1
|
Carrillo-Gálvez AB, Zurita F, Guerra-Valverde JA, Aguilar-González A, Abril-García D, Padial-Molina M, Olaechea A, Martín-Morales N, Martín F, O’Valle F, Galindo-Moreno P. NLRP3 and AIM2 inflammasomes expression is modified by LPS and titanium ions increasing the release of active IL-1β in alveolar bone-derived MSCs. Stem Cells Transl Med 2024; 13:826-841. [PMID: 39013640 PMCID: PMC11328940 DOI: 10.1093/stcltm/szae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/19/2024] [Indexed: 07/18/2024] Open
Abstract
Periodontitis and peri-implantitis are inflammatory diseases of infectious etiology that lead to the destruction of the supporting tissues located around teeth or implants. Although both pathologies share several characteristics, it is also known that they show important differences which could be due to the release of particles and metal ions from the implant surface. The activation of the inflammasome pathway is one of the main triggers of the inflammatory process. The inflammatory process in patients who suffer periodontitis or peri-implantitis has been mainly studied on cells of the immune system; however, it is also important to consider other cell types with high relevance in the regulation of the inflammatory response. In that context, mesenchymal stromal cells (MSCs) play an essential role in the regulation of inflammation due to their ability to modulate the immune response. This study shows that the induction of NLRP3 and absent in melanoma 2 (AIM2) inflammasome pathways mediated by bacterial components increases the secretion of active IL-1β and the pyroptotic process on human alveolar bone-derived mesenchymal stromal cells (hABSCs). Interestingly, when bacterial components are combined with titanium ions, NLRP3 expression is further increased while AIM2 expression is reduced. Furthermore, decrease of NLRP3 or AIM2 expression in hABSCs partially reverses the negative effect observed on the progression of the inflammatory process as well as on cell survival. In summary, our data suggest that the progression of the inflammatory process in peri-implantitis could be more acute due to the combined action of organic and inorganic components.
Collapse
Affiliation(s)
- Ana Belén Carrillo-Gálvez
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
| | - Federico Zurita
- Department of Genetics and Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| | - José Antonio Guerra-Valverde
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
- PhD Program in Clinical Medicine and Public Health, University of Granada,18071 Granada, Spain
| | - Araceli Aguilar-González
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS Granada, 18016 Granada, Spain
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Bio-Medicine and the Environment, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Darío Abril-García
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
| | - Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
| | - Allinson Olaechea
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
- PhD Program in Clinical Medicine and Public Health, University of Granada,18071 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS Granada, 18016 Granada, Spain
| | - Natividad Martín-Morales
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
- PhD Program in Biomedicine, University of Granada, 18071 Granada, Spain
- Department of Pathology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Francisco Martín
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS Granada, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - Francisco O’Valle
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
- Department of Pathology, School of Medicine, University of Granada, 18071 Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER, CIBM), University of Granada, 18071 Granada, Spain
| | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
| |
Collapse
|
2
|
Zimmer N, Trzeciak ER, Graefen B, Satoh K, Tuettenberg A. GARP as a Therapeutic Target for the Modulation of Regulatory T Cells in Cancer and Autoimmunity. Front Immunol 2022; 13:928450. [PMID: 35898500 PMCID: PMC9309211 DOI: 10.3389/fimmu.2022.928450] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Treg) play a critical role in immune homeostasis by suppressing several aspects of the immune response. Herein, Glycoprotein A repetitions predominant (GARP), the docking receptor for latent transforming growth factor (LTGF-β), which promotes its activation, plays a crucial role in maintaining Treg mediated immune tolerance. After activation, Treg uniquely express GARP on their surfaces. Due to its location and function, GARP may represent an important target for immunotherapeutic approaches, including the inhibition of Treg suppression in cancer or the enhancement of suppression in autoimmunity. In the present review, we will clarify the cellular and molecular regulation of GARP expression not only in human Treg but also in other cells present in the tumor microenvironment. We will also examine the overall roles of GARP in the regulation of the immune system. Furthermore, we will explore potential applications of GARP as a predictive and therapeutic biomarker as well as the targeting of GARP itself in immunotherapeutic approaches.
Collapse
Affiliation(s)
- Niklas Zimmer
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Emily R. Trzeciak
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Graefen
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kazuki Satoh
- Early Clinical Development Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Andrea Tuettenberg
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
- *Correspondence: Andrea Tuettenberg,
| |
Collapse
|
3
|
Mahmoudi A, Butler AE, Majeed M, Banach M, Sahebkar A. Investigation of the Effect of Curcumin on Protein Targets in NAFLD Using Bioinformatic Analysis. Nutrients 2022; 14:nu14071331. [PMID: 35405942 PMCID: PMC9002953 DOI: 10.3390/nu14071331] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a prevalent metabolic disorder. Defects in function/expression of genes/proteins are critical in initiation/progression of NAFLD. Natural products may modulate these genes/proteins. Curcumin improves steatosis, inflammation, and fibrosis progression. Here, bioinformatic tools, gene−drug and gene-disease databases were utilized to explore targets, interactions, and pathways through which curcumin could impact NAFLD. METHODS: Significant curcumin−protein interaction was identified (high-confidence:0.7) in the STITCH database. Identified proteins were investigated to determine association with NAFLD. gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were analyzed for significantly involved targets (p < 0.01). Specificity of obtained targets with NAFLD was estimated and investigated in Tissue/Cells−gene associations (PanglaoDB Augmented 2021, Mouse Gene Atlas) and Disease−gene association-based EnrichR algorithms (Jensen DISEASES, DisGeNET). RESULTS: Two collections were constructed: 227 protein−curcumin interactions and 95 NAFLD-associated genes. By Venn diagram, 14 significant targets were identified, and their biological pathways evaluated. Based on gene ontology, most targets involved stress and lipid metabolism. KEGG revealed chemical carcinogenesis, the AGE-RAGE signaling pathway in diabetic complications and NAFLD as the most common significant pathways. Specificity to diseases database (EnrichR algorithm) revealed specificity for steatosis/steatohepatitis. CONCLUSION: Curcumin may improve, or inhibit, progression of NAFLD through activation/inhibition of NAFLD-related genes.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran;
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | | | - Maciej Banach
- Nephrology and Hypertension, Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland
- Correspondence: (M.B.); (A.S.)
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
- Correspondence: (M.B.); (A.S.)
| |
Collapse
|
4
|
Shen X, Song S, Chen N, Liao J, Zeng L. Stem cell-derived exosomes: A supernova in cosmetic dermatology. J Cosmet Dermatol 2021; 20:3812-3817. [PMID: 34536054 DOI: 10.1111/jocd.14438] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Stem cell-derived exosomes are cell-free vesicles secreted by stem cells. Exosomes play a pivotal role in cell-to cell communication due to the functional proteins and genetic information which they carry. In addition, studies on cell migration, tumor invasion, tissue regeneration, myocardial repair after injury, and fracture healing have been widely reported. OBJECTIVES The purpose of this review is to sum up the current state of research on multiple stem cell-derived exosomes in cosmetic dermatology and to discuss the current challenges and future directions. METHODS We searched "skin" and "exosome" from PubMed to find the application of stem cell exosomes in cosmetic dermatology. RESULTS We found that stem cell-derived exosomes have an important place in skin cosmetology such as wound healing, skin aging, and scar formation. CONCLUSION Stem cell derived exosomes supply a potential tool to cosmetic dermatology. The performance of stem cell derived exosomes in regulating skin physiological and pathobiological functions suggests that stem cell derived exosomes have potential in cosmetic dermatology.
Collapse
Affiliation(s)
- Xu Shen
- Department of Medical Cosmetology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Shenghua Song
- Department of Medical Cosmetology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Nian Chen
- Department of Medical Cosmetology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Junlin Liao
- Department of Medical Cosmetology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Li Zeng
- Department of Medical Cosmetology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
5
|
Denu RA, Hematti P. Optimization of oxidative stress for mesenchymal stromal/stem cell engraftment, function and longevity. Free Radic Biol Med 2021; 167:193-200. [PMID: 33677063 DOI: 10.1016/j.freeradbiomed.2021.02.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent cells that possess great potential as a cellular therapeutic based on their ability to differentiate to different lineages and to modulate immune responses. However, their potential is limited by their low tissue abundance, and thus the need for robust ex vivo expansion prior to their application. This creates its own issues, namely replicative senescence, which could lead to reduced MSC functionality and negatively impact their engraftment. Ex vivo expansion and MSC aging are associated with greater oxidative stress. Therefore, there is great need to identify strategies to reduce oxidative stress in MSCs. This review summarizes the achievements made to date in addressing oxidative stress in MSCs and speculates about interesting avenues of future investigation to solve this critical problem.
Collapse
Affiliation(s)
- Ryan A Denu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Peiman Hematti
- Departments of Medicine, Pediatrics, Surgery and Biomedical Engineering, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Role of various imbalances centered on alveolar epithelial cell/fibroblast apoptosis imbalance in the pathogenesis of idiopathic pulmonary fibrosis. Chin Med J (Engl) 2021; 134:261-274. [PMID: 33522725 PMCID: PMC7846426 DOI: 10.1097/cm9.0000000000001288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There have been recent extensive studies and rapid advancement on the pathogenesis underlying idiopathic pulmonary fibrosis (IPF), and intricate pathogenesis of IPF has been suggested. The purpose of this study was to clarify the logical relationship between these mechanisms. An extensive search was undertaken of the PubMed using the following keywords: “etiology,” “pathogenesis,” “alveolar epithelial cell (AEC),” “fibroblast,” “lymphocyte,” “macrophage,” “epigenomics,” “histone,” acetylation,” “methylation,” “endoplasmic reticulum stress,” “mitochondrial dysfunction,” “telomerase,” “proteases,” “plasminogen,” “epithelial-mesenchymal transition,” “oxidative stress,” “inflammation,” “apoptosis,” and “idiopathic pulmonary fibrosis.” This search covered relevant research articles published up to April 30, 2020. Original articles, reviews, and other articles were searched and reviewed for content; 240 highly relevant studies were obtained after screening. IPF is likely the result of complex interactions between environmental, genetic, and epigenetic factors: environmental exposures affect epigenetic marks; epigenetic processes translate environmental exposures into the regulation of chromatin; epigenetic processes shape gene expression profiles; in turn, an individual's genetic background determines epigenetic marks; finally, these genetic and epigenetic factors act in concert to dysregulate gene expression in IPF lung tissue. The pathogenesis of IPF involves various imbalances including endoplasmic reticulum, telomere length homeostasis, mitochondrial dysfunction, oxidant/antioxidant imbalance, Th1/Th2 imbalance, M1–M2 polarization of macrophages, protease/antiprotease imbalance, and plasminogen activation/inhibition imbalance. These affect each other, promote each other, and ultimately promote AEC/fibroblast apoptosis imbalance directly or indirectly. Excessive AEC apoptosis and impaired apoptosis of fibroblasts contribute to fibrosis. IPF is likely the result of complex interactions between environmental, genetic, and epigenetic factors. The pathogenesis of IPF involves various imbalances centered on AEC/fibroblast apoptosis imbalance.
Collapse
|
7
|
Najar M, Martel-Pelletier J, Pelletier JP, Fahmi H. Novel insights for improving the therapeutic safety and efficiency of mesenchymal stromal cells. World J Stem Cells 2020; 12:1474-1491. [PMID: 33505596 PMCID: PMC7789128 DOI: 10.4252/wjsc.v12.i12.1474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have attracted great interest in the field of regenerative medicine. They can home to damaged tissue, where they can exert pro-regenerative and anti-inflammatory properties. These therapeutic effects involve the secretion of growth factors, cytokines, and chemokines. Moreover, the functions of MSCs could be mediated by extracellular vesicles (EVs) that shuttle various signaling messengers. Although preclinical studies and clinical trials have demonstrated promising therapeutic results, the efficiency and the safety of MSCs need to be improved. After transplantation, MSCs face harsh environmental conditions, which likely dampen their therapeutic efficacy. A possible strategy aiming to improve the survival and therapeutic functions of MSCs needs to be developed. The preconditioning of MSCs ex vivo would strength their capacities by preparing them to survive and to better function in this hostile environment. In this review, we will discuss several preconditioning approaches that may improve the therapeutic capacity of MSCs. As stated above, EVs can recapitulate the beneficial effects of MSCs and may help avoid many risks associated with cell transplantation. As a result, this novel type of cell-free therapy may be safer and more efficient than the whole cell product. We will, therefore, also discuss current knowledge regarding the therapeutic properties of MSC-derived EVs.
Collapse
Affiliation(s)
- Mehdi Najar
- Department of Medicine, University of Montreal, Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada.
| | - Johanne Martel-Pelletier
- Department of Medicine, University of Montreal, Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Jean Pierre Pelletier
- Department of Medicine, University of Montreal, Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Hassan Fahmi
- Department of Medicine, University of Montreal, Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| |
Collapse
|
8
|
Chen S, He Z, Xu J. Application of adipose-derived stem cells in photoaging: basic science and literature review. Stem Cell Res Ther 2020; 11:491. [PMID: 33225962 PMCID: PMC7682102 DOI: 10.1186/s13287-020-01994-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Photoaging is mainly induced by continuous exposure to sun light, causing multiple unwanted skin characters and accelerating skin aging. Adipose-derived stem cells(ADSCs) are promising in supporting skin repair because of their significant antioxidant capacity and strong proliferation, differentiation, and migration ability, as well as their enriched secretome containing various growth factors and cytokines. The identification of the mechanisms by which ADSCs perform these functions for photoaging has great potential to explore therapeutic applications and combat skin aging. We also review the basic mechanisms of UV-induced skin aging and recent improvement in pre-clinical applications of ADSCs associated with photoaging. Results showed that ADSCs are potential to address photoaging problem and might treat skin cancer. Compared with ADSCs alone, the secretome-based approaches and different preconditionings of ADSCs are more promising to overcome the current limitations and enhance the anti-photoaging capacity.
Collapse
Affiliation(s)
- Shidie Chen
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Zhigang He
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
9
|
GARP promotes the proliferation and therapeutic resistance of bone sarcoma cancer cells through the activation of TGF-β. Cell Death Dis 2020; 11:985. [PMID: 33203838 PMCID: PMC7673987 DOI: 10.1038/s41419-020-03197-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023]
Abstract
Sarcomas are mesenchymal cancers with poor prognosis, representing about 20% of all solid malignancies in children, adolescents, and young adults. Radio- and chemoresistance are common features of sarcomas warranting the search for novel prognostic and predictive markers. GARP/LRRC32 is a TGF-β-activating protein that promotes immune escape and dissemination in various cancers. However, if GARP affects the tumorigenicity and treatment resistance of sarcomas is not known. We show that GARP is expressed by human osteo-, chondro-, and undifferentiated pleomorphic sarcomas and is associated with a significantly worse clinical prognosis. Silencing of GARP in bone sarcoma cell lines blocked their proliferation and induced apoptosis. In contrast, overexpression of GARP promoted their growth in vitro and in vivo and increased their resistance to DNA damage and cell death induced by etoposide, doxorubicin, and irradiation. Our data suggest that GARP could serve as a marker with therapeutic, prognostic, and predictive value in sarcoma. We propose that targeting GARP in bone sarcomas could reduce tumour burden while simultaneously improving the efficacy of chemo- and radiotherapy.
Collapse
|
10
|
Carrillo‐Gálvez AB, Gálvez‐Peisl S, González‐Correa JE, de Haro‐Carrillo M, Ayllón V, Carmona‐Sáez P, Ramos‐Mejía V, Galindo‐Moreno P, Cara FE, Granados‐Principal S, Muñoz P, Martin F, Anderson P. GARP is a key molecule for mesenchymal stromal cell responses to TGF-β and fundamental to control mitochondrial ROS levels. Stem Cells Transl Med 2020; 9:636-650. [PMID: 32073751 PMCID: PMC7180295 DOI: 10.1002/sctm.19-0372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have emerged as a promising cell therapy in regenerative medicine and for autoimmune/inflammatory diseases. However, a main hurdle for MSCs-based therapies is the loss of their proliferative potential in vitro. Here we report that glycoprotein A repetitions predominant (GARP) is required for the proliferation and survival of adipose-derived MSCs (ASCs) via its regulation of transforming growth factor-β (TGF-β) activation. Silencing of GARP in human ASCs increased their activation of TGF-β which augmented the levels of mitochondrial reactive oxygen species (mtROS), resulting in DNA damage, a block in proliferation and apoptosis. Inhibition of TGF-β signaling reduced the levels of mtROS and DNA damage and restored the ability of GARP-/low ASCs to proliferate. In contrast, overexpression of GARP in ASCs increased their proliferative capacity and rendered them more resistant to etoposide-induced DNA damage and apoptosis, in a TGF-β-dependent manner. In summary, our data show that the presence or absence of GARP on ASCs gives rise to distinct TGF-β responses with diametrically opposing effects on ASC proliferation and survival.
Collapse
Affiliation(s)
- Ana Belén Carrillo‐Gálvez
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Sheyla Gálvez‐Peisl
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Juan Elías González‐Correa
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Marina de Haro‐Carrillo
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Verónica Ayllón
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Pedro Carmona‐Sáez
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Verónica Ramos‐Mejía
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Pablo Galindo‐Moreno
- Department of Oral Surgery and Implant DentistrySchool of Dentistry, University of GranadaGranadaSpain
| | - Francisca E. Cara
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
- UGC de Oncología Médica, Hospital Universitario de JaénJaénSpain
| | - Sergio Granados‐Principal
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
- UGC de Oncología Médica, Hospital Universitario de JaénJaénSpain
| | - Pilar Muñoz
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Francisco Martin
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Per Anderson
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio ClínicoHospital Universitario Virgen de las NievesGranadaSpain
- Biosanitary Institute of Granada (ibs.Granada), University of GranadaSpain
| |
Collapse
|