022] Open
Abstract
Cell-based therapy (CBT) is attracting much attention to treat incurable diseases. In recent years, several clinical trials have been conducted using human pluripotent stem cells (hPSCs), and other potential therapeutic cells. Various private- and government-funded organizations are investing in finding permanent cures for diseases that are difficult or expensive to treat over a lifespan, such as age-related macular degeneration, Parkinson’s disease, or diabetes, etc. Clinical-grade cell manufacturing requiring current good manufacturing practices (cGMP) has therefore become an important issue to make safe and effective CBT products. Current cell production practices are adopted from conventional antibody or protein production in the pharmaceutical industry, wherein cells are used as a vector to produce the desired products. With CBT, however, the “cells are the final products” and sensitive to physico- chemical parameters and storage conditions anywhere between isolation and patient administration. In addition, the manufacturing of cellular products involves multi-stage processing, including cell isolation, genetic modification, PSC derivation, expansion, differentiation, purification, characterization, cryopreservation, etc. Posing a high risk of product contamination, these can be time- and cost- prohibitive due to maintenance of cGMP. The growing demand of CBT needs integrated manufacturing systems that can provide a more simple and cost-effective platform. Here, we discuss the current methods and limitations of CBT, based upon experience with biologics production. We review current cell manufacturing integration, automation and provide an overview of some important considerations and best cGMP practices. Finally, we propose how multi-stage cell processing can be integrated into a single bioreactor, in order to develop streamlined cGMP-compliant cell processing systems.
Collapse
Affiliation(s)
- Suman C Nath
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lane Harper
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Derrick E Rancourt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Abstract
Over the last decade, there has been a considerable progress in the development of cell therapy products for the treatment of liver diseases. The quest to generate well-defined homogenous cell populations with defined mechanism(s) of action has enabled the progression from use of autologous bone marrow stem cells comprising of heterogeneous cell populations to allogeneic cell types such as monocyte-derived macrophages, regulatory T cells, mesenchymal stromal cells, macrophages, etc. There is growing evidence regarding the multiple molecular mechanisms pivotal to various therapeutic effects and hence, careful selection of cell therapy product for the desired putative effects is crucial. In this review, we have presented an overview of the cell therapies that have been developed thus far, with preclinical and clinical evidence for their use in liver disease. Limitations associated with these therapies have also been discussed. Despite the advances made, there remain multiple challenges to overcome before cell therapies can be considered as viable treatment options, and these include larger scale clinical trials, scalable production of cells according to good manufacturing practice standards, pathways for delivery of cell therapy within hospital environments, and costs associated with the production.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Reenam S Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
28
|
Zhang Y, De Mets R, Monzel C, Acharya V, Toh P, Chin JFL, Van Hul N, Ng IC, Yu H, Ng SS, Tamir Rashid S, Viasnoff V. Biomimetic niches reveal the minimal cues to trigger apical lumen formation in single hepatocytes. NATURE MATERIALS 2020; 19:1026-1035. [PMID: 32341512 DOI: 10.1038/s41563-020-0662-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
The symmetry breaking of protein distribution and cytoskeleton organization is an essential aspect for the development of apicobasal polarity. In embryonic cells this process is largely cell autonomous, while differentiated epithelial cells collectively polarize during epithelium formation. Here, we demonstrate that the de novo polarization of mature hepatocytes does not require the synchronized development of apical poles on neighbouring cells. De novo polarization at the single-cell level by mere contact with the extracellular matrix and immobilized cadherin defining a polarizing axis. The creation of these single-cell liver hemi-canaliculi allows unprecedented imaging resolution and control and over the lumenogenesis process. We show that the density and localization of cadherins along the initial cell-cell contact act as key triggers of the reorganization from lateral to apical actin cortex. The minimal cues necessary to trigger the polarization of hepatocytes enable them to develop asymmetric lumens with ectopic epithelial cells originating from the kidney, breast or colon.
Collapse
Affiliation(s)
- Yue Zhang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Richard De Mets
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Cornelia Monzel
- Experimental Medical Physics, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Pearlyn Toh
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Jasmine Fei Li Chin
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Noémi Van Hul
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Inn Chuan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Soon Seng Ng
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - S Tamir Rashid
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
- Institute for Liver Studies, King's College Hospital, King's College London, London, UK
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Department of Biological Science, National University of Singapore, Singapore, Singapore.
- Centre National de la Recherche Scientifique Unité Mixte Internationale, Singapore, Singapore.
| |
Collapse
|
29
|
iPSC-Derived Liver Organoids: A Journey from Drug Screening, to Disease Modeling, Arriving to Regenerative Medicine. Int J Mol Sci 2020; 21:ijms21176215. [PMID: 32867371 PMCID: PMC7503935 DOI: 10.3390/ijms21176215] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
Liver transplantation is the most common treatment for patients suffering from liver failure that is caused by congenital diseases, infectious agents, and environmental factors. Despite a high rate of patient survival following transplantation, organ availability remains the key limiting factor. As such, research has focused on the transplantation of different cell types that are capable of repopulating and restoring liver function. The best cellular mix capable of engrafting and proliferating over the long-term, as well as the optimal immunosuppression regimens, remain to be clearly well-defined. Hence, alternative strategies in the field of regenerative medicine have been explored. Since the discovery of induced pluripotent stem cells (iPSC) that have the potential of differentiating into a broad spectrum of cell types, many studies have reported the achievement of iPSCs differentiation into liver cells, such as hepatocytes, cholangiocytes, endothelial cells, and Kupffer cells. In parallel, an increasing interest in the study of self-assemble or matrix-guided three-dimensional (3D) organoids have paved the way for functional bioartificial livers. In this review, we will focus on the recent breakthroughs in the development of iPSCs-based liver organoids and the major drawbacks and challenges that need to be overcome for the development of future applications.
Collapse
|
30
|
Cotovio JP, Fernandes TG. Production of Human Pluripotent Stem Cell-Derived Hepatic Cell Lineages and Liver Organoids: Current Status and Potential Applications. Bioengineering (Basel) 2020; 7:E36. [PMID: 32283585 PMCID: PMC7356351 DOI: 10.3390/bioengineering7020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Liver disease is one of the leading causes of death worldwide, leading to the death of approximately 2 million people per year. Current therapies include orthotopic liver transplantation, however, donor organ shortage remains a great challenge. In addition, the development of novel therapeutics has been limited due to the lack of in vitro models that mimic in vivo liver physiology. Accordingly, hepatic cell lineages derived from human pluripotent stem cells (hPSCs) represent a promising cell source for liver cell therapy, disease modelling, and drug discovery. Moreover, the development of new culture systems bringing together the multiple liver-specific hepatic cell types triggered the development of hPSC-derived liver organoids. Therefore, these human liver-based platforms hold great potential for clinical applications. In this review, the production of the different hepatic cell lineages from hPSCs, including hepatocytes, as well as the emerging strategies to generate hPSC-derived liver organoids will be assessed, while current biomedical applications will be highlighted.
Collapse
Affiliation(s)
| | - Tiago G. Fernandes
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| |
Collapse
|
31
|
Nguyen MP, Jain V, Iansante V, Mitry RR, Filippi C, Dhawan A. Clinical application of hepatocyte transplantation: current status, applicability, limitations, and future outlook. Expert Rev Gastroenterol Hepatol 2020; 14:185-196. [PMID: 32098516 DOI: 10.1080/17474124.2020.1733975] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Hepatocyte transplantation (HT) is a promising alternative to liver transplantation for the treatment of liver-based metabolic diseases and acute liver failure (ALF). However, shortage of good-quality liver tissues, early cell loss post-infusion, reduced cell engraftment and function restricts clinical application.Areas covered: A comprehensive literature search was performed to cover pre-clinical and clinical HT studies. The review discusses the latest developments to address HT limitations: cell sources from marginal/suboptimal donors to neonatal livers, differentiating pluripotent stem cells into hepatocyte-like cells, in vitro expansion, prevention of immune response to transplanted cells by encapsulation or using innate immunity-inhibiting agents, and enhancing engraftment through partial hepatectomy or irradiation.Expert opinion: To date, published data are highly encouraging specially the alginate-encapsulated hepatocyte treatment of children with ALF. Hepatocyte functions can be further improved through co-culturing with mesenchymal stromal cells. Moreover, ex-vivo genetic correction will enable the use of autologous cells in future personalized medicine.
Collapse
Affiliation(s)
- Minh Phuong Nguyen
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Vandana Jain
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Valeria Iansante
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Ragai R Mitry
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Celine Filippi
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| |
Collapse
|
32
|
Improved in vivo efficacy of clinical-grade cryopreserved human hepatocytes in mice with acute liver failure. Cytotherapy 2020; 22:114-121. [PMID: 31987755 DOI: 10.1016/j.jcyt.2019.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 12/21/2022]
Abstract
Clinical hepatocyte transplantation short-term efficacy has been demonstrated; however, some major limitations, mainly due to the shortage of organs, the lack of quality of isolated cells and the low cell engraftment after transplantation, should be solved for increasing its efficacy in clinical applications. Cellular stress during isolation causes an unpredictable loss of attachment ability of the cells, which can be aggravated by cryopreservation and thawing. In this work, we focused on the use of a Good Manufacturing Practice (GMP) solution compared with the standard cryopreservation medium, the University of Wisconsin medium, for the purpose of improving the functional quality of cells and their ability to engraft in vivo, with the idea of establishing a biobank of cryopreserved human hepatocytes available for their clinical use. We evaluated not only cell viability but also specific hepatic function indicators of the functional performance of the cells such as attachment efficiency, ureogenic capability, phase I and II enzymes activities and the expression of specific adhesion molecules in vitro. Additionally, we also assessed and compared the in vivo efficacy of human hepatocytes cryopreserved in different media in an animal model of acute liver failure. Human hepatocytes cryopreserved in the new GMP solution offered better in vitro and in vivo functionality compared with those cryopreserved in the standard medium. Overall, the results indicate that the new tested GMP solution maintains better hepatic functions and, most importantly, shows better results in vivo, which could imply an increase in long-term efficacy when used in patients.
Collapse
|
33
|
Ortuño-Costela MDC, Cerrada V, García-López M, Gallardo ME. The Challenge of Bringing iPSCs to the Patient. Int J Mol Sci 2019; 20:E6305. [PMID: 31847153 PMCID: PMC6940848 DOI: 10.3390/ijms20246305] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
The implementation of induced pluripotent stem cells (iPSCs) in biomedical research more than a decade ago, resulted in a huge leap forward in the highly promising area of personalized medicine. Nowadays, we are even closer to the patient than ever. To date, there are multiple examples of iPSCs applications in clinical trials and drug screening. However, there are still many obstacles to overcome. In this review, we will focus our attention on the advantages of implementing induced pluripotent stem cells technology into the clinics but also commenting on all the current drawbacks that could hinder this promising path towards the patient.
Collapse
Affiliation(s)
- María del Carmen Ortuño-Costela
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain. Instituto de Investigaciones Biomédicas “Alberto Sols”, (UAM-CSIC), 28029 Madrid, Spain;
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
| | - Victoria Cerrada
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
| | - Marta García-López
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
| | - M. Esther Gallardo
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
- Centro de Investigación Biomédica en Red (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
34
|
Exploring the Most Promising Stem Cell Therapy in Liver Failure: A Systematic Review. Stem Cells Int 2019; 2019:2782548. [PMID: 31871465 PMCID: PMC6913162 DOI: 10.1155/2019/2782548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022] Open
Abstract
Background Alternative approaches to transplantation for liver failure are needed. One of the alternative approaches is stem cell therapy. However, stem cell therapy in liver failure is not standardized yet, as every centre have their own methods. This systematic review is aimed at compiling and analyzing the various studies that use stem cells to treat liver failure, to get an insight into potential protocols in terms of safety and efficacy by comparing them to controls. Methods This systematic review was done according to PRISMA guidelines and submitted for registration in PROSPERO (registration number CRD42018106119). All published studies in PubMed/MEDLINE and Cochrane Library, using key words: “human” and “stem cell” AND “liver failure” on 16th June 2018, without time restriction. In addition, relevant articles that are found during full-text search were added. Inclusion criteria included all original articles on stem cell use in humans with liver failure. Data collected included study type, treatment and control number, severity of disease, concomitant therapy, type and source of cells, passage of cells, dose, administration route, repeats, and interval between repeats, outcomes, and adverse events compared to controls. Data were analyzed descriptively to determine the possible causes of adverse reactions, and which protocols gave a satisfactory outcome, in terms of safety and efficacy. Results There were 25 original articles, i.e., eight case studies and 17 studies with controls. Conclusion Among the various adult stem cells that were used in human studies, MSCs from the bone marrow or umbilical cord performed better compared to other types of adult stem cells, though no study showed a complete and sustainable performance in the outcome measures. Intravenous (IV) route was equal to invasive route. Fresh or cryopreserved, and autologous or allogeneic MSCs were equally beneficial; and giving too many cells via intraportal or the hepatic artery might be counterproductive.
Collapse
|
35
|
Generation of qualified clinical-grade functional hepatocytes from human embryonic stem cells in chemically defined conditions. Cell Death Dis 2019; 10:763. [PMID: 31601782 PMCID: PMC6787193 DOI: 10.1038/s41419-019-1967-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/10/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Hepatocytes have been successfully generated from human pluripotent stem cells (hPSCs). However, the cost-effective and clinical-grade generation of hepatocytes from hPSCs still need to be improved. In this study, we reported the production of functional hepatocytes from clinical-grade human embryonic stem cells (hESCs) under good manufacturing practice (GMP) requirements. We sequentially generated primitive streak (PS), definitive endoderm (DE), hepatoblasts and hepatocyte-like cells (HLCs) from hESCs in the different stages with completely defined reagents. During hepatoblast differentiation, dimethyl sulfoxide (DMSO), transferrin, L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (Vc-Mg), insulin, and sodium selenite were used instead of cytokines and FBS/KOSR. Then, hepatoblasts were differentiated into HLCs that had a typical hepatocyte morphology and possessed characteristics of mature hepatocytes, such as metabolic-related gene expression, albumin secretion, fat accumulation, glycogen storage, and inducible cytochrome P450 activity in vitro. HLCs integrated into the livers of Tet-uPA Rag2–/– Il2rg–/– (URG) mice, which partially recovered after transplantation. Furthermore, a series of biosafety-related experiments were performed to ensure future clinical applications. In conclusion, we developed a chemically defined system to generate qualified clinical-grade HLCs from hESCs under GMP conditions. HLCs have been proven to be safe and effective for treating liver failure. This efficient platform could facilitate the treatment of liver diseases using hESC-derived HLCs transplantation.
Collapse
|
36
|
Fourrier A, Delbos F, Menoret S, Collet C, Thi Thuy LT, Myara A, Petit F, Tolosa L, Laplanche S, Gómez‐Lechón MJ, Labrune P, Anegon I, Vallier L, Garnier D, Nguyen TH. Regenerative cell therapy for the treatment of hyperbilirubinemic Gunn rats with fresh and frozen human induced pluripotent stem cells‐derived hepatic stem cells. Xenotransplantation 2019; 27:e12544. [DOI: 10.1111/xen.12544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Angélique Fourrier
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- GoLiver Therapeutics Institut de Recherche en Santé de l'Université de Nantes Nantes France
| | - Frédéric Delbos
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - Séverine Menoret
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- Transgenesis Rat ImmunoPhenomic platform, INSERM 1064, SFR Francois Bonamy CNRS UMS3556 Nantes France
| | - Camille Collet
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - Linh Trinh Thi Thuy
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - Anne Myara
- Service de Biologie Groupe Hospitalier Saint Joseph Paris France
| | - François Petit
- Laboratoire de génétique moléculaire Hôpital Antoine Béclère Clamart France
| | - Laia Tolosa
- Unidad de Hepatología Experimental Instituto de Investigación Sanitaria La Fe Valencia Spain
| | - Sophie Laplanche
- Service de Biologie Groupe Hospitalier Saint Joseph Paris France
| | - María José Gómez‐Lechón
- Unidad de Hepatología Experimental Instituto de Investigación Sanitaria La Fe Valencia Spain
| | - Philippe Labrune
- APHP, CRMR Maladies Héréditaires du Métabolisme Hépatique Hôpital Antoine Béclère Clamart France
- UFR Kremlin Bicêtre Université paris Sud Paris Saclay Le Kremlin‐Bicêtre France
- INSERM U1169 Le Kremlin‐Bicêtre France
| | - Ignacio Anegon
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- Transgenesis Rat ImmunoPhenomic platform, INSERM 1064, SFR Francois Bonamy CNRS UMS3556 Nantes France
| | - Ludovic Vallier
- Department of Surgery, Anne McLaren Laboratory for Regenerative Medicine, Wellcome–Medical Research Council Cambridge Stem Cell Institute University of Cambridge Cambridge UK
| | - Delphine Garnier
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- CRCINA INSERM U1232 Institut de Recherche en Santé de l'Université de Nantes Nantes France
| | - Tuan Huy Nguyen
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- GoLiver Therapeutics Institut de Recherche en Santé de l'Université de Nantes Nantes France
| |
Collapse
|
37
|
Beegle JR. A Preview of Selected Articles. Stem Cells 2019. [DOI: 10.1002/stem.2972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Julie R. Beegle
- Institute for Regenerative Cures, University of California, Davis, Sacramento, California, USA
| |
Collapse
|