1
|
Martire B, Beni A, Mastrototaro MF, Santilli V, Ottaviano G, Montin D, Rizzo C, Sgrulletti M, Miraglia del Giudice M, Costagliola G, Moschese V. Vaccinations in Pediatric Hematology and Oncology: Biologic Basis, Clinical Applications, and Perspectives. Vaccines (Basel) 2025; 13:397. [PMID: 40333279 PMCID: PMC12031037 DOI: 10.3390/vaccines13040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Children with hemato-oncological diseases represent a heterogeneous population at heightened risk for vaccine-preventable diseases. Their immunosuppressed state reduces vaccine efficacy and raises safety concerns regarding live attenuated vaccines due to the risk of viral reactivation. The immunological and clinical implications of the single conditions are significantly different; therefore, specific vaccination strategies are needed. Despite the availability of vaccine guidelines for immunocompromised patients, clinical practice remains highly variable. It is generally recommended to avoid vaccinations during chemotherapy, with some exceptions for influenza, pneumococcal, and, in some countries, hepatitis B vaccines. The timing of immune recovery after chemotherapy depends on the specific treatment and most guidelines recommend administering vaccines 3-6 months after treatment cessation. Concerning HSCT, the timing of immune recovery is affected by several factors such as the HSCT platform, graft-versus-host disease (GvHD), and infections. Inactivated vaccines are typically administered 3-6 months post-HSCT, while live attenuated vaccines are delayed for at least two years. In children with asplenia or hyposplenism, recommendations focus on immunization against encapsulated bacteria, with tailored schedules based on the patient's age and underlying condition. This paper explores the biological factors influencing vaccination efficacy and safety in pediatric hematology and oncology patients. It also provides an updated overview of the available evidence and current vaccination guidelines. Finally, this paper highlights the main clinical and research areas for further improvement to provide tailored vaccination schedules for this vulnerable population.
Collapse
Affiliation(s)
- Baldassarre Martire
- Unità Operativa Complessa (UOC) of Pediatrics and Neonatology, Maternal-Infant Department, “Monsignor A.R. Dimiccoli” Hospital, 70051 Barletta, Italy;
| | - Alessandra Beni
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Maria Felicia Mastrototaro
- Unità Operativa Complessa (UOC) of Pediatrics and Neonatology, Maternal-Infant Department, “Monsignor A.R. Dimiccoli” Hospital, 70051 Barletta, Italy;
| | - Veronica Santilli
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Giorgio Ottaviano
- Department of Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, 20900 Monza, Italy;
| | - Davide Montin
- Division of Pediatric Immunology and Rheumatology, “Regina Margherita” Children Hospital, 10126 Turin, Italy;
| | - Caterina Rizzo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, 00133 Rome, Italy; (M.S.); (V.M.)
| | - Michele Miraglia del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy;
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, 00133 Rome, Italy; (M.S.); (V.M.)
| |
Collapse
|
2
|
Nikoonezhad M, Zavaran Hosseini A, Hajifathali A, Parkhideh S, Shadnoush M, Shakiba Y, Zahedi H. Comparison of oral zinc supplement and placebo effect in improving the T-cells regeneration in patients undergoing autologous hematopoietic stem cell transplantation: Clinical trial study. Medicine (Baltimore) 2024; 103:e33170. [PMID: 39705427 PMCID: PMC11666199 DOI: 10.1097/md.0000000000033170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 12/22/2024] Open
Abstract
BACKGROUND Immune reconstitution is a significant factor in the success of "hematopoietic stem cell transplantation" (HSCT). Delaying the immune reconstitution increases the risk of infections and relapse after transplantation. T-cell recovery after HSCT is mainly thymus-dependent, and thymic atrophy is associated with various clinical conditions that correlate with HSCT outcomes. Thymus rejuvenation can improve immune reconstitution after transplantation.Zinc (Zn) plays a pivotal role in thymus rejuvenation. Zn deficiency can lead to thymic atrophy, which increases susceptibility to infections. Zn supplementation restores the immune system by increasing thymus output and T-cell repertoire production.We designed this protocol to investigate the effect of oral Zn supplementation on T-cell recovery in patients undergoing HSCT. METHODS Forty eligible candidates for autologous-HSCT will be selected. They will be randomly divided into Zn and placebo groups. Subsequently, they will receive 3 Zn or placebo tablets for the first 30 days post-HSCT (+1 to +30), followed by 1 pill or placebo for days (+31 to +90). The copy numbers of "recent thymic emigrants" T cells and "T cell Receptor Excision Circles" (TREC) will be assessed before and after the intervention in peripheral blood mononuclear cells (PBMCs). All patients will be followed up 365 days post-HSCT for relapse and infection. CONCLUSION This clinical trial is the first to determine the efficiency of "Zn gluconate" as daily Supplementation in T cell recovery post-HSCT.If successful, an available and inexpensive drug will improve immune system reconstruction after HSCT, reduce the risk of infection, particularly viral infections, and increase patient survival.
Collapse
Affiliation(s)
- Maryam Nikoonezhad
- Department of Immunology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Hajifathali
- Bone Marrow Transplantation Center, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayeh Parkhideh
- Bone Marrow Transplantation Center, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition & Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadollah Shakiba
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hoda Zahedi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Gupta C, Mundan NG, Das S, Jawed A, Dar SA, Dailah HG. Cytomegalovirus Infections in Hematopoietic Stem Cell Transplant: Moving Beyond Molecular Diagnostics to Immunodiagnostics. Diagnostics (Basel) 2024; 14:2523. [PMID: 39594189 PMCID: PMC11592488 DOI: 10.3390/diagnostics14222523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Human CMV, regularly reactivated by simple triggers, results in asymptomatic viral shedding, powerful cellular immune responses, and memory inflation. Immunocompetent individuals benefit from a robust immune response, which aids in viral management without causing clinically significant illness; however, immunodeficient individuals are always at a higher risk of CMV reactivation and disease. Hematopoietic stem cell transplant (HSCT) recipients are consistently at higher risk of CMV reactivation and clinically significant CMV illness due to primary disease, immunosuppression, and graft vs. host disease. Early recovery of CMV-CMI responses may mitigate effects of viral reactivation in HSCT recipients. Immune reconstitution following transplantation occurs spontaneously and is mediated initially by donor-derived T cells, followed by clonal growth of T cells produced from graft progenitors. CMV-specific immune reconstitution post-transplant is related to spontaneous clearance of CMV reactivation and may eliminate the need for prophylactic or pre-emptive medication, making it a potential predictive marker for monitoring CMV reactivation. This review highlights current thoughts and therapeutic options for CMV reactivation in HSCT, with focus on CMV immune reconstitution and post-HSCT monitoring. Immune monitoring aids in risk stratification of transplant recipients who may progress from CMV reactivation to clinically significant CMV infection. Implementing this approach in clinical practice reduces the need for periodic viral surveillance and antiviral therapy in recipients who have a high CMV-CMI and thus may experience self-limited reactivation. Therefore, in the age of precision medicine, it is critical to incorporate CMV-specific cellular immune surveillance into conventional procedures and algorithms for the management of transplant recipients.
Collapse
Affiliation(s)
- Chhavi Gupta
- Department of Infectious Diseases, Yashoda Super Speciality Hospital, Ghaziabad 201001, India
| | - Netto George Mundan
- Department of Infectious Diseases, Government Medical College, Kottayam 686008, India
| | - Shukla Das
- Department of Microbiology, University College of Medical Sciences and GTB Hospital (University of Delhi), Delhi 110095, India
| | - Arshad Jawed
- College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia (S.A.D.)
| | - Sajad Ahmad Dar
- College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia (S.A.D.)
| | - Hamad Ghaleb Dailah
- College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia (S.A.D.)
| |
Collapse
|
4
|
Wang R, Chen M, Fu M, Zhao W, Zhou J, Gong M, Wu Q, Wang H. A research on the influence of G-CSF mobilization on donor's peripheral blood MDSCs and its relationship with patient prognosis. Int Immunopharmacol 2023; 124:110998. [PMID: 37832238 DOI: 10.1016/j.intimp.2023.110998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVE To discuss the effects of mobilization of healthy donors with granulocyte colony-stimulating factor (G-CSF) on the absolute values and functions of myeloid-derived suppressor cells (MDSCs) and subpopulations of M-MDSCs and P-MDSCs in their peripheral blood. In addition, this study also aims to investigate the impacts of the adoptively transferred MDSCs from the grafts to the patients on their prognosis and immune reconstitution. METHODS The selection of 72 donors and 72 patients were conducted for allogeneic hematopoietic stem cell transplantation (allo-HSCT) from August 2022 to December 2022 at Lu Daopei Hospital in Beijing, China. Statistical calculations were performed by Wilcoxon signed-rank test, Kruskal Wallis test, χ2 test, Kaplan Meier test, and log-rank test to analyze the data. RESULTS & CONCLUSION G-CSF induced significant amplification of MDSCs in the peripheral blood of donors in percentage and absolute values. Whether the level of P-MDSCs in patients conducted for the adoptive transfer of P - MDSCs is higher than 3.7× 107/kg or lower than 1.4× 107/kg leads to a poor prognosis of the patients. Ensuring a balanced state of MDSCs is crucial for effective immunotherapy. Transferring a high level of MDSCs from the graft to the patient's body is advantageous for the development of MDSCs while simultaneously inhibiting the proliferation of lymphocyte subgroups.
Collapse
Affiliation(s)
- Rong Wang
- Department of Microbiology and Immunology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, China
| | - Man Chen
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Minjing Fu
- Beijing Lu Daopei Hospital, Beijing 100010, China
| | - Wei Zhao
- Beijing Lu Daopei Hospital, Beijing 100010, China
| | - Jing Zhou
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Meiwei Gong
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Qingqing Wu
- Department of Microbiology and Immunology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, China; Center for Clinical Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Hui Wang
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China.
| |
Collapse
|
5
|
Krebs SK, Stech M, Jorde F, Rakotoarinoro N, Ramm F, Marinoff S, Bahrke S, Danielczyk A, Wüstenhagen DA, Kubick S. Synthesis of an Anti-CD7 Recombinant Immunotoxin Based on PE24 in CHO and E. coli Cell-Free Systems. Int J Mol Sci 2022; 23:ijms232213697. [PMID: 36430170 PMCID: PMC9697001 DOI: 10.3390/ijms232213697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Recombinant immunotoxins (RITs) are an effective class of agents for targeted therapy in cancer treatment. In this article, we demonstrate the straight-forward production and testing of an anti-CD7 RIT based on PE24 in a prokaryotic and a eukaryotic cell-free system. The prokaryotic cell-free system was derived from Escherichia coli BL21 StarTM (DE3) cells transformed with a plasmid encoding the chaperones groEL/groES. The eukaryotic cell-free system was prepared from Chinese hamster ovary (CHO) cells that leave intact endoplasmic reticulum-derived microsomes in the cell-free reaction mix from which the RIT was extracted. The investigated RIT was built by fusing an anti-CD7 single-chain variable fragment (scFv) with the toxin domain PE24, a shortened variant of Pseudomonas Exotoxin A. The RIT was produced in both cell-free systems and tested for antigen binding against CD7 and cell killing on CD7-positive Jurkat, HSB-2, and ALL-SIL cells. CD7-positive cells were effectively killed by the anti-CD7 scFv-PE24 RIT with an IC50 value of 15 pM to 40 pM for CHO and 42 pM to 156 pM for E. coli cell-free-produced RIT. CD7-negative Raji cells were unaffected by the RIT. Toxin and antibody domain alone did not show cytotoxic effects on either CD7-positive or CD7-negative cells. To our knowledge, this report describes the production of an active RIT in E. coli and CHO cell-free systems for the first time. We provide the proof-of-concept that cell-free protein synthesis allows for on-demand testing of antibody−toxin conjugate activity in a time-efficient workflow without cell lysis or purification required.
Collapse
Affiliation(s)
- Simon K. Krebs
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute for Biotechnology, Technical University of Berlin, Ackerstrasse 76, 13355 Berlin, Germany
| | - Marlitt Stech
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Felix Jorde
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Nathanaël Rakotoarinoro
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Franziska Ramm
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Sophie Marinoff
- Glycotope GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Sven Bahrke
- Glycotope GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Antje Danielczyk
- Glycotope GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Doreen A. Wüstenhagen
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
- Correspondence:
| |
Collapse
|
6
|
Zhang J, Cao J, Zheng R, Yu M, Lin Z, Wang C, McCluskey J, Yang J, Chen Z, Corbett AJ, Cao P, Mo W, Wang Z. The establishment of a cytomegalovirus -specific CD8+ T-cell threshold by kinetic modeling for the prediction of post-hemopoietic stem cell transplant reactivation. iScience 2022; 25:105340. [PMID: 36325063 PMCID: PMC9618782 DOI: 10.1016/j.isci.2022.105340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/08/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022] Open
Abstract
The dynamic interaction between the CMV virus and host immune response remains obscure, thus hindering the diagnosis and therapeutic management of patients with HSCT. The current diagnosis of CMV viremia depends on viral load estimation. Medical intervention based on viral load, can be unnecessary or poorly timed for many patients. Here we examined the clinical features and blood samples of patients with HSCT and assessed the CMV reactivation kinetics and corresponding CMV antigen-specific T-cell response in individual patients based on a peptide pool stimulation T-cell assay, which showed that CMV-specific CD8+ T cells were more suitable to be a diagnosis indicator for suppressing CMV reactivation. Using ROC analysis, we defined and verified a CMV-specific CD8+ T-cell counts threshold (925 cells/106 PBMCs) as an indicator of CMV reactivation post-HSCT, and suggested that use of this threshold would provide more accurate guidance for prompt medication and better management of CMV infection post-HSCT.
Collapse
|
7
|
Donor genetic determinant of thymopoiesis rs2204985 impacts clinical outcome after single HLA mismatched hematopoietic stem cell transplantation. Bone Marrow Transplant 2022; 57:1539-1547. [PMID: 35804057 PMCID: PMC9532242 DOI: 10.1038/s41409-022-01751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
A common genetic variant within the T cell receptor alpha (TCRA)-T cell receptor delta (TCRD) locus (rs2204985) has been recently found to associate with thymic function. Aim of this study was to investigate the potential impact of donor rs2204985 genotype on patient’s outcome after unrelated hematopoietic stem cell transplantation (uHSCT). 2016 adult patients were retrospectively analyzed. rs2204985 genotyping was performed by next generation sequencing, p < 0.05 was considered significant and donor rs2204985 GG/AG genotypes were set as reference vs. the AA genotype. Multivariate analysis of the combined cohort regarding the impact of donor’s rs2204985 genotype indicated different risk estimates in 10/10 and 9/10 HLA matched transplantations. A subanalysis on account of HLA incompatibility revealed that donor AA genotype in single HLA mismatched cases (n = 624) associated with significantly inferior overall- (HR: 1.48, p = 0.003) and disease-free survival (HR: 1.50, p = 0.001). This effect was driven by a combined higher risk of relapse incidence (HR: 1.40, p = 0.026) and non-relapse mortality (HR: 1.38, p = 0.042). This is the first study to explore the role of rs2204985 in a clinical uHSCT setting. Our data suggest that donor rs2204985 AA genotype in combination with single HLA mismatches may adversely impact post-HSCT outcome and should thus be avoided.
Collapse
|
8
|
Sottoriva K, Paik NY, White Z, Bandara T, Shao L, Sano T, Pajcini KV. A Notch/IL-21 signaling axis primes bone marrow T cell progenitor expansion. JCI Insight 2022; 7:e157015. [PMID: 35349492 PMCID: PMC9090257 DOI: 10.1172/jci.insight.157015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term impairment in T cell-mediated adaptive immunity is a major clinical obstacle following treatment of blood disorders with hematopoietic stem cell transplantation. Although T cell development in the thymus has been extensively characterized, there are significant gaps in our understanding of prethymic processes that influence early T cell potential. We have uncovered a Notch/IL-21 signaling axis in bone marrow common lymphoid progenitor (CLP) cells. IL-21 receptor expression was driven by Notch activation in CLPs, and in vivo treatment with IL-21 induced Notch-dependent CLP proliferation. Taking advantage of this potentially novel signaling axis, we generated T cell progenitors ex vivo, which improved repopulation of the thymus and peripheral lymphoid organs of mice in an allogeneic transplant model. Importantly, Notch and IL-21 activation were equally effective in the priming and expansion of human cord blood cells toward the T cell fate, confirming the translational potential of the combined treatment.
Collapse
Affiliation(s)
| | - Na Yoon Paik
- Department of Pharmacology and Regenerative Medicine and
| | - Zachary White
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | | - Lijian Shao
- Department of Pharmacology and Regenerative Medicine and
| | - Teruyuki Sano
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
9
|
Zhou X, Cai Y, Yang J, Tong Y, Qiu H, Huang C, Zhou K, Xu X, Niu J, Xia X, Zhang Y, Shen C, Wei Y, Song X, Wan L. Lower Absolute Lymphocyte Count Before Conditioning Predicts High Relapse Risk in Patients After Haploidentical Peripheral Blood Stem Cell Transplantation With Low Dose Anti-Thymocyte Globulin/Post-Transplant Cyclophosphamide for GvHD Prophylaxis. Cell Transplant 2022; 31:9636897221079739. [PMID: 35225024 PMCID: PMC8894976 DOI: 10.1177/09636897221079739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Standard anti-thymocyte globulin (ATG) weight-based dosing often resulted in highly variable ATG exposure, which had profound effects on relapse and survival, especially in recipients with relatively low absolute lymphocyte count (ALC) before conditioning. Data regarding rabbit ATG pharmacokinetics and pharmacodynamics in the setting of HLA-haploidentical peripheral blood stem cell transplantation (haplo-PBSCT) is lacking. We conducted a retrospective study on 90 consecutive patients who underwent haplo-PBSCT with low dose rabbit ATG (5 mg/kg) plus low dose post-transplant cyclophosphamide (50 mg/kg) based regimen for graft-versus-host disease (GvHD) prophylaxis. We compared serum concentration of ATG and post-transplant results between patients with ALC<500/μl and ALC≥500/μl before conditioning. Patients with ALC<500/μl had higher ATG concentrations, delayed immune reconstitution, lower incidence of grade II-IV acute GvHD (0 vs. 19.42%, P = 0.043), higher risk of Epstein-Barr virus infection within 100 days post-transplant (47.78% vs. 22.22%, P = 0.020) and 1-year relapse rate (33.33% vs.11.59%, P = 0.041), and lower 1-year overall survival (OS) (52.38% vs.79.71%, P = 0.004), 1-year relapse free survival (RFS) (47.62% vs. 75.36% for RFS, P = 0.014), and 1-year GvHD free relapse-free survival (GRFS) (42.89% vs. 65.22%, P = 0.043). ALC<500/μl before conditioning was a significant poor risk factor for relapse, OS, RFS, and GRFS.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Yu Cai
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Jun Yang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Yin Tong
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Huiying Qiu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Chongmei Huang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Kun Zhou
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Xiaowei Xu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Jiahua Niu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Xinxin Xia
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Ying Zhang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Chang Shen
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Yu Wei
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Xianmin Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Liping Wan
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| |
Collapse
|
10
|
Hill GR, Betts BC, Tkachev V, Kean LS, Blazar BR. Current Concepts and Advances in Graft-Versus-Host Disease Immunology. Annu Rev Immunol 2021; 39:19-49. [PMID: 33428454 PMCID: PMC8085043 DOI: 10.1146/annurev-immunol-102119-073227] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
- Division of Medical Oncology University of Washington, Seattle, Washington 98109, USA
| | - Brian C Betts
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
11
|
Lin RJ, Elias HK, van den Brink MRM. Immune Reconstitution in the Aging Host: Opportunities for Mechanism-Based Therapy in Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2021; 12:674093. [PMID: 33953731 PMCID: PMC8089387 DOI: 10.3389/fimmu.2021.674093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Older patients with hematologic malignancies are increasingly considered for allogeneic hematopoietic cell transplantation with encouraging outcomes. While aging-related thymic dysfunction remains a major obstacle to optimal and timely immune reconstitution post- transplantation, recent accumulating evidence has suggested that various aging hallmarks such as cellular senescence, inflamm-aging, and hematopoietic stem cell exhaustion, could also impact immune reconstitution post-transplantation in both thymic-dependent and independent manner. Here we review molecular and cellular aspects of immune senescence and immune rejuvenation related to allogeneic hematopoietic cell transplantation among older patients and discuss potential strategies for mechanism-based therapeutic intervention.
Collapse
Affiliation(s)
- Richard J Lin
- Adult Bone Marrow Transplantation (BMT) Service, Division of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Harold K Elias
- Adult Bone Marrow Transplantation (BMT) Service, Division of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation (BMT) Service, Division of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
12
|
Yanir A, Schulz A, Lawitschka A, Nierkens S, Eyrich M. Immune Reconstitution After Allogeneic Haematopoietic Cell Transplantation: From Observational Studies to Targeted Interventions. Front Pediatr 2021; 9:786017. [PMID: 35087775 PMCID: PMC8789272 DOI: 10.3389/fped.2021.786017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Immune reconstitution (IR) after allogeneic haematopoietic cell transplantation (HCT) represents a central determinant of the clinical post-transplant course, since the majority of transplant-related outcome parameters such as graft-vs.-host disease (GvHD), infectious complications, and relapse are related to the velocity, quantity and quality of immune cell recovery. Younger age at transplant has been identified as the most important positive prognostic factor for favourable IR post-transplant and, indeed, accelerated immune cell recovery in children is most likely the pivotal contributing factor to lower incidences of GvHD and infectious complications in paediatric allogeneic HCT. Although our knowledge about the mechanisms of IR has significantly increased over the recent years, strategies to influence IR are just evolving. In this review, we will discuss different patterns of IR during various time points post-transplant and their impact on outcome. Besides IR patterns and cellular phenotypes, recovery of antigen-specific immune cells, for example virus-specific T cells, has recently gained increasing interest, as certain threshold levels of antigen-specific T cells seem to confer protection against severe viral disease courses. In contrast, the association between IR and a possible graft-vs. leukaemia effect is less well-understood. Finally, we will present current concepts of how to improve IR and how this could change transplant procedures in the near future.
Collapse
Affiliation(s)
- Asaf Yanir
- Bone Marrow Transplant Unit, Division of Haematology and Oncology, Schneider Children's Medical Center of Israel, Petach-Tikva, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Anita Lawitschka
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Matthias Eyrich
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University Medical Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Hayashi RJ. Considerations in Preparative Regimen Selection to Minimize Rejection in Pediatric Hematopoietic Transplantation in Non-Malignant Diseases. Front Immunol 2020; 11:567423. [PMID: 33193340 PMCID: PMC7604384 DOI: 10.3389/fimmu.2020.567423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/25/2020] [Indexed: 01/19/2023] Open
Abstract
The variables that influence the selection of a preparative regimen for a pediatric hematopoietic stem cell transplant procedure encompasses many issues. When one considers this procedure for non-malignant diseases, components in a preparative regimen that were historically developed to reduce malignant tumor burden may be unnecessary. The primary goal of the procedure in this instance becomes engraftment with the establishment of normal hematopoiesis and a normal immune system. Overcoming rejection becomes the primary priority, but pursuit of this goal cannot neglect organ toxicity, or post-transplant morbidity such as graft-versus-host disease or life threatening infections. With the improvements in supportive care, newborn screening techniques for early disease detection, and the expansion of viable donor sources, we have reached a stage where hematopoietic stem cell transplantation can be considered for virtually any patient with a hematopoietic based disease. Advancing preparative regiments that minimize rejection and transplant related toxicity will thus dictate to what extent this medical technology is fully utilized. This mini-review will provide an overview of the origins of conditioning regimens for transplantation and how agents and techniques have evolved to make hematopoietic stem cell transplantation a viable option for children with non-malignant diseases of the hematopoietic system. We will summarize the current state of this facet of the transplant procedure and describe the considerations that come into play in selecting a particular preparative regimen. Decisions within this realm must tailor the treatment to the primary disease condition to ideally achieve an optimal outcome. Finally, we will project forward where advances are needed to overcome the persistent engraftment obstacles that currently limit the utilization of transplantation for haematopoietically based diseases in children.
Collapse
Affiliation(s)
- Robert J Hayashi
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
14
|
Gaballa A, Clave E, Uhlin M, Toubert A, Arruda LCM. Evaluating Thymic Function After Human Hematopoietic Stem Cell Transplantation in the Personalized Medicine Era. Front Immunol 2020; 11:1341. [PMID: 32849495 PMCID: PMC7412601 DOI: 10.3389/fimmu.2020.01341] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an effective treatment option for several malignant and non-malignant hematological diseases. The clinical outcome of this procedure relies to a large extent on optimal recovery of adaptive immunity. In this regard, the thymus plays a central role as the primary site for de novo generation of functional, diverse, and immunocompetent T-lymphocytes. The thymus is exquisitely sensitive to several insults during HSCT, including conditioning drugs, corticosteroids, infections, and graft-vs.-host disease. Impaired thymic recovery has been clearly associated with increased risk of opportunistic infections and poor clinical outcomes in HSCT recipients. Therefore, better understanding of thymic function can provide valuable information for improving HSCT outcomes. Recent data have shown that, besides gender and age, a specific single-nucleotide polymorphism affects thymopoiesis and may also influence thymic output post-HSCT, suggesting that the time of precision medicine of thymic function has arrived. Here, we review the current knowledge about thymic role in HSCT and the recent work of genetic control of human thymopoiesis. We also discuss different transplant-related factors that have been associated with impaired thymic recovery and the use of T-cell receptor excision circles (TREC) to assess thymic output, including its clinical significance. Finally, we present therapeutic strategies that could boost thymic recovery post-HSCT.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Emmanuel Clave
- INSERM UMR-1160, Institut de Recherche Saint-Louis, Hôpital Saint-Louis APHP, Paris, France.,Université de Paris, Paris, France
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Antoine Toubert
- INSERM UMR-1160, Institut de Recherche Saint-Louis, Hôpital Saint-Louis APHP, Paris, France.,Université de Paris, Paris, France
| | - Lucas C M Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Choi DW, Cho KA, Lee HJ, Kim YH, Woo KJ, Park JW, Ryu KH, Woo SY. Co‑transplantation of tonsil‑derived mesenchymal stromal cells in bone marrow transplantation promotes thymus regeneration and T cell diversity following cytotoxic conditioning. Int J Mol Med 2020; 46:1166-1174. [PMID: 32582998 PMCID: PMC7387097 DOI: 10.3892/ijmm.2020.4657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Bone marrow (BM) transplantation (BMT) represents a curative treatment for various hematological disorders. Prior to BMT, a large amount of the relevant anticancer drug needed to be administered to eliminate cancer cells. However, during this pre-BMT cytotoxic conditioning regimen, hematopoietic stem cells in the BM and thymic epithelial cells were also destroyed. The T cell receptor (TCR) recognizes diverse pathogen, tumor and environmental antigens, and confers immunological memory and self-tolerance. Delayed thymus reconstitution following pre-BMT cytotoxic conditioning impedes de novo thymopoiesis and limits T cell-mediated immunity. Several cytokines, such as RANK ligand, interleukin (IL)-7, IL-22 and stem cell factor, were recently reported to improve thymopoiesis and immune function following BMT. In the present study, it was found that the co-transplantation of tonsil-derived mesenchymal stromal cells (T-MSCs) with BM-derived cells (BMCs) accelerated the recovery of involuted thymuses in mice following partial pre-BMT conditioning with busulfan-cyclophosphamide treatment, possibly by inducing FMS-like tyrosine kinase 3 ligand (FLT3L) and fibroblast growth factor 7 (FGF7) production in T-MSCs. The co-transplantation of T-MSCs with BMCs also replenished the CD3+ cell population by inhibiting thymocyte apoptosis following pre-BMT cytotoxic conditioning. Furthermore, T-MSC co-transplantation improved the recovery of the TCR repertoire and led to increased thymus-generated T cell diversity.
Collapse
Affiliation(s)
- Da-Won Choi
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Hyun-Ji Lee
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Kyong-Je Woo
- Department of Plastic and Reconstructive Surgery, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|