1
|
Wang L, Nie F, Lu Z, Chong Y. Mechanism underlying the involvement of CXCR4/CXCL12 in diabetic wound healing and prospects for responsive hydrogel-loaded CXCR4 formulations. Front Pharmacol 2025; 16:1561112. [PMID: 40308758 PMCID: PMC12040920 DOI: 10.3389/fphar.2025.1561112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Diabetes mellitus is a prevalent chronic disease, often leading to complications, with chronic wounds being among the most challenging. Impairment of the CXCR4/CXCL12 signaling pathway, which plays a key role in cell mobilization, migration, and angiogenesis, significantly hampers the wound healing process in diabetic patients. Modulation of this pathway using CXCR4-targeted agents has shown promise in restoring wound repair capabilities. Additionally, the development of responsive hydrogels capable of adapting to external stimuli offers a powerful platform for drug delivery in chronic wound management. These hydrogels, when loaded with CXCR4 agonists or antagonists, enable controlled drug release and real-time therapeutic modulation. Integrating such hydrogels with existing wound healing strategies may provide an innovative and effective solution for overcoming the challenges associated with diabetic wound treatment.
Collapse
Affiliation(s)
- Lingli Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fengsong Nie
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhaoyu Lu
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Chong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Liu Y, Li P, Yang Y. Advancements in utilizing CD34 + stem cells for repairing diabetic vascular damage. Biochem Biophys Res Commun 2025; 750:151411. [PMID: 39889623 DOI: 10.1016/j.bbrc.2025.151411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Diabetes-related vascular damage is a frequent complication of diabetes that results in structural and functional impairment of blood vessels. This damage significantly heightens the risk of cardiovascular events. CD34+ stem cells have shown great potential in the treatment of diabetes-related vascular damage due to their differentiation and vascular repair capabilities. This article provides a review of the research hotspots on the role and mechanisms of CD34+ stem cells in the repair of diabetes-related vascular damage, including changes in cell quantity and function during diabetes, as well as the latest research on activating, protecting, or repairing these cells to prevent or treat vascular damage. The article also summarizes the impact of diabetes on the mobilization and function of CD34+ stem cells, emphasizing how diabetes negatively affects their ability to promote angiogenesis. These deficits can result in various complications, including issues with small blood vessels, coronary heart disease, foot problems, and retinal complications. On the clinical side, the article highlights the positive effects of CD34+ stem cell therapy in improving vascular function and tissue repair in diabetic patients, while also mentioning the inconsistencies in results between diabetes models and clinical studies, which necessitate further research to optimize treatment strategies. It emphasizes the importance of enhancing the mobilization, homing, and repair capabilities of CD34+ stem cells, as well as combining them with other treatment methods, to develop more effective strategies for treating diabetes-related vascular damage.
Collapse
Affiliation(s)
- Yiting Liu
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Huang K, Mi B, Xiong Y, Fu Z, Zhou W, Liu W, Liu G, Dai G. Angiogenesis during diabetic wound repair: from mechanism to therapy opportunity. BURNS & TRAUMA 2025; 13:tkae052. [PMID: 39927093 PMCID: PMC11802347 DOI: 10.1093/burnst/tkae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 02/11/2025]
Abstract
Diabetes mellitus, a pervasive chronic metabolic disorder, is often associated with complications such as impaired wound healing. Various factors, most notably vascular deficiency, govern the wound repair process in diabetic patients, significantly impeding diabetic wound healing; therefore, angiogenesis and its role in diabetic wound repair have emerged as important areas of research. This review aims to delve into the mechanisms of angiogenesis, the effects of diabetes on angiogenesis, and the association between angiogenesis and diabetic wound repair. This will ultimately offer valuable guidance regarding the ideal timing of diabetic wound treatment in a clinical setting.
Collapse
Affiliation(s)
- Kang Huang
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Bobin Mi
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Yuan Xiong
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Zicai Fu
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Wenyun Zhou
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Wanjun Liu
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Guohui Liu
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Guandong Dai
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| |
Collapse
|
4
|
Turkkahraman H, Flanagan S, Zhu T, Akel N, Marino S, Ortega-Gonzalez D, Yuan X, Bellido T. Sclerostin antibody corrects periodontal disease in type 2 diabetic mice. JCI Insight 2024; 9:e181940. [PMID: 39171525 PMCID: PMC11343605 DOI: 10.1172/jci.insight.181940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Type 2 diabetes (T2D) is on the rise worldwide and is associated with various complications in the oral cavity. Using an adult-onset diabetes preclinical model, we demonstrated profound periodontal alterations in T2D mice, including inflamed gingiva, disintegrated periodontal ligaments (PDLs), marked alveolar bone loss, and unbalanced bone remodeling due to decreased formation and increased resorption. Notably, we observed elevated levels of the Wnt signaling inhibitor sclerostin in the alveolar bone of T2D mice. Motivated by these findings, we investigated whether a sclerostin-neutralizing antibody (Scl-Ab) could rescue the compromised periodontium in T2D mice. Administering Scl-Ab subcutaneously once a week for 4 weeks, starting 4 weeks after T2D induction, led to substantial increases in bone mass. This effect was attributed to the inhibition of osteoclasts and promotion of osteoblasts in both control and T2D mice, effectively reversing the bone loss caused by T2D. Furthermore, Scl-Ab stimulated PDL cell proliferation, partially restored the PDL fibers, and mitigated inflammation in the periodontium. Our study thus established a T2D-induced periodontitis mouse model characterized by inflammation and tissue degeneration. Scl-Ab emerged as a promising intervention to counteract the detrimental effects of T2D on the periodontium, exhibiting limited side effects on other craniofacial hard tissues.
Collapse
Affiliation(s)
- Hakan Turkkahraman
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, Indiana, USA
| | - Shannan Flanagan
- Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianli Zhu
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, Indiana, USA
| | - Nisreen Akel
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Dayane Ortega-Gonzalez
- Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xue Yuan
- Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan, Little Rock, Arkansas, USA
| |
Collapse
|
5
|
Evans MO, Smith DM, Kress AT, Nadeau RJ, Selig DJ, Caridha D, Racharaks R, Langowski T, Madejczyk MS, Carbaugh C, Saunders D, Widder M, De Meese J, Lee PJ, DeLuca JP. Plerixafor for pathogen-agnostic treatment in murine thigh infection and zebrafish sepsis. Clin Transl Sci 2024; 17:e13876. [PMID: 38963161 PMCID: PMC11223064 DOI: 10.1111/cts.13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Plerixafor is a CXCR4 antagonist approved in 2008 by the FDA for hematopoietic stem cell collection. Subsequently, plerixafor has shown promise as a potential pathogen-agnostic immunomodulator in a variety of preclinical animal models. Additionally, investigator-led studies demonstrated plerixafor prevents viral and bacterial infections in patients with WHIM syndrome, a rare immunodeficiency with aberrant CXCR4 signaling. Here, we investigated whether plerixafor could be repurposed to treat sepsis or severe wound infections, either alone or as an adjunct therapy. In a Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced zebrafish sepsis model, plerixafor reduced sepsis mortality and morbidity assessed by tail edema. There was a U-shaped response curve with the greatest effect seen at 0.1 μM concentration. We used Acinetobacter baumannii infection in a neutropenic murine thigh infection model. Plerixafor did not show reduced bacterial growth at 24 h in the mouse thigh model, nor did it amplify the effects of a rifampin antibiotic therapy, in varying regimens. While plerixafor did not mitigate or treat bacterial wound infections in mice, it did reduce sepsis mortality in zebra fish. The observed mortality reduction in our LPS model of zebrafish was consistent with prior research demonstrating a mortality benefit in a murine model of sepsis. However, based on our results, plerixafor is unlikely to be successful as an adjunct therapy for wound infections. Further research is needed to better define the scope of plerixafor as a pathogen-agnostic therapy. Future directions may include the use of longer acting CXCR4 antagonists, biased CXCR4 signaling, and optimization of animal models.
Collapse
Affiliation(s)
- Martin O. Evans
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Darren M. Smith
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Adrian T. Kress
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Robert J. Nadeau
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Daniel J. Selig
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Diana Caridha
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Ratanachat Racharaks
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Thomas Langowski
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Michael S. Madejczyk
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Chance Carbaugh
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - David Saunders
- Uniformed Services University School of MedicineBethesdaMarylandUSA
| | - Mark Widder
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Jason De Meese
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Patricia J. Lee
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Jesse P. DeLuca
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| |
Collapse
|
6
|
Farabi B, Roster K, Hirani R, Tepper K, Atak MF, Safai B. The Efficacy of Stem Cells in Wound Healing: A Systematic Review. Int J Mol Sci 2024; 25:3006. [PMID: 38474251 PMCID: PMC10931571 DOI: 10.3390/ijms25053006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Wound healing is an intricate process involving coordinated interactions among inflammatory cells, skin fibroblasts, keratinocytes, and endothelial cells. Successful tissue repair hinges on controlled inflammation, angiogenesis, and remodeling facilitated by the exchange of cytokines and growth factors. Comorbid conditions can disrupt this process, leading to significant morbidity and mortality. Stem cell therapy has emerged as a promising strategy for enhancing wound healing, utilizing cells from diverse sources such as endothelial progenitor cells, bone marrow, adipose tissue, dermal, and inducible pluripotent stem cells. In this systematic review, we comprehensively investigated stem cell therapies in chronic wounds, summarizing the clinical, translational, and primary literature. A systematic search across PubMed, Embase, Web of Science, Google Scholar, and Cochrane Library yielded 22,454 articles, reduced to 44 studies after rigorous screening. Notably, adipose tissue-derived mesenchymal stem cells (AD-MSCs) emerged as an optimal choice due to their abundant supply, easy isolation, ex vivo proliferative capacities, and pro-angiogenic factor secretion. AD-MSCs have shown efficacy in various conditions, including peripheral arterial disease, diabetic wounds, hypertensive ulcers, bullous diabeticorum, venous ulcers, and post-Mohs micrographic surgery wounds. Delivery methods varied, encompassing topical application, scaffold incorporation, combination with plasma-rich proteins, and atelocollagen administration. Integration with local wound care practices resulted in reduced pain, shorter healing times, and improved cosmesis. Stem cell transplantation represents a potential therapeutic avenue, as transplanted stem cells not only differentiate into diverse skin cell types but also release essential cytokines and growth factors, fostering increased angiogenesis. This approach holds promise for intractable wounds, particularly chronic lower-leg wounds, and as a post-Mohs micrographic surgery intervention for healing defects through secondary intention. The potential reduction in healthcare costs and enhancement of patient quality of life further underscore the attractiveness of stem cell applications in wound care. This systematic review explores the clinical utilization of stem cells and stem cell products, providing valuable insights into their role as ancillary methods in treating chronic wounds.
Collapse
Affiliation(s)
- Banu Farabi
- Department of Dermatology, New York Medical College, Valhalla, NY 10595, USA;
- Department of Dermatology, NYC H+Health Hospitals/Metropolitan Hospital Center, New York, NY 10029, USA
- Department of Dermatology, NYC H+Health Hospitals/South Brooklyn Health, Brooklyn, NY 11235, USA
| | - Katie Roster
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (K.R.); (R.H.)
| | - Rahim Hirani
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (K.R.); (R.H.)
| | - Katharine Tepper
- Phillip Capozzi, M.D. Library, New York Medical College, Valhalla, NY 10595, USA;
| | - Mehmet Fatih Atak
- Department of Internal Medicine, NYC H+Health Hospitals/Metropolitan Hospital Center, New York, NY 10029, USA;
| | - Bijan Safai
- Department of Dermatology, New York Medical College, Valhalla, NY 10595, USA;
- Department of Dermatology, NYC H+Health Hospitals/Metropolitan Hospital Center, New York, NY 10029, USA
- Department of Dermatology, NYC H+Health Hospitals/South Brooklyn Health, Brooklyn, NY 11235, USA
| |
Collapse
|
7
|
Chen P, Vilorio NC, Dhatariya K, Jeffcoate W, Lobmann R, McIntosh C, Piaggesi A, Steinberg J, Vas P, Viswanathan V, Wu S, Game F. Guidelines on interventions to enhance healing of foot ulcers in people with diabetes (IWGDF 2023 update). Diabetes Metab Res Rev 2024; 40:e3644. [PMID: 37232034 DOI: 10.1002/dmrr.3644] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
AIMS Principles of wound management, including debridement, wound bed preparation, and newer technologies involving alternation of wound physiology to facilitate healing, are of utmost importance when attempting to heal a chronic diabetes-related foot ulcer. However, the rising incidence and costs of diabetes-related foot ulcer management necessitate that interventions to enhance wound healing of chronic diabetes-related foot ulcers are supported by high-quality evidence of efficacy and cost effectiveness when used in conjunction with established aspects of gold-standard multidisciplinary care. This is the 2023 International Working Group on the Diabetic Foot (IWGDF) evidence-based guideline on wound healing interventions to promote healing of foot ulcers in persons with diabetes. It serves as an update of the 2019 IWGDF guideline. MATERIALS AND METHODS We followed the GRADE approach by devising clinical questions and important outcomes in the Patient-Intervention-Control-Outcome (PICO) format, undertaking a systematic review, developing summary of judgements tables, and writing recommendations and rationale for each question. Each recommendation is based on the evidence found in the systematic review and, using the GRADE summary of judgement items, including desirable and undesirable effects, certainty of evidence, patient values, resources required, cost effectiveness, equity, feasibility, and acceptability, we formulated recommendations that were agreed by the authors and reviewed by independent experts and stakeholders. RESULTS From the results of the systematic review and evidence-to-decision making process, we were able to make 29 separate recommendations. We made a number of conditional supportive recommendations for the use of interventions to improve healing of foot ulcers in people with diabetes. These include the use of sucrose octasulfate dressings, the use of negative pressure wound therapies for post-operative wounds, the use of placental-derived products, the use of the autologous leucocyte/platelet/fibrin patch, the use of topical oxygen therapy, and the use of hyperbaric oxygen. Although in all cases it was stressed that these should be used where best standard of care was not able to heal the wound alone and where resources were available for the interventions. CONCLUSIONS These wound healing recommendations should support improved outcomes for people with diabetes and ulcers of the foot, and we hope that widescale implementation will follow. However, although the certainty of much of the evidence on which to base the recommendations is improving, it remains poor overall. We encourage not more, but better quality trials including those with a health economic analysis, into this area.
Collapse
Affiliation(s)
- Pam Chen
- Joondalup Health Campus, Ramsay Healthcare Australia, Joondalup, Western Australia, Australia
- Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Nalini Campillo Vilorio
- Department of Diabetology, Diabetic Foot Unit, Plaza de la Salud General Hospital, Santo Domingo, Dominican Republic
| | - Ketan Dhatariya
- Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Ralf Lobmann
- Clinic for Endocrinology, Diabetology and Geriatrics, Klinikum Stuttgart, Stuttgart, Germany
| | - Caroline McIntosh
- Podiatric Medicine, School of Health Sciences, University of Galway, Galway, Ireland
| | - Alberto Piaggesi
- Diabetic Foot Section, Department of Medicine, University of Pisa, Pisa, Italy
| | - John Steinberg
- Georgetown University School of Medicine, Georgetown, Washington DC, USA
| | - Prash Vas
- King's College Hospital NHS Foundation Trust, London, UK
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Prof M Viswanathan Diabetes Research Center, Chennai, India
| | - Stephanie Wu
- Dr. William M. Scholl College of Podiatric Medicine at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Fran Game
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| |
Collapse
|
8
|
Yang B, Lin Y, Huang Y, Zhu N, Shen YQ. Extracellular vesicles modulate key signalling pathways in refractory wound healing. BURNS & TRAUMA 2023; 11:tkad039. [PMID: 38026441 PMCID: PMC10654481 DOI: 10.1093/burnst/tkad039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/10/2023] [Accepted: 06/22/2023] [Indexed: 12/01/2023]
Abstract
Chronic wounds are wounds that cannot heal properly due to various factors, such as underlying diseases, infection or reinjury, and improper healing of skin wounds and ulcers can cause a serious economic burden. Numerous studies have shown that extracellular vesicles (EVs) derived from stem/progenitor cells promote wound healing, reduce scar formation and have significant advantages over traditional treatment methods. EVs are membranous particles that carry various bioactive molecules from their cellular origins, such as cytokines, nucleic acids, enzymes, lipids and proteins. EVs can mediate cell-to-cell communication and modulate various physiological processes, such as cell differentiation, angiogenesis, immune response and tissue remodelling. In this review, we summarize the recent advances in EV-based wound healing, focusing on the signalling pathways that are regulated by EVs and their cargos. We discuss how EVs derived from different types of stem/progenitor cells can promote wound healing and reduce scar formation by modulating the Wnt/β-catenin, phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin, vascular endothelial growth factor, transforming growth factor β and JAK-STAT pathways. Moreover, we also highlight the challenges and opportunities for engineering or modifying EVs to enhance their efficacy and specificity for wound healing.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Nanxi Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| |
Collapse
|
9
|
Peddibhotla S, Caples K, Mehta A, Chen QY, Hu J, Idlett-Ali S, Zhang L, Zgheib C, Xu J, Liechty KW, Malany S. Triazolothiadiazine derivative positively modulates CXCR4 signaling and improves diabetic wound healing. Biochem Pharmacol 2023; 216:115764. [PMID: 37634595 PMCID: PMC11115308 DOI: 10.1016/j.bcp.2023.115764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
Development of specific therapies that target and accelerate diabetic wound repair is an urgent need to alleviate pain and suffering and the huge socioeconomic burden of this debilitating disease. C-X-C Motif Chemokine Ligand 12 (CXCL12) also know an stromal cell-derived factor 1α (SDF-1α) is a chemokine that binds the CXC chemokine receptor type 4 (CXCR4) and activates downstream signaling resulting in recruitment of hematopoietic cells to locations of tissue injury and promotes tissue repair. In diabetes, low expression of CXCL12 correlates with impaired wound healing. Activation of CXCR4 receptor signaling with agonists or positive allosteric modulators (PAMs) provides a potential for small molecule therapeutic discovery and development. We recently reported high throughput screening and identification of the CXCR4 partial agonist UCUF-728, characterization of in vitro activity and reduced wound closure time in diabetic mice at 100 μM as a proof-of-concept study. We report here, the discovery of a second chemical scaffold demonstrating increased agonist potency and represented by thiadiazine derivative, UCUF-965. UCUF-965 is a potent partial agonist of β-arrestin recruitment in CXCR4 receptor overexpressing cell line. Furthermore, UCUF-965 potentiates the CXCL12 maximal response in cAMP signaling pathway, activates CXCL12 stimulated migration in lymphoblast cells and modulates the levels of specific microRNA involved in the complex wound repair process, specifically in mouse fibroblasts. Our results indicate that UCUF-965 acts as a PAM agonist of the CXCR4 receptor. Furthermore, UCUF-965 enhanced angiogenesis markers and reduced wound healing time by 36% at 10.0 μM in diabetic mice models compared to untreated control.
Collapse
Affiliation(s)
| | - Karly Caples
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Alka Mehta
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Junyi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Shaquia Idlett-Ali
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver - Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Liping Zhang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver - Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Junwang Xu
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver - Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA; Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver - Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA.
| | - Siobhan Malany
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
10
|
Bonora BM, Cappellari R, Albiero M, Prevedello L, Foletto M, Vettor R, Avogaro A, Fadini GP. Putative circulating adipose tissue-derived stem cells, obesity, and metabolic syndrome features. J Endocrinol Invest 2023; 46:2147-2155. [PMID: 36952215 PMCID: PMC10514150 DOI: 10.1007/s40618-023-02067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/09/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE In mice, adipose tissue-derived stem cells (ASCs) reach the systemic circulation and establish ectopic adipose depots fostering insulin resistance, but whether this occurs in humans is unknown. We examined circulating ASCs in individuals with various combination of metabolic syndrome traits. METHODS We enrolled patients attending a routine metabolic evaluation or scheduled for bariatric surgery. We quantified ASCs as CD34+CD45-CD31-(CD36+) cells in the stromal vascular fraction of subcutaneous and visceral adipose tissue samples and examined the presence and frequency of putative ASCs in peripheral blood. RESULTS We included 111 patients (mean age 59 years, 55% males), 40 of whom were scheduled for bariatric surgery. The population of CD34+CD45-CD31- ASCs was significantly more frequent in visceral than subcutaneous adipose depots (10.4 vs 4.1% of the stromal vascular fraction; p < 0.001), but not correlated with BMI or metabolic syndrome traits. The same phenotype of ASCs was detectable in peripheral blood of 58.6% of patients. Those with detectable circulating ASCs had significantly higher BMI (37.8 vs 33.3 kg/m2; p = 0.003) and waist (111.2 vs 105.4 cm; p = 0.001), but no difference in other metabolic syndrome traits (p = 0.84). After bariatric surgery, patients with detectable circulating ASCs had greater BMI reductions at 6 months (- 10.4 vs - 7.8 kg/m2; p = 0.014). CONCLUSION Presence of putative circulating ASCs, antigenically similar to those observed in the adipose tissue, is associated with greater adiposity and larger BMI reduction after surgery, but not with clinical signs of metabolic impairment. The role of circulating ASCs in adipose tissue biology and systemic metabolism deserves further investigation.
Collapse
Affiliation(s)
- B M Bonora
- Department of Medicine, University of Padova, 35128, Padua, Italy
- Veneto Institute of Molecular Medicine, 35129, Padua, Italy
| | - R Cappellari
- Department of Medicine, University of Padova, 35128, Padua, Italy
- Bariatric Surgery Unit, University Hospital of Padova, 35128, Padua, Italy
| | - M Albiero
- Department of Medicine, University of Padova, 35128, Padua, Italy
- Veneto Institute of Molecular Medicine, 35129, Padua, Italy
| | - L Prevedello
- Bariatric Surgery Unit, University Hospital of Padova, 35128, Padua, Italy
| | - M Foletto
- Bariatric Surgery Unit, University Hospital of Padova, 35128, Padua, Italy
| | - R Vettor
- Department of Medicine, University of Padova, 35128, Padua, Italy
| | - A Avogaro
- Department of Medicine, University of Padova, 35128, Padua, Italy
| | - G P Fadini
- Department of Medicine, University of Padova, 35128, Padua, Italy.
- Veneto Institute of Molecular Medicine, 35129, Padua, Italy.
| |
Collapse
|
11
|
Ahmadi AR, Atiee G, Chapman B, Reynolds L, Sun J, Cameron AM, Wesson RN, Burdick JF, Sun Z. A phase I, first-in-human study to evaluate the safety and tolerability, pharmacokinetics, and pharmacodynamics of MRG-001 in healthy subjects. Cell Rep Med 2023; 4:101169. [PMID: 37633275 PMCID: PMC10518600 DOI: 10.1016/j.xcrm.2023.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/13/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
Preclinical studies demonstrate that pharmacological mobilization and recruitment of endogenous bone marrow stem cells and immunoregulatory cells by a fixed-dose drug combination (MRG-001) improves wound healing, promotes tissue regeneration, and prevents allograft rejection. In this phase I, first-in-human study, three cohorts receive subcutaneous MRG-001 or placebo, every other day for 5 days. The primary outcome is safety and tolerability of MRG-001. Fourteen subjects received MRG-001 and seven received a placebo. MRG-001 is safe over the selected dose range. There are no clinically significant laboratory changes. The intermediate dose group demonstrates the most significant white blood cell, stem cell, and immunoregulatory cell mobilization. PBMC RNA sequencing and gene set enrichment analysis reveal 31 down-regulated pathways in the intermediate MRG-001 dose group compared with no changes in the placebo group. MRG-001 is safe across all dose ranges. MRG-001 may be a clinically useful therapy for immunoregulation and tissue regeneration (ClinicalTrials.gov: NCT04646603).
Collapse
Affiliation(s)
| | | | | | | | - John Sun
- MedRegen LLC, Baltimore, MD, USA
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Russell N Wesson
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | - Zhaoli Sun
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Czop JK, Jałowska M. Stem cells in plastic surgery and aesthetic medicine. Postepy Dermatol Alergol 2023; 40:504-509. [PMID: 37692263 PMCID: PMC10485752 DOI: 10.5114/ada.2023.130498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/06/2023] [Indexed: 09/12/2023] Open
Abstract
Stem cells (SCs) have multiple applications in today's medicine including aesthetic dermatology and plastic surgery. The purpose of this paper is to review some clinical use of mesenchymal SCs. The main focus was put on adipose tissue-derived stem cells (ADSCs) as these cells are easy to harvest and because of their properties showed great potential in many studies, where they proved to accelerate wound healing, reduce scars, cause hair regrowth, or rejuvenate skin. Furthermore, when added to lipofilling procedures, such as breast augmentation they enhance fat graft survival and provide satisfying results. Currently, many different strategies for using SCs in treatments are developed with great efficacy, however, there are still many limitations and concerns regarding their clinical use.
Collapse
Affiliation(s)
- Julia Katarzyna Czop
- Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Jałowska
- Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
13
|
徐 璠, 芮 顺, 罗 珮, 陈 燕, 马 渝, 邓 武. [Bioinformatics Analysis of Hub Genes of Diabetic Foot Ulcer and Their Biofunctions]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:961-968. [PMID: 36443035 PMCID: PMC10408990 DOI: 10.12182/20220860106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To explore the hub genes associated with the pathogenesis and healing of diabetic foot ulcer (DFU) and their biological functions through bioinformatics analysis of transcriptome sequencing data. METHODS The transcriptome sequencing datasets of DFU were selected from Gene Expression Omnibus (GEO) database, and the data were regrouped and normalized for bioinformatics analysis. The skin transcriptome sequencing datasets of DFU patients were compared with those of normal controls and the transcriptome sequencing datasets of skin from ulcerous wound edge of DFU patients were compared with those of non-ulcerous skin of DFU patients so that differentially expressed genes were identified, pathway enrichment and protein-to-protein interaction (PPI) analyses were performed, hub genes were found through nodal analysis, and receiver operating characteristic (ROC) curve was applied to a testing dataset to validate the diagnostic efficiency of the hub genes related to DFU. The intersecting genes from the two sets of analyses were again subjected to pathway enrichment and PPI analyses to screen for hub genes associated with DFU wound healing. What's more, gene set enrichment analysis (GSEA) was carried out on relevant samples to probe for the possible functions and pathway of non-significant genes in DFU. RESULTS A total of 620 up-regulated differentially expressed genes and 196 down-regulated differentially expressed genes were identified in the training dataset which compared DFU patients with non-diabetic patients. The functions of these genes were enriched in the metabolism of terpenoids and polyketides, signaling molecules and interaction, phospholipase D signaling pathway, propanoate metabolism, PI3K-Akt signaling pathway, Toll-like receptor signaling pathway, pyrimidine metabolism, IL-17 signaling pathway, Rap1 signaling pathway, etc. A total of 10 hub genes were identified with the PPI network. Among them, BGN's value of the area under the curve of ROC analysis was 0.714 and CCND1's was 0.712. In the sequencing analysis of ulcerous wound edge of DFU patients and non-ulcerous skin of DFU patients, 4072 up-regulated genes and 911 down-regulated genes were identified, of which, 372 genes were also detected in the differentially expressed genes of DFU. The functions of these differentially expressed genes were enriched in phospholipase D signaling pathway, xenobiotics biodegradation and energy metabolism, glutathione metabolism, pyrimidine metabolism, ErbB signaling pathway, melanin production, etc. A total of 7 hub genes were identified from PPI network. In GSEA analysis, pathways including pentose and glucuronate interconversions and homologous recombination, nicotinate and nicotinamide metabolism, neuroactive ligand receptor interaction, maturity-onset diabetes of the young, butanoate metabolism, lysine degradation, pantothenate and coenzyme A biosynthesis, riboflavin metabolism, steroid hormone biosynthesis, and valine, leucine and isoleucine degradation showed significant expression differences between DFU patients and normal controls. CONCLUSION Bioinformatics analysis results suggest that BGN and CCND1 are potential biomarkers for predicting DFU; CXCL12, TLR4, JAK2, PPARA, UBC, DCN, KDR, and ARNTL are the hub genes of DFU, while CXCL8, CXCL12, TXN, SLIT3, KRT14, KIT, and NEO1 are the hub genes related to wound healing of DFU.
Collapse
Affiliation(s)
- 璠 徐
- 重庆大学附属中心医院/重庆市急救医疗中心 内分泌代谢科 (重庆 400014)Department of Endocrinology, Chongqing University Central Hospital/Chongqing Emergency Medical Center, Chongqing 400014, China
| | - 顺利 芮
- 重庆大学附属中心医院/重庆市急救医疗中心 内分泌代谢科 (重庆 400014)Department of Endocrinology, Chongqing University Central Hospital/Chongqing Emergency Medical Center, Chongqing 400014, China
| | - 珮绮 罗
- 重庆大学附属中心医院/重庆市急救医疗中心 内分泌代谢科 (重庆 400014)Department of Endocrinology, Chongqing University Central Hospital/Chongqing Emergency Medical Center, Chongqing 400014, China
| | - 燕 陈
- 重庆大学附属中心医院/重庆市急救医疗中心 内分泌代谢科 (重庆 400014)Department of Endocrinology, Chongqing University Central Hospital/Chongqing Emergency Medical Center, Chongqing 400014, China
| | - 渝 马
- 重庆大学附属中心医院/重庆市急救医疗中心 内分泌代谢科 (重庆 400014)Department of Endocrinology, Chongqing University Central Hospital/Chongqing Emergency Medical Center, Chongqing 400014, China
| | - 武权 邓
- 重庆大学附属中心医院/重庆市急救医疗中心 内分泌代谢科 (重庆 400014)Department of Endocrinology, Chongqing University Central Hospital/Chongqing Emergency Medical Center, Chongqing 400014, China
| |
Collapse
|
14
|
Awasthi A, Vishwas S, Gulati M, Corrie L, Kaur J, Khursheed R, Alam A, Alkhayl FF, Khan FR, Nagarethinam S, Kumar R, Arya K, Kumar B, Chellappan DK, Gupta G, Dua K, Singh SK. Expanding arsenal against diabetic wounds using nanomedicines and nanomaterials: Success so far and bottlenecks. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Fadini GP, Albiero M. Impaired haematopoietic stem / progenitor cell traffic and multi-organ damage in diabetes. Stem Cells 2022; 40:716-723. [PMID: 35552468 PMCID: PMC9406601 DOI: 10.1093/stmcls/sxac035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
Abstract
During antenatal development, hematopoietic stem/progenitor cells (HSPCs) arise from a specialized endothelium and migrate from the extraembryonic mesoderm to the fetal liver before establishing hematopoiesis in the bone marrow (BM). It is still debated whether, in adulthood, HSPCs display such ontologic overlap with vascular cells and capacity for endothelial differentiation. Yet, adult HSPCs retain a prominent migratory activity and traffic in the bloodstream to secondary lymphoid organs and all peripheral tissues, before eventually returning to the BM. While patrolling parenchymatous organs, HSPCs locate close to the vasculature, where they establish local hematopoietic islands and contribute to tissue homeostasis by paracrine signals. Solid evidence shows that diabetes mellitus jeopardizes the traffic of HSPCs from BM to the circulation and peripheral tissues, a condition called “mobilopathy.” A reduction in the levels of circulating HSPCs is the most immediate and apparent consequence, which has been consistently observed in human diabetes, and is strongly associated with future risk for multi-organ damage, including micro- and macro-angiopathy. But the shortage of HSPCs in the blood is only the visible tip of the iceberg. Abnormal HSPC traffic results from a complex interplay among metabolism, innate immunity, and hematopoiesis. Notably, mobilopathy is mechanistically connected with diabetes-induced myelopoiesis. Impaired traffic of HSPCs and enhanced generation of pro-inflammatory cells synergize for tissue damage and impair the resolution of inflammation. We herein summarize the current evidence that diabetes affects HSPC traffic, which are the causes and consequences of such alteration, and how it contributes to the overall disease burden.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padova, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Mattia Albiero
- Department of Medicine, University of Padova, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| |
Collapse
|
16
|
Fan Y, Zhi Y, He M, Ahmadzadeh B, Rohani S. Cellulose acetate/Plerixafor wound dressings for transplantation of menstrual blood stem cells: Potential treatment modality for diabetic wounds. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Albiero M, D'Anna M, Bonora BM, Zuccolotto G, Rosato A, Giorgio M, Iori E, Avogaro A, Fadini GP. Hematopoietic and Nonhematopoietic p66Shc Differentially Regulates Stem Cell Traffic and Vascular Response to Ischemia in Diabetes. Antioxid Redox Signal 2022; 36:593-607. [PMID: 34538132 DOI: 10.1089/ars.2021.0097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Peripheral artery disease (PAD) is a severe complication of diabetes, characterized by defective traffic of hematopoietic stem/progenitor cells (HSPCs). We examined the hematopoietic versus nonhematopoietic role of p66Shc in regulating HSPC traffic and blood flow recovery after ischemia in diabetic mice. Results: Using streptozotocin-induced diabetes, chimeric mice with green fluorescent protein (GFP)+ bone marrow (BM), and the hind limb ischemia model, we found that the physiologic mobilization and homing of HSPCs were abolished by diabetes, along with impaired vascular recovery. Hematopoietic deletion of p66Shc, obtained by transplanting p66Shc-/- BM cells into wild-type (Wt) recipients, but not nonhematopoietic deletion, constrained hyperglycemia-induced myelopoiesis, rescued postischemic HSPC mobilization, and improved blood flow recovery in diabetic mice. In Wt diabetic mice transplanted with BM cells from GFP+p66Shc-/- mice, the amount of HSPCs homed to ischemic muscles was greater than in mice transplanted with GFP+p66Shc+/+ cells, with recruited cells displaying higher expression of adhesion molecules and Vegf. In 40 patients with diabetes, p66Shc gene expression in mononuclear cells was correlated with myelopoiesis and elevated in the presence of PAD. In 13 patients with diabetes and PAD, p66Shc expression in HSPC-mobilized peripheral blood cells was inversely correlated with VEGF expression. Innovation: For the first time, we dissect the role of hematopoietic versus nonhematopoietic p66Shc in regulating HSPC traffic and ischemic responses. Conclusion: Hematopoietic deletion of p66Shc was sufficient to rescue HSPC mobilization and homing in diabetes after ischemia and improved blood flow recovery. Inhibiting p66Shc in blood cells may be a novel strategy to counter PAD in diabetes. Antioxid. Redox Signal. 36, 593-607. Clinical Trial No.: NCT02790957.
Collapse
Affiliation(s)
- Mattia Albiero
- Department of Medicine, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marianna D'Anna
- Department of Medicine, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | - Benedetta Maria Bonora
- Department of Medicine, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gaia Zuccolotto
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Antonio Rosato
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy.,Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Marco Giorgio
- European Institute of Oncology (IEO), Milan, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Angelo Avogaro
- Department of Medicine, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
18
|
Gu Y, Rampin A, Alvino VV, Spinetti G, Madeddu P. Cell Therapy for Critical Limb Ischemia: Advantages, Limitations, and New Perspectives for Treatment of Patients with Critical Diabetic Vasculopathy. Curr Diab Rep 2021; 21:11. [PMID: 33651185 PMCID: PMC7925447 DOI: 10.1007/s11892-021-01378-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW To provide a highlight of the current state of cell therapy for the treatment of critical limb ischemia in patients with diabetes. RECENT FINDINGS The global incidence of diabetes is constantly growing with consequent challenges for healthcare systems worldwide. In the UK only, NHS costs attributed to diabetic complications, such as peripheral vascular disease, amputation, blindness, renal failure, and stroke, average £10 billion each year, with cost pressure being estimated to get worse. Although giant leaps forward have been registered in the scope of early diagnosis and optimal glycaemic control, an effective treatment for critical limb ischemia is still lacking. The present review aims to provide an update of the ongoing work in the field of regenerative medicine. Recent advancements but also limitations imposed by diabetes on the potential of the approach are addressed. In particular, the review focuses on the perturbation of non-coding RNA networks in progenitor cells and the possibility of using emerging knowledge on molecular mechanisms to design refined protocols for personalized therapy. The field of cell therapy showed rapid progress but has limitations. Significant advances are foreseen in the upcoming years thanks to a better understanding of molecular bottlenecks associated with the metabolic disorders.
Collapse
Affiliation(s)
- Y Gu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - A Rampin
- Laboratory of Cardiovascular Research, IRCCS, MultiMedica, Milan, Italy
| | - V V Alvino
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - G Spinetti
- Laboratory of Cardiovascular Research, IRCCS, MultiMedica, Milan, Italy
| | - P Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
19
|
Albiero M, Bonora BM, Fadini GP. Diabetes pharmacotherapy and circulating stem/progenitor cells. State of the art and evidence gaps. Curr Opin Pharmacol 2020; 55:151-156. [PMID: 33271409 DOI: 10.1016/j.coph.2020.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
Diabetes is burdened with the development of several end-organ complications leading to excess mortality. Though the causes of such organ damage are far from being clarified, diabetes has been redefined as a disease of impaired damage control, wherein ongoing damage is not adequately compensated by activation of repair processes. Bone marrow-derived hematopoietic stem/progenitor cells (HSPCs) and their descendants endothelial progenitor cells (EPCs) have been extensively studied as major players in tissue homeostasis as well as biomarkers of diabetic complication risk. Thus, strategies to raise the levels of circulating HSPCs/EPCs have attracted interest for their potential to modify the future risk of complications. We herein discuss state-of-the-art of the effects exerted by diabetes pharmacotherapy on such cell populations. Further, we highlight which outstanding questions remain to be addressed for a more comprehensive understanding of this topic.
Collapse
Affiliation(s)
- Mattia Albiero
- Department of Medicine, University of Padova, 35128 Padova, Italy; Veneto Institute of Molecular Medicine, 35128 Padova, Italy
| | - Benedetta Maria Bonora
- Department of Medicine, University of Padova, 35128 Padova, Italy; Veneto Institute of Molecular Medicine, 35128 Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, 35128 Padova, Italy; Veneto Institute of Molecular Medicine, 35128 Padova, Italy.
| |
Collapse
|
20
|
Bonora BM, Cappellari R, Mazzucato M, Rigato M, Grasso M, Menegolo M, Bruttocao A, Avogaro A, Fadini GP. Stem cell mobilization with plerixafor and healing of diabetic ischemic wounds: A phase IIa, randomized, double-blind, placebo-controlled trial. Stem Cells Transl Med 2020; 9:965-973. [PMID: 32485785 PMCID: PMC7445026 DOI: 10.1002/sctm.20-0020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Bone marrow‐derived cells contribute to tissue repair, but traffic of hematopoietic stem/progenitor cells (HSPCs) is impaired in diabetes. We therefore tested whether HSPC mobilization with the CXCR4 antagonist plerixafor improved healing of ischemic diabetic wounds. This was a pilot, phase IIa, double‐blind, randomized, placebo‐controlled trial (NCT02790957). Patients with diabetes with ischemic wounds were randomized to receive a single subcutaneous injection of plerixafor or saline on top of standard medical and surgical therapy. The primary endpoint was complete healing at 6 months. Secondary endpoints were wound size, transcutaneous oxygen tension (TcO2), ankle‐brachial index (ABI), amputations, and HSPC mobilization. Twenty‐six patients were enrolled: 13 received plerixafor and 13 received placebo. Patients were 84.6% males, with a mean age of 69 years. HSPC mobilization was successful in all patients who received plerixafor. The trial was terminated after a preplanned interim analysis of 50% of the target population showed a significantly lower healing rate in the plerixafor vs the placebo group. In the final analysis data set, the rate of complete healing was 38.5% in the plerixafor group vs 69.2% in the placebo group (chi‐square P = .115). Wound size tended to be larger in the plerixafor group for the entire duration of observation. No significant difference was noted for the change in TcO2 and ABI or in amputation rates. No other safety concern emerged. In conclusion, successful HSPC mobilization with plerixafor did not improve healing of ischemic diabetic wounds. Contrary to what was expected, outside the context of hematological disorders, mobilization of diabetic HSPCs might exert adverse effects on wound healing.
Collapse
Affiliation(s)
- Benedetta Maria Bonora
- Department of Medicine, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | - Roberta Cappellari
- Department of Medicine, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Mauro Rigato
- Department of Medicine, University of Padova, Padova, Italy.,ULSS2 Diabetology Service, Treviso, Italy
| | - Marco Grasso
- Department of Medicine, University of Padova, Padova, Italy
| | - Mirko Menegolo
- Department of Cardiothoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | - Angelo Avogaro
- Department of Medicine, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy.,ULSS2 Diabetology Service, Treviso, Italy
| |
Collapse
|