1
|
Carstens M, Martínez-Cerrato J, Garcia L, Rivera B, Bertram K. Safety of adipose-derived stromal vascular fraction cells to treat Parkinson's disease. Parkinsonism Relat Disord 2025; 132:107214. [PMID: 39658493 DOI: 10.1016/j.parkreldis.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Neuroinflammation is a significant correlate of Parkinson's Disease (PD), with positron emission tomography showing microglial activation early in the PD process and post-mortem tissue containing reactive microglia. Adipose-derived (AD) stromal vascular fraction (SVF) cells have been shown to respond to pro-inflammatory conditions with secretion of anti-inflammatory paracrine factors. This pilot clinical trial was to examine the safety and clinical response using autologous ADSVF to treat PD. Nine PD subjects had baseline neurological exams and Parkinson's Disease Questionnaire 39 (PDQ-39) and "off-medication" Movement Disorder Society (MDS) - Unified Parkinson's Disease Rating Scale (UPDRS) Part III assessments. Each subject had a liposuction procedure; the lipoaspirate was then processed via enzymatic digestion to yield SVF. All subjects were treated with a total dose of 30 million autologous SVF cells injected in the forehead and maxillary regions. Subjects were followed at 1-, 3-, 6-, 12-, and 24-months for safety and potential clinical improvement. There were no SVF intervention-related serious adverse events. PDQ-39 scores at 12-months and 24-months were improved in 6 of 9 subjects evaluable and 4 of 7 subjects evaluable, respectfully. Scores were stable in 1 subject and worse in 2 subjects. MDS-UPDRS Part III scores were improved at 24, months in 3 evaluable subjects and were stable in 2 subjects. One subject required increased dopaminergic medication for increased tremor (disease progression). Autologous ADSVF via facial injections to treat PD was safe, showed evidence of clinical improvement at 12 and 24 months and should be further evaluated in a Phase II placebo-controlled clinical trial.
Collapse
Affiliation(s)
- Michael Carstens
- Department of Surgery, Hospital Esucela Oscar Danilo Rosales Argüello, León, Nicaragua; Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Jorge Martínez-Cerrato
- Department of Medicine, Division of Neurology, Hospital Vivian Pellas - Managua, Nicaragua
| | - Luis Garcia
- Department of Medicine, Division of Neurology, Hospital Vivian Pellas - Managua, Nicaragua
| | - Bayron Rivera
- Department of Medicine, Division of Neurology, Hospital Esucela Oscar Danilo Rosales Argüello, León, Nicaragua
| | - Kenneth Bertram
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
2
|
Aydın M, Akyüz S, Yanik H, Yildirim E, Başak AM, Güven HE, Gülap Y, Yilmaz KB. Autologous adipose-derived tissue stromal vascular fraction and intralesional epidermal growth factor combined application in patients with diabetic foot. J Wound Care 2025; 34:xxx-xxxviii. [PMID: 40056382 DOI: 10.12968/jowc.2024.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect on wound healing of intralesional epidermal growth factor (iEGF) (Heberprot-p; Hasbiotech, Cuba) and autologous adipose-derived tissue stromal vascular fraction (AD-tSVF) applied in the closure of tissue defects. METHOD The patients included in the study were separated into three approximately equal groups: Group 1 with iEGF+AD-tSVF applied; Group 2 with iEGF only applied; and Group 3 with conventional wound care products applied. Granulation tissue was taken from the wound bed before the application of iEGF and AD-tSVF and at intervals thereafter for flow cytometry analysis. RESULTS Group 1 included 11 patients; Group 2 included 10 patients; and Group 3 included 10 patients. The time to re-epithelialisation was determined as 187.60±68.78 days in Group 3 patients compared with Group 1 (72.27±10.33 days) and Group 2 (70.50±18.02 days) (p<0.001). Following the application of iEGF to the wound bed, an increase was observed in M2 macrophage (CD209+), and M1 macrophage (CD38+) levels. The (CD34+) stem cells obtained from the granulation tissue after the application of AD-tSVF were determined to still be statistically significantly increased in the wound bed on the 21st day. CONCLUSION The results of this study demonstrated that the application of iEGF and iEGF+ AD-tSVF significantly shortened the wound healing period compared with conventional methods. AD-tSVF stands as an effective option, especially in the patient group with halted or delayed wound healing despite the application of iEGF. Moreover, the significant increase (p<0.001) in the level of M2 macrophages (CD209+), M1 macrophages (CD38+) and stem cells (CD34+) provided by this treatment modality showed that it contributed to wound healing at the cellular level.
Collapse
Affiliation(s)
- Mustafa Aydın
- MD, Orthopaedic Surgeon, Department of Orthopedics and Traumatology, University of Health Sciences Gulhane Training and Research Hospital, Ankara, Turkey
| | - Simay Akyüz
- PhD, RN, Assistant Professor, University of Health Sciences, Gulhane Faculty of Nursing, Ankara, Turkey
| | - Hamdullah Yanik
- PhD, Molecular Biology and Genetics Specialist, Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | - Eda Yildirim
- MD, Orthopaedic Surgeon, Department of Orthopedics and Traumatology, University of Health Sciences Gulhane Training and Research Hospital, Ankara, Turkey
| | - Ali Murat Başak
- MD, Orthopaedic Surgeon, Department of Orthopedics and Traumatology, University of Health Sciences Gulhane Training and Research Hospital, Ankara, Turkey
| | - Hikmet Erhan Güven
- MD, Associate Professor, General Surgeon, Department of General Surgery, Etlik City Hospital, Ankara, Turkey
| | - Yasin Gülap
- MD, General Surgeon, Department of General Surgery, University of Health Sciences Gulhane Training and Research Hospital, Ankara, Turkey
| | - Kerim Bora Yilmaz
- PhD, Molecular Biology and Genetics Specialist, Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
- MD, General Surgeon, Department of General Surgery, University of Health Sciences Gulhane Training and Research Hospital, Ankara, Turkey
- MD, Professor, General Surgeon, Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Huang K, Mi B, Xiong Y, Fu Z, Zhou W, Liu W, Liu G, Dai G. Angiogenesis during diabetic wound repair: from mechanism to therapy opportunity. BURNS & TRAUMA 2025; 13:tkae052. [PMID: 39927093 PMCID: PMC11802347 DOI: 10.1093/burnst/tkae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 02/11/2025]
Abstract
Diabetes mellitus, a pervasive chronic metabolic disorder, is often associated with complications such as impaired wound healing. Various factors, most notably vascular deficiency, govern the wound repair process in diabetic patients, significantly impeding diabetic wound healing; therefore, angiogenesis and its role in diabetic wound repair have emerged as important areas of research. This review aims to delve into the mechanisms of angiogenesis, the effects of diabetes on angiogenesis, and the association between angiogenesis and diabetic wound repair. This will ultimately offer valuable guidance regarding the ideal timing of diabetic wound treatment in a clinical setting.
Collapse
Affiliation(s)
- Kang Huang
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Bobin Mi
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Yuan Xiong
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Zicai Fu
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Wenyun Zhou
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Wanjun Liu
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Guohui Liu
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Guandong Dai
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| |
Collapse
|
4
|
Ganesan O, Orgill DP. An Overview of Recent Clinical Trials for Diabetic Foot Ulcer Therapies. J Clin Med 2024; 13:7655. [PMID: 39768578 PMCID: PMC11676782 DOI: 10.3390/jcm13247655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetic foot ulcers (DFUs) are a major complication of diabetes, leading to high mortality, reduced quality of life, neuropathy, ischemia, infection, and amputation risks. The prevalence of these ulcers is only on the rise as more people suffer from type 2 diabetes and obesity. The current wound management involves wound dressings, offloading, debridement, and infection control, but more must be done to keep up with the rising prevalence of DFUs and the strain they put on patients and the healthcare system. To find recent therapeutic advances in DFU treatment, we searched PubMed for novel therapeutics from the past 5 years. We found a diversity of promising interventions, including advanced wound dressings and topicals, physical energy-based therapies, regenerative scaffolds, and growth factor- and cell-based therapies. Recent therapies hold significant promise in healing more DFUs faster and more effectively. Providers should consider employing safe, novel therapeutics when standard dressings are not effective.
Collapse
Affiliation(s)
- Ovya Ganesan
- Department of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Geisel School of Medicine at Dartmouth, Hanover, NH 03775, USA
| | - Dennis P. Orgill
- Department of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Hekimoglu ER, Esrefoglu M, Cimen FBK, Pasin Ö, Dedeakayogullari H. Therapeutic Potential of Stromal Vascular Fraction in Enhancing Wound Healing: A Preclinical Study. Aesthetic Plast Surg 2024:10.1007/s00266-024-04554-5. [PMID: 39681692 DOI: 10.1007/s00266-024-04554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Adipose tissue provides an abundant source of stromal vascular fraction (SVF) cells for immediate administration. It can also give rise to many multipotent adipose-derived stromal cells. SVF is the population of cells obtained from mechanical or enzymatic digestion of lipoaspirate with no necessity for cell culture or expansion. Recently, the heterogeneous cell population found in the SVF gained wide-ranging translational significance in regenerative medicine. METHODS Forty-eight male rats were randomly divided into two main groups, including the control and SVF groups. Each group was further divided into four groups as follows: 0th-, 3rd-, 7th-, and 10th-day groups. A skin excision of 1 × 1 cm covering the epidermis and dermis was performed on the back skin. Just after the wound was created, a subepidermal injection of SVF was applied. SVF was obtained from human adipose tissue using Lipocube SVFTM. On the 0th (1 h after the injections), 3rd, 7th, and 10th days, rats were killed, and skin excisions from the wound areas tissues were performed. Histopathological, biochemical, and western blotting analyses were performed on tissues. RESULTS Our data showed that SVF obtained from a healthy woman improved wound healing in healthy rats. SVF has promoted wound healing mainly because of its antioxidant, antiapoptotic, and fibroblast/myofibroblast stimulating effects. SVF stimulated collagen production and contraction of the wound lips, supporting the closure. CONCLUSIONS Our study provides additional data about the efficacy and pathophysiological and molecular mechanisms of the action of SVF on wound healing in healthy subjects. Our study is an experimental animal study. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Emine Rumeysa Hekimoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Fatih, Istanbul, Turkey.
| | - Mukaddes Esrefoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Fatih, Istanbul, Turkey
| | - Fatma Bedia Karakaya Cimen
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Fatih, Istanbul, Turkey
| | - Özge Pasin
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Huri Dedeakayogullari
- Department of Medical Biochemistry, Faculty of Medicine, Istinye University, Istanbul, Turkey
| |
Collapse
|
6
|
Mahmoud NN, Hamad S, Shraim S. Inflammation-Modulating Biomedical Interventions for Diabetic Wound Healing: An Overview of Preclinical and Clinical Studies. ACS OMEGA 2024; 9:44860-44875. [PMID: 39554458 PMCID: PMC11561615 DOI: 10.1021/acsomega.4c02251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 11/19/2024]
Abstract
A diabetic wound exemplifies the challenge of chronic, nonhealing wounds. Elevated blood sugar levels in diabetes profoundly disrupt macrophage function, impairing crucial activities such as phagocytosis, immune response, cell migration, and blood vessel formation, all essential for effective wound healing. Moreover, the persistent presence of pro-inflammatory cytokines and reactive oxygen species, coupled with a decrease in anti-inflammatory factors, exacerbates the delay in wound healing associated with diabetes. This review emphasizes the dysfunctional inflammatory responses underlying diabetic wounds and explores preclinical studies of inflammation-modulating bioactives and biomaterials that show promise in expediting diabetic wound healing. Additionally, this review provides an overview of selected clinical studies employing biomaterials and bioactive molecules, shedding light on the gap between extensive preclinical research and limited clinical studies in this field.
Collapse
Affiliation(s)
- Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Salma Hamad
- International
School of London Qatar, Doha 18511, Qatar
| | - Sawsan Shraim
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| |
Collapse
|
7
|
Wang J, Yang Y, Liu Y, Liu J. Letter to editor: 'Recent trends of stem cell therapies in the management of orthopedic surgical challenges'. Int J Surg 2024; 110:6036-6037. [PMID: 38874480 PMCID: PMC11392131 DOI: 10.1097/js9.0000000000001770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Affiliation(s)
- Jie Wang
- Stem Cell and Clinical Research Institute
| | - Yanfei Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Yuhang Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Jing Liu
- Stem Cell and Clinical Research Institute
| |
Collapse
|
8
|
Carstens M, Trujillo J, Dolmus Y, Rivera C, Calderwood S, Lejarza J, López C, Bertram K. Adipose-derived stromal vascular fraction cells to treat long-term pulmonary sequelae of coronavirus disease 2019: 12-month follow-up. Cytotherapy 2024; 26:1076-1083. [PMID: 38639670 DOI: 10.1016/j.jcyt.2024.03.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND AIMS Long coronavirus disease (COVID) is estimated to occur in up to 20% of patients with coronavirus disease 2019 (COVID-19) infections, with many having persistent pulmonary symptoms. Mesenchymal stromal cells (MSCs) have been shown to have powerful immunomodulatory and anti-fibrotic properties. Autologous adipose-derived (AD) stromal vascular fraction (SVF) contains MSC and other healing cell components and can be obtained by small-volume lipoaspiration and administered on the same day. This study was designed to study the safety of AD SVF infused intravenously to treat the pulmonary symptoms of long COVID. METHODS Five subjects with persistent cough and dyspnea after hospitalization and subsequent discharge for COVID-19 pneumonia were treated with 40 million intravenous autologous AD SVF cells and followed for 12 months, to include with pulmonary function tests and computed tomography scans of the lung. RESULTS SVF infusion was safe, with no significant adverse events related to the infusion out to 12 months. Four subjects had improvements in pulmonary symptoms, pulmonary function tests, and computed tomography scans, with some improvement noted as soon as 1 month after SVF treatment. CONCLUSIONS It is not possible to distinguish between naturally occurring improvement or improvement caused by SVF treatment in this small, uncontrolled study. However, the results support further study of autologous AD SVF as a treatment for long COVID.
Collapse
Affiliation(s)
- Michael Carstens
- Department of Surgery, Hospital Escuela Oscar Danilo Rosale Argüello, León, Nicaragua; Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA.
| | - Jessy Trujillo
- Department of Medicine, Hospital Monte España, Managua, Nicaragua
| | - Yanury Dolmus
- Department of Pediatrics, Hospital Escuela Cesar Amador Molina, Matagalpa, Nicaragua
| | - Carlos Rivera
- Department of Radiology, Hospital Escuela Cesar Amador Molina, Matagalpa, Nicaragua
| | - Santos Calderwood
- Department of Surgery, Hospital Escuela Cesar Amador Molina, Matagalpa, Nicaragua
| | - Judith Lejarza
- Department of Surgery, Hospital Escuela Oscar Danilo Rosale Argüello, León, Nicaragua
| | - Carlos López
- Department of Medicine, Hospital Escuela Oscar Danilo Rosales Argüello, León, Nicaragua
| | - Kenneth Bertram
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
9
|
Guillaumes S, Hidalgo NJ, Bachero I, Pena R, Nogueira ST, Ardid J, Pera M. Efficacy of injection of autologous adipose tissue in the treatment of patients with complex and recurrent fistula-in-ano of cryptoglandular origin. Tech Coloproctol 2024; 28:81. [PMID: 38980511 PMCID: PMC11233338 DOI: 10.1007/s10151-024-02963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/08/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Adipose tissue injections, a rich source of mesenchymal stem cells, have been successfully used to promote anal fistula healing. This study aimed to investigate the efficacy of adipose tissue injection in treating patients with complex and recurrent fistulas of cryptoglandular origin. METHODS We conducted a prospective, single-center, open-label, non-randomized, interventional clinical trial from January 2020 to December 2022. We enrolled nine patients, who were evaluated after at least 12 months of follow-up. All patients had seton removal, fistula tract excision or curettage, and a mucosal flap if possible or, alternatively, an internal opening suture. We used a commercially available system to collect and process adipose tissue prior to injection. This system allowed the collection, microfragmentation, and filtration of tissue. RESULTS Selected cases included six men and three women with a median age of 42 (range 31-55) years. All patients had an extended disease course period, ranging from 3 to 13 (mean 6.6) years, and a history of multiple previous surgeries, including two to eight interventions (a mean of 4.4 per case). All fistulas were high transsphincteric, four cases horseshoe and two cases with secondary suprasphincteric or peri-elevator tract fistulas. Six cases (66%) achieved complete fistula healing at a mean follow-up of 18 (range 12-36) months. Three cases (33.3%) experienced reduced secretion and decreased anal discomfort. CONCLUSIONS In patients with complex and recurrent fistulas, such as the ones described, many from palliative treatments with setons, the adjuvant injection of adipose tissue might help achieve complete healing or improvement in a significant percentage of cases. CLINICALTRIALS The study protocol was prospectively registered on ClinicalTrials.gov (NCT04750499).
Collapse
Affiliation(s)
| | - N J Hidalgo
- Hospital Clinic de Barcelona, Barcelona, Spain.
| | - I Bachero
- Hospital Clinic de Barcelona, Barcelona, Spain
| | - R Pena
- Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - J Ardid
- Hospital Clinic de Barcelona, Barcelona, Spain
| | - M Pera
- Hospital Clinic de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Torabi E, Omidvari S, Azimzadeh Z, Darabi S, Keramatinia A, Asghari MA, Abbaszadeh HA, Rashnoo F. Exploring Photobiomodulation Therapy and Regenerative Medicine for Diabetic Foot Ulcers: Pathogenesis and Multidisciplinary Treatment Approach. J Lasers Med Sci 2024; 15:e18. [PMID: 39050998 PMCID: PMC11267415 DOI: 10.34172/jlms.2024.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/09/2024] [Indexed: 07/27/2024]
Abstract
Introduction: Diabetes is associated with several debilitating complications, including the development of diabetic foot ulcers (DFUs), which can have serious consequences. This study emphasizes a multidisciplinary approach, providing a thorough overview of DFU pathogenesis and available treatments. Methods: An extensive literature review, covering studies published between 2000 and 2023, was conducted to gather data on DFU pathophysiology and treatments, including wound dressings, photobiomodulation, off-loading devices, adjunct medicines, and stem cell therapy. Results: DFUs are complicated due to infection, ischemia, and neuropathy. Sufficient wound dressings maintain a moist environment, promoting autolytic debridement and facilitating the healing process. Through cellular mechanisms, photobiomodulation therapy (PBM) was observed to expedite the healing process. Additionally, off-loading devices were invented to reduce ulcer pressure and promote healing. Adjunct therapies such as negative pressure wound therapy and hyperbaric oxygen therapy were identified as valuable tools for enhancing healing outcomes. Furthermore, autologous and allogeneic stem cell treatments exhibited the potential for promoting tissue regeneration and expediting the healing process. Conclusion: The complex pathophysiology of DFUs necessitates a multimodal treatment approach. Essential components include PBM, wound dressings, off-loading devices, adjunct treatments, and stem cell therapy.
Collapse
Affiliation(s)
- Elahe Torabi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samareh Omidvari
- Rayan Stem Cells and Regenerative Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Azimzadeh
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Aliasghar Keramatinia
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Asghari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Rayan Stem Cells and Regenerative Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariborz Rashnoo
- Department of General Surgery, School of Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Tseng SL, Kang L, Li ZJ, Wang LQ, Li ZM, Li TH, Xiang JY, Huang JZ, Yu NZ, Long X. Adipose-derived stem cells in diabetic foot care: Bridging clinical trials and practical application. World J Diabetes 2024; 15:1162-1177. [PMID: 38983804 PMCID: PMC11229965 DOI: 10.4239/wjd.v15.i6.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/03/2024] [Accepted: 04/19/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetic foot ulcers (DFUs) pose a critical medical challenge, significantly im-pairing the quality of life of patients. Adipose-derived stem cells (ADSCs) have been identified as a promising therapeutic approach for improving wound healing in DFUs. Despite extensive exploration of the mechanical aspects of ADSC therapy against DFU, its clinical applications remain elusive. In this review, we aimed to bridge this gap by evaluating the use and advancements of ADSCs in the clinical management of DFUs. The review begins with a discussion of the classification and clinical management of diabetic foot conditions. It then discusses the current landscape of clinical trials, focusing on their geographic distribution, reported efficacy, safety profiles, treatment timing, administration techniques, and dosing considerations. Finally, the review discusses the preclinical strategies to enhance ADSC efficacy. This review shows that many trials exhibit biases in study design, unclear inclusion criteria, and intervention protocols. In conclusion, this review underscores the potential of ADSCs in DFU treatment and emphasizes the critical need for further research and refinement of therapeutic approaches, with a focus on improving the quality of future clinical trials to enhance treatment outcomes and advance the field of diabetic wound care.
Collapse
Affiliation(s)
- Song-Lu Tseng
- Department of Plastic and Reconstructive Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin Kang
- Biomedical Engineering Facility, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences Beijing, Beijing 100021, China
| | - Zhu-Jun Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li-Quan Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zi-Ming Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tian-Hao Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jie-Yu Xiang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiu-Zuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
12
|
Gareev I, Beylerli O, Ilyasova T, Ahmad A, Shi H, Chekhonin V. Therapeutic application of adipose-derived stromal vascular fraction in myocardial infarction. iScience 2024; 27:109791. [PMID: 38736548 PMCID: PMC11088339 DOI: 10.1016/j.isci.2024.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
The insufficiency of natural regeneration processes in higher organisms, including humans, underlies myocardial infarction (MI), which is one of the main causes of disability and mortality in the population of developed countries. The solution to this problem lies in the field of revealing the mechanisms of regeneration and creating on this basis new technologies for stimulating endogenous regenerative processes or replacing lost parts of tissues and organs with transplanted cells. Of great interest is the use of the so-called stromal vascular fraction (SVF), derived from autologous adipose tissue. It is known that the main functions of SVF are angiogenetic, antiapoptotic, antifibrotic, immune regulation, anti-inflammatory, and trophic. This study presents data on the possibility of using SVF, targeted regulation of its properties and reparative potential, as well as the results of research studies on its use for the restoration of damaged ischemic tissue after MI.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa 450008, Russian Federation
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa 450008, Russian Federation
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa 450008, Russian Federation
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 1500, China
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- The National Medical Research Center for Endocrinology, Moscow, Russian Federation
| |
Collapse
|
13
|
Shi Y, Yang X, Min J, Kong W, Hu X, Zhang J, Chen L. Advancements in culture technology of adipose-derived stromal/stem cells: implications for diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1343255. [PMID: 38681772 PMCID: PMC11045945 DOI: 10.3389/fendo.2024.1343255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Stem cell-based therapies exhibit considerable promise in the treatment of diabetes and its complications. Extensive research has been dedicated to elucidate the characteristics and potential applications of adipose-derived stromal/stem cells (ASCs). Three-dimensional (3D) culture, characterized by rapid advancements, holds promise for efficacious treatment of diabetes and its complications. Notably, 3D cultured ASCs manifest enhanced cellular properties and functions compared to traditional monolayer-culture. In this review, the factors influencing the biological functions of ASCs during culture are summarized. Additionally, the effects of 3D cultured techniques on cellular properties compared to two-dimensional culture is described. Furthermore, the therapeutic potential of 3D cultured ASCs in diabetes and its complications are discussed to provide insights for future research.
Collapse
Affiliation(s)
- Yinze Shi
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xueyang Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
14
|
Zhu J, Hu Z, Luo Y, Liu Y, Luo W, Du X, Luo Z, Hu J, Peng S. Diabetic peripheral neuropathy: pathogenetic mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 14:1265372. [PMID: 38264279 PMCID: PMC10803883 DOI: 10.3389/fendo.2023.1265372] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) refers to the development of peripheral nerve dysfunction in patients with diabetes when other causes are excluded. Diabetic distal symmetric polyneuropathy (DSPN) is the most representative form of DPN. As one of the most common complications of diabetes, its prevalence increases with the duration of diabetes. 10-15% of newly diagnosed T2DM patients have DSPN, and the prevalence can exceed 50% in patients with diabetes for more than 10 years. Bilateral limb pain, numbness, and paresthesia are the most common clinical manifestations in patients with DPN, and in severe cases, foot ulcers can occur, even leading to amputation. The etiology and pathogenesis of diabetic neuropathy are not yet completely clarified, but hyperglycemia, disorders of lipid metabolism, and abnormalities in insulin signaling pathways are currently considered to be the initiating factors for a range of pathophysiological changes in DPN. In the presence of abnormal metabolic factors, the normal structure and function of the entire peripheral nervous system are disrupted, including myelinated and unmyelinated nerve axons, perikaryon, neurovascular, and glial cells. In addition, abnormalities in the insulin signaling pathway will inhibit neural axon repair and promote apoptosis of damaged cells. Here, we will discuss recent advances in the study of DPN mechanisms, including oxidative stress pathways, mechanisms of microvascular damage, mechanisms of damage to insulin receptor signaling pathways, and other potential mechanisms associated with neuroinflammation, mitochondrial dysfunction, and cellular oxidative damage. Identifying the contributions from each pathway to neuropathy and the associations between them may help us to further explore more targeted screening and treatment interventions.
Collapse
Affiliation(s)
- Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenzhong Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Yan D, Song Y, Zhang B, Cao G, Zhou H, Li H, Sun H, Deng M, Qiu Y, Yi W, Sun Y. Progress and application of adipose-derived stem cells in the treatment of diabetes and its complications. Stem Cell Res Ther 2024; 15:3. [PMID: 38167106 PMCID: PMC10763319 DOI: 10.1186/s13287-023-03620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Diabetes mellitus (DM) is a serious chronic metabolic disease that can lead to many serious complications, such as cardiovascular disease, retinopathy, neuropathy, and kidney disease. Once diagnosed with diabetes, patients need to take oral hypoglycemic drugs or use insulin to control blood sugar and slow down the progression of the disease. This has a significant impact on the daily life of patients, requiring constant monitoring of the side effects of medication. It also imposes a heavy financial burden on individuals, their families, and even society as a whole. Adipose-derived stem cells (ADSCs) have recently become an emerging therapeutic modality for DM and its complications. ADSCs can improve insulin sensitivity and enhance insulin secretion through various pathways, thereby alleviating diabetes and its complications. Additionally, ADSCs can promote tissue regeneration, inhibit inflammatory reactions, and reduce tissue damage and cell apoptosis. The potential mechanisms of ADSC therapy for DM and its complications are numerous, and its extensive regenerative and differentiation ability, as well as its role in regulating the immune system and metabolic function, make it a powerful tool in the treatment of DM. Although this technology is still in the early stages, many studies have already proven its safety and effectiveness, providing new treatment options for patients with DM or its complications. Although based on current research, ADSCs have achieved some results in animal experiments and clinical trials for the treatment of DM, further clinical trials are still needed before they can be applied in a clinical setting.
Collapse
Affiliation(s)
- Dongxu Yan
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Yujie Song
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Guojie Cao
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Haitao Zhou
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Hong Li
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Hao Sun
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Meng Deng
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Yufeng Qiu
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China.
| |
Collapse
|
16
|
Huang RL, Li Q, Ma JX, Atala A, Zhang Y. Body fluid-derived stem cells - an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 2023; 20:739-761. [PMID: 37414959 PMCID: PMC11639537 DOI: 10.1038/s41585-023-00787-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
17
|
Tajali R, Eidi A, Tafti HA, Pazouki A, Kamarul T, Sharifi AM. Transplantation of adipose derived stem cells in diabetes mellitus; limitations and achievements. J Diabetes Metab Disord 2023; 22:1039-1052. [PMID: 37975135 PMCID: PMC10638327 DOI: 10.1007/s40200-023-01280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/10/2023] [Indexed: 11/19/2023]
Abstract
Objectives Diabetes mellitus (DM) is a complex metabolic disease that results from impaired insulin secreting pancreatic β-cells or insulin resistance. Although available medications help control the disease, patients suffer from its complications. Therefore, finding effective therapeutic approaches to treat DM is a priority. Adipose Derived Stem Cells (ADSCs) based therapy is a promising strategy in various regenerative medicine applications, but its systematic translational use is still somewhat out of reach. This review is aimed at clarifying achievements as well as challenges facing the application of ADSCs for the treatment of DM, with a special focus on the mechanisms involved. Methods Literature searches were carried out on "Scopus", "PubMed" and "Google Scholar" up to September 2022 to find relevant articles in the English language for the scope of this review. Results Recent evidence showed a significant role of ADSC therapies in DM by ameliorating insulin resistance and hyperglycemia, regulating hepatic glucose metabolism, promoting β cell function and regeneration, and functioning as a gene delivery tool. In addition, ADSCs could improve diabetic wound healing by promoting collagen deposition, inhibiting inflammation, and enhancing angiogenesis. Conclusion Overall, this literature review revealed the great clinical implications of ADSCs for translating into the clinical setting for the treatment of diabetes. However, further large-scale and controlled studies are needed to overcome challenges and confirm the safety and optimal therapeutic scheme before daily clinical application. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01280-8.
Collapse
Affiliation(s)
- Raziye Tajali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hosein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Pazouki
- Minimally Invasive Surgery research center, IRAN University of Medical Sciences Tehran, Tehran, Iran
| | - Tunku Kamarul
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Mohammad Sharifi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem cell and regenerative Medicine research center, Iran University of medical Sciences, Tehran, Iran
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Ho J, Yue D, Cheema U, Hsia HC, Dardik A. Innovations in Stem Cell Therapy for Diabetic Wound Healing. Adv Wound Care (New Rochelle) 2023; 12:626-643. [PMID: 35176896 PMCID: PMC10468561 DOI: 10.1089/wound.2021.0104] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/22/2022] [Indexed: 12/20/2022] Open
Abstract
Significance: The global burden of diabetic wounds, particularly diabetic foot ulcers, continues to have large economic and social impact throughout the world. Current strategies are not sufficient to overcome this burden of disease. Finding newer, more advanced regenerative cell and tissue-based strategies to reduce morbidity remains paramount. Recent Advances: Recent advances in stem cell therapies are discussed. We also highlight the practical issues of translating these advancing technologies into the clinical setting. Critical Issues: We discuss the use of somatic and induced pluripotent stem cells and the stromal vascular fraction, as well as innovations, including the use of 3D bioprinting of skin. We also explore related issues of using regenerative techniques in clinical practice, including the current regulatory landscape and translatability of in vivo research. Future Directions: Advances in stem cell manipulation showcase the best therapeutic resources available to enhance mechanisms of wound healing such as angiogenesis, cell proliferation, and collagen synthesis; potential methods include changing the scaffold microenvironment, including relative oxygen tension, and the use of gene modification and nanotechnology. Secretome engineering, particularly the use of extracellular vesicles, may be another potential cell-derived therapeutic that may enable use of cell-free translational therapy.
Collapse
Affiliation(s)
- Jasmine Ho
- UCL Centre for 3D Models of Health and Disease, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
- Vascular Biology and Therapeutics Program and The Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dominic Yue
- Plastic Surgery Unit, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom
| | - Umber Cheema
- UCL Centre for 3D Models of Health and Disease, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Henry C. Hsia
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and The Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Ren P, Qian F, Fu L, He W, He Q, Jin J, Zheng D. Adipose-derived stem cell exosomes regulate Nrf2/Keap1 in diabetic nephropathy by targeting FAM129B. Diabetol Metab Syndr 2023; 15:149. [PMID: 37403164 DOI: 10.1186/s13098-023-01119-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Exosomes from adipose-derived stem cells (ADSCs-Exos) have exhibited a therapeutic role in diabetic nephropathy (DN). Further studies are needed to investigate how ADSCs-Exos regulate oxidative stress and inflammation in high glucose-induced podocyte injury. METHODS An enzyme-linked immunosorbent assay (ELISA) was used to detect cellular inflammation. Reactive oxygen species (ROS) levels were assessed using flow cytometry in podocytes with different treatments. A malondialdehyde (MDA) kit was used to evaluate the lipid peroxidation levels in podocytes and kidney tissues of mice. Western blotting and co-immunoprecipitation were performed to detect protein expression and protein-protein interactions. RESULTS ADSCs-Exos reversed oxidative stress and inflammation in podocytes and kidney tissues of DN mice induced by high glucose levels in vitro and in vivo. Interference with heme oxygenase-1 expression could reverse the improvement effect of ADSCs-Exos on oxidative stress induced by high glucose levels. Furthermore, high glucose inhibited nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression and promoted Kelch-like ECH-associated protein 1 (Keap1) protein expression in podocytes, as well as their binding ability. As a potential target for Nrf2/Keap1 pathway regulation, FAM129B expression in podocytes is regulated by high glucose and ADSCs-Exos. Moreover, FAM129B siRNA blocked the inhibitory effect of ADSCs-Exos on intracellular ROS and MDA upregulation induced by high glucose in podocytes. CONCLUSION ADSCs-Exos regulate the Nrf2/Keap1 pathway to alleviate inflammation and oxidative stress in DN by targeting FAM129B, which may provide a potential therapeutic strategy for DN.
Collapse
Affiliation(s)
- Peiyao Ren
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310003, China
| | - Fengmei Qian
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310003, China
| | - Lanjun Fu
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, China
| | - Wenfang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, China
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, China.
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, China.
| | - Danna Zheng
- Urology & Nephrology Center, Department of Nephrology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
20
|
Aguilo-Seara G, Molair W, Shang H, Northrup S, Grosser JA, Llull R, Katz A. Extent of Tissue Washing Can Significantly Alter the Composition of Adipose-Derived Stromal Vascular Fraction Cell Preparations: Implications for Clinical Translation. Stem Cells Transl Med 2023; 12:391-399. [PMID: 37317551 DOI: 10.1093/stcltm/szad025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/07/2023] [Indexed: 06/16/2023] Open
Abstract
Stromal vascular fraction (SVF) cell preparations have recently attracted much interest as a form of autologous cell therapy. These heterogenous cell populations typically include some proportion of blood-derived cells (BDCs)-including both red blood cells (RBCs) and leukocytes (WBCs). The objectives of this paper were to evaluate the effects of tissue washing and hypotonic RBC lysis-separately and together-on BDC concentrations within SVF, and further to explore whether BDCs can confer detectable and modifiable effects on adipose-derived cell activity. Using various cell culture assays, flow cytometry and ELISA analysis of human-derived SVF preparations, we show that thorough washing of adipose tissue prior to enzymatic dissociation effectively removes RBCs from SVF preparations as well as standard lysis methods and significantly alters the type and relative quantities of WBCs. In addition, these studies demonstrate that potentially toxic RBC components are detectable for up to 1 week in cultures containing RBC lysate, but not those with intact RBCs, and, that culture-expanded cells proliferate significantly more in the presence of intact RBCs versus RBC lysis products or control media. Broadly, these data exemplify how different seemingly mundane tissue processing steps can significantly influence SVF identity/composition, purity, and potency. Based on the findings of this work, we propose that translational efforts in the field would benefit by a better understanding of the impact of RBCs, WBCs, and non-viable cells on the in vivo therapeutic activity of SVF therapies.
Collapse
Affiliation(s)
- Gabriela Aguilo-Seara
- Department of Plastic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - William Molair
- Department of Plastic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hulan Shang
- Department of Plastic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Scott Northrup
- Department of Plastic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joshua A Grosser
- Department of Plastic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ramon Llull
- Department of Plastic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Adam Katz
- Department of Plastic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
21
|
Abstract
The term 'diabetic foot disease' (DFD) often signifies the presence of foot ulceration and infection, but one must also be wary of the rarer occurrence of Charcot foot disease. The worldwide prevalence of DFD is 6.3% (95%CI: 5.4-7.3%). Foot complications present a major challenge to both patients and healthcare systems, with increased rates of hospitalisation and an almost trebled 5-year mortality. The Charcot foot often occurs in patients with long-standing diabetes, presenting as an inflamed or swollen foot or ankle, following unrecognised minor trauma. This review focuses on the prevention and early identification of the 'at-risk' foot. DFD is best managed by a multi-disciplinary foot clinic team consisting of podiatrists and healthcare professionals. This ensures a combination of expertise and provision of a multi-faceted evidence-based treatment plan. Current research using endothelial progenitor cells (EPC) and mesenchymal stem cells (MSC) offers a new dimension in wound management.
Collapse
Affiliation(s)
| | | | - David V Coppini
- University Hospitals Dorset NHS Trust, Dorset, UK, and visiting fellow, Bournemouth University, Bournemouth, UK
| |
Collapse
|
22
|
Yu X, Liu P, Li Z, Zhang Z. Function and mechanism of mesenchymal stem cells in the healing of diabetic foot wounds. Front Endocrinol (Lausanne) 2023; 14:1099310. [PMID: 37008908 PMCID: PMC10061144 DOI: 10.3389/fendo.2023.1099310] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes has become a global public health problem. Diabetic foot is one of the most severe complications of diabetes, which often places a heavy economic burden on patients and seriously affects their quality of life. The current conventional treatment for the diabetic foot can only relieve the symptoms or delay the progression of the disease but cannot repair damaged blood vessels and nerves. An increasing number of studies have shown that mesenchymal stem cells (MSCs) can promote angiogenesis and re-epithelialization, participate in immune regulation, reduce inflammation, and finally repair diabetic foot ulcer (DFU), rendering it an effective means of treating diabetic foot disease. Currently, stem cells used in the treatment of diabetic foot are divided into two categories: autologous and allogeneic. They are mainly derived from the bone marrow, umbilical cord, adipose tissue, and placenta. MSCs from different sources have similar characteristics and subtle differences. Mastering their features to better select and use MSCs is the premise of improving the therapeutic effect of DFU. This article reviews the types and characteristics of MSCs and their molecular mechanisms and functions in treating DFU to provide innovative ideas for using MSCs to treat diabetic foot and promote wound healing.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Huang J, Wu J, Wang J, Xu M, Jiao J, Qiang Y, Zhang F, Li Z. Rock Climbing-Inspired Electrohydrodynamic Cryoprinting of Micropatterned Porous Fiber Scaffolds with Improved MSC Therapy for Wound Healing. ADVANCED FIBER MATERIALS 2023; 5:312-326. [DOI: 10.1007/s42765-022-00224-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/09/2022] [Indexed: 10/28/2023]
|
24
|
Xu ZH, Ma MH, Li YQ, Li LL, Liu GH. Progress and expectation of stem cell therapy for diabetic wound healing. World J Clin Cases 2023; 11:506-513. [PMID: 36793646 PMCID: PMC9923865 DOI: 10.12998/wjcc.v11.i3.506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Impaired wound healing presents great health risks to diabetics. Encouragingly, the current clinical successfully found out meaningful method to repair wound tissue, and stem cell therapy could be an effective method for diabetic wound healing with its ability to accelerate wound closure and avoid amputation. This minireview aims at introducing stem cell therapy for facilitating tissue repair in diabetic wounds, discussing the possible therapeutic mechanism and clinical application status and problems.
Collapse
Affiliation(s)
- Zhen-Han Xu
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510610, Guangdong Province, China
| | - Meng-Hui Ma
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510610, Guangdong Province, China
| | - Yan-Qing Li
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510610, Guangdong Province, China
| | - Li-Lin Li
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510610, Guangdong Province, China
| | - Gui-Hua Liu
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510610, Guangdong Province, China
| |
Collapse
|
25
|
Chen W, He Z, Li S, Wu Z, Tan J, Yang W, Li G, Pan X, Liu Y, Lyu FJ, Li W. The Effect of Tissue Stromal Vascular Fraction as Compared to Cellular Stromal Vascular Fraction to Treat Anal Sphincter Incontinence. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010032. [PMID: 36671604 PMCID: PMC9854502 DOI: 10.3390/bioengineering10010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND The long-term prognosis of current treatments for anal sphincter incontinence (ASI) is poor. Here, we explored the efficacy of tissue adipose stromal vascular fraction SVF (tSVF) on ASI and compared it to that of cellular SVF (cSVF). We then investigated possible mechanisms. METHODS Rat cSVF and tSVF were isolated and labeled with DIL. One day after modeling, three groups received phosphate-buffered saline (PBS), cSVF, tSVF, respectively. The control group received nil modeling nor any treatments. The effect was assessed by function test for anal pressure and electromyography, and staining for fiber content, proliferation and differentiation at day 5 and day 10. RESULTS cSVF injection resulted in faster healing than tSVF. The cSVF group showed significant improvement on anal pressure on day 10. For the electromyography test, cSVF showed significant improvement for the frequencies on day 10, and for the peak values on both time points, while tSVF showed significant improvement for the peak values on day 10. The two SVF both alleviated fibrosis. Immunofluorescence tracing identified differentiation of some injected cells towards myosatellite cells and smooth muscle cells in both SVF groups. For all the tests, the tSVF group tends to have similar or lower effects than the cSVF group with no significant difference. CONCLUSION cSVF and tSVF are both safe and effective in treating ASI, while the effect of cSVF is slighter higher than tSVF.
Collapse
Affiliation(s)
- Wenbin Chen
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Zijian He
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Shuyu Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zixin Wu
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Jin Tan
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Weifeng Yang
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Guanwei Li
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Xiaoling Pan
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Yuying Liu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Feng-Juan Lyu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
- Correspondence: (F.-J.L.); (W.L.)
| | - Wanglin Li
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
- Correspondence: (F.-J.L.); (W.L.)
| |
Collapse
|
26
|
Cao L, Xiaoming F, Zhang Q, Fang J, Chu C, Lv J, Ma Y, Lu G, Yang K, Pan R. An Optimized Method for Adipose Stromal Vascular Fraction Isolation and its Application in Fat Grafting. Aesthetic Plast Surg 2022; 46:2500-2508. [PMID: 34981156 DOI: 10.1007/s00266-021-02738-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/18/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND The stromal vascular fraction (SVF) derived from adipose tissue contains heterogeneous cell populations and has enormous potential for clinical therapy. There are two main methods for SVF isolation: enzymatic isolation and mechanical isolation, both of which have shortcomings. In this study, optimized conditions for the isolation of high-quality SVF were established, and applications in fat grafting were evaluated. METHODS Adipose tissue was chopped into small pieces and then ground into an erosive shape using a syringe. The pieces were digested with 0.15% type II collagenase for 35 min at 37 °C. After centrifugation, the pellets were resuspended in DMEM and passed through a 100-μm strainer. The filtered cells were analyzed by flow cytometry. The fat graft was enriched with isolated SVF and subcutaneously transplanted into nude mice. Three weeks after transplantation, grafts were isolated, and H&E staining, immunocytochemistry, and western blotting were conducted. RESULTS The harvested SVF cells reached > 2 × 106/ml of adipose tissue within 90 min of operation. The number of CD34+ ADSCs in our SVF pellets was > 6 × 105/ml of adipose tissue, which has the potential for differentiating into osteoblasts, adipocytes, and chondrocytes. Freshly collected adipose tissue is better for SVF isolation, and isolated SVF should also be kept at 4 °C and used as soon as possible. SVF may promote revascularization after fat grafting. The adipose tissue of an SVF co-transplanted group had an integral structure, clear capillaries, and higher VEGF expression. SVF co-transplantation inhibited adipose cell apoptosis. CONCLUSION Our study provides an efficient procedure for SVF isolation, its application in fat grafting, and possible underlying mechanisms. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Liang Cao
- Department of Acupuncture and Moxibustion, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Feng Xiaoming
- Department of Neurosurgery, The First Hospital of Jiaxing, Affiliated hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Qiang Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Junbiao Fang
- Department of Anesthesiology, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chunhua Chu
- Department of Acupuncture and Moxibustion, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jinlong Lv
- Department of Acupuncture and Moxibustion, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuyuan Ma
- Department of Neurosurgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Gang Lu
- Department of Neurosurgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kaichuang Yang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Ruolang Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China.
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China.
| |
Collapse
|
27
|
Rodriguez-Merchan EC. Autologous and Allogenic Utilization of Stromal Vascular Fraction and Decellularized Extracellular Matrices in Orthopedic Surgery: A Scoping Review. THE ARCHIVES OF BONE AND JOINT SURGERY 2022; 10:827-832. [PMID: 36452418 PMCID: PMC9702025 DOI: 10.22038/abjs.2022.59635.2943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/05/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND This narrative review of the literature aims to analyze the utilization of stromal vascular fraction (SVF) and decellularized extracellular matrices (dECMs) in various pathologies related to orthopedic surgery. METHODS A literature search was carried out in PubMed on February 15, 2022, using "Stroma Vascular Fraction and Orthopedic Surgery" and "Decellularized Extracellular Matrices and Orthopedic Surgery" as keywords. A total of 278 articles were found, of which 28 papers were selected because they seemed to be the most appropriate concerning the title of the article. RESULTS The reported results have shown that intra-articular injection of SVF seems to be a safe and efficacious method for managing knee osteoarthritis (OA). Platelet-rich plasma (PRP) and SVF are safe and effective management for intractable Achilles tendinopathy in humans, although subjects treated with SVF recover earlier. There are promising results in utilizing adipose-derived mesenchymal stromal cells in chronic lateral epicondylitis of the elbow in athletes. Ready-to-use ECM/SVF gel seems to be a good therapeutic option promoting the regeneration of the articular cartilage in subjects with injuries of the cartilage. The SVF can safely be used to treat diabetic subjects suffering from chronic foot ulcers. CONCLUSION There are scarce high-quality data for utilizing cell-based approach in soft tissue injuries of the knee in athletes. Experimental studies indicate that SVF could be a new option to osseous regeneration. Other experimental studies support the utilization of dECMs as a scaffold for the regeneration of large osseous defects, cell-derived dECMs scaffolds to repair articular cartilage injuries, and utilization of xenogeneic acellular muscles to manage volumetric muscle loss where there is a lack of donor site.Intra-articular injections of SVF seems to be a safe and efficacious method for managing OA of the knee joint. Platelet-rich plasma (PRP) and SVF are safe and efficacious methods for the management of intractable Achilles tendinopathy in humans, although subjects treated with SVF recover earlier.
Collapse
|
28
|
Rai V, Moellmer R, Agrawal DK. Stem Cells and Angiogenesis: Implications and Limitations in Enhancing Chronic Diabetic Foot Ulcer Healing. Cells 2022; 11:2287. [PMID: 35892584 PMCID: PMC9330772 DOI: 10.3390/cells11152287] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Nonhealing diabetic foot ulcers (DFUs) are a continuing clinical issue despite the improved treatment with wound debridement, off-loading the ulcer, medication, wound dressings, and preventing infection by keeping the ulcer clean. Wound healing is associated with granulation tissue formation and angiogenesis favoring the wound to enter the resolution phase of healing followed by healing. However, chronic inflammation and reduced angiogenesis in a hyperglycemic environment impair the normal healing cascade and result in chronically non-healing diabetic foot ulcers. Promoting angiogenesis is associated with enhanced wound healing and using vascular endothelial growth factors has been proven beneficial to promote neo-angiogenesis. However, still, nonhealing DFUs persist with increased risks of amputation. Regenerative medicine is an evolving branch applicable in wound healing with the use of stem cells to promote angiogenesis. Various studies have reported promising results, but the associated limitations need in-depth research. This article focuses on summarizing and critically reviewing the published literature since 2021 on the use of stem cells to promote angiogenesis and enhance wound healing in chronic non-healing DFUs.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Rebecca Moellmer
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
29
|
Liu R, Dong R, Chang M, Liang X, Wang HC. Adipose-Derived Stem Cells for the Treatment of Diabetic Wound: From Basic Study to Clinical Application. Front Endocrinol (Lausanne) 2022; 13:882469. [PMID: 35898452 PMCID: PMC9309392 DOI: 10.3389/fendo.2022.882469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/19/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetic wounds significantly affect the life quality of patients and may cause amputation and mortality if poorly managed. Recently, a wide range of cell-based methods has emerged as novel therapeutic methods in treating diabetic wounds. Adipose-derived stem cells (ASCs) are considered to have the potential for widespread clinical application of diabetic wounds treatment in the future. This review summarized the mechanisms of ASCs to promote diabetic wound healing, including the promotion of immunomodulation, neovascularization, and fibro synthesis. We also review the current progress and limitations of clinical studies using ASCs to intervene in diabetic wound healing. New methods of ASC delivery have been raised in recent years to provide a standardized and convenient use of ASCs.
Collapse
Affiliation(s)
- Runzhu Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ruijia Dong
- Department of Plastic Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Mengling Chang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hayson Chenyu Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Arango-Rodríguez ML, Solarte-David VA, Becerra-Bayona SM, Callegari E, Paez MD, Sossa CL, Vera MEO, Mateus LC, Eduardo Serrano S, Ardila-Roa AK, Viviescas LTG. Role of mesenchymal stromal cells derivatives in diabetic foot ulcers: a controlled randomized phase 1/2 clinical trial. Cytotherapy 2022; 24:1035-1048. [PMID: 36084965 DOI: 10.1016/j.jcyt.2022.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diabetes-related foot complications have been identified as the most common isolated cause of morbidity among patients with diabetes and the leading cause of amputation. Therefore, new strategies to stimulate skin regeneration may provide a novel therapeutic approach to reduce non-healing ulcer disease. Recently, we demonstrated in proof-of-concept in humans that administration of allogeneic bone marrow mesenchymal stromal cellss derivatives (allo-hBM-MSCDs) is effective in a similar way to the use of allogeneic bone marrow mesenchymal stromal cellss (allo-hBM-MSCs) in grade 2 diabetic foot ulcers (DFUs). AIM To assess the safety and efficacy profile of the allo-hBM-MSCDs relative to the conventional approach (PolyMen® dressing) in 1/2 clinical trial phases in patients with grade 1 and 2 DFUs. METHODS In the present study, we used 2 doses of allo-hBM-MSCDs (1 mL) or 1 dose of allo-hBM-MSCs (1 × 106 cells) intradermally injected around wounds and assessed their safety and effectiveness, relative to the conventional approach (PolyMem dressing). Allo-hBM-MSCDs and allo-hBM-MSCs were produced in a certified Good Manufacturing Practice-type Laboratory. Patients with grade 1 and 2 DFUs were randomized to receive allo-hBM-MSCDs (n=12), allo-hBM-MSCs (n=6) or conventional treatment (PolyMem dressing) (n=10). The wound-healing process was macroscopically evaluated until the complete closure of the ulcers. RESULTS No adverse events were reported. Patients with grade 1 and 2 DFUs treated with either allo-hBM-MSCDs or allo-hBM-MSCs, achieved greater percentages of wound closure, enhanced skin regeneration in shorter times and a greater ulcer-free survival relative to the patients who received conventional treatment. Finally, through proteomic analysis, we elucidated the proteins and growth factors that are secreted by allo-hBM-MSCs and relevant to the wound-healing process. In addition, by combining proteomics with Gene Ontology analysis, we comprehensively classified secreted proteins on both biological process and molecular function. CONCLUSIONS In this phase 1/2 trial, our cumulative results suggest that 2 doses of allo-hBM-MSCDs combined with a wound dressing are a safe and effective treatment for grade 1 and 2 DFUs.
Collapse
Affiliation(s)
- Martha L Arango-Rodríguez
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, Floridablanca, Colombia.
| | - Víctor Alfonso Solarte-David
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia; Facultad de Ingeniería, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia 680003
| | - Silvia M Becerra-Bayona
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Maria D Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Claudia L Sossa
- Fundación Oftalmológica de Santander Carlos Ardila Lulle Floridablanca, Colombia; Programa para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153 Floridablanca, Colombia
| | | | - Ligia C Mateus
- Fundación Oftalmológica de Santander Carlos Ardila Lulle Floridablanca, Colombia
| | - Sergio Eduardo Serrano
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia
| | - Andrea K Ardila-Roa
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, Floridablanca, Colombia
| | - Lady T Giratá Viviescas
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, Floridablanca, Colombia
| |
Collapse
|
31
|
Askø Andersen J, Rasmussen A, Frimodt-Møller M, Engberg S, Steeneveld E, Kirketerp-Møller K, O'Brien T, Rossing P. Novel topical allogeneic bone-marrow-derived mesenchymal stem cell treatment of hard-to-heal diabetic foot ulcers: a proof of concept study. Stem Cell Res Ther 2022; 13:280. [PMID: 35765085 PMCID: PMC9241309 DOI: 10.1186/s13287-022-02951-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/12/2022] [Indexed: 11/10/2022] Open
Abstract
Aim The aim of this study was to investigate safety of treating diabetic foot ulcers with a topically administered mesenchymal stem cell product. Method Individuals with diabetes, peripheral neuropathy, toe blood pressure > 39 mmHg and non-infected foot ulcers with duration of four to fifty-two weeks were screened. Participants were treated with a one-time application of a topically applied allogeneic cellular product containing CD362 enriched mesenchymal stem cells suspended in a collagen solution. Participants were subsequently followed for seven months to gather information on adverse event and serious adverse events. Results/discussion A total of sixteen individuals were screened, of whom two were included. The included participants incurred a total of seven adverse events and one serious adverse event. Increased exudation from the treated diabetic foot ulcer was observed for both participants and a connection to investigational medicinal product was suspected. The increased exudation was resolved within one week after application of investigational medicinal product, without any further complications. The serious adverse event consisted of a hospital admission due to neurological symptoms, which were assumed to be caused by hypoglycemia, with no suspected correlation to the investigational medicinal product. None of the other observed adverse events were suspected to be associated with the investigational medicinal product. Conclusion This study presents data from two individuals with a diabetic foot ulcer treated with a novel topical mesenchymal stem cell product. An adverse event observed for both participants was suspected to be associated to the investigational medicinal product, i.e., increased exudation, which was resolved within one week, did not lead to further complications and can easily be remedied by choosing bandages with higher absorption capacity or increasing frequency of bandage changes. This study lays the groundwork for further large scale randomized clinical studies. Trial registration: EudraCT number 2015-005580-16. Registered 12/06-2018.
Collapse
Affiliation(s)
- Jonas Askø Andersen
- Diabetes Complications Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark. .,Orthopedic Department, Nordsjællands Hospital Hilleroed, Dyrehave Vej 2, 3400, Hilleroed, Denmark.
| | - Anne Rasmussen
- Diabetes Complications Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark
| | - Marie Frimodt-Møller
- Diabetes Complications Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark
| | - Susanne Engberg
- Diabetes Complications Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark.,Novo Nordisk A/S, Vandtårnsvej 108, 2860, Søborg, Denmark
| | | | - Klaus Kirketerp-Møller
- Diabetes Complications Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark.,Copenhagen Wound Healing Center Bispebjerg Hospital, Bispebjerg Bakke 23, 2400, Copenhagen, Denmark
| | - Timothy O'Brien
- Regenerative Medicine Institute CURAM, National University of Ireland Galway, Galway, Ireland
| | - Peter Rossing
- Diabetes Complications Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark.,Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| |
Collapse
|
32
|
El Hage R, Knippschild U, Arnold T, Hinterseher I. Stem Cell-Based Therapy: A Promising Treatment for Diabetic Foot Ulcer. Biomedicines 2022; 10:1507. [PMID: 35884812 PMCID: PMC9312797 DOI: 10.3390/biomedicines10071507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic foot ulcer (DFU) is a severe complication of diabetes and a challenging medical condition. Conventional treatments for DFU have not been effective enough to reduce the amputation rates, which urges the need for additional treatment. Stem cell-based therapy for DFU has been investigated over the past years. Its therapeutic effect is through promoting angiogenesis, secreting paracrine factors, stimulating vascular differentiation, suppressing inflammation, improving collagen deposition, and immunomodulation. It is controversial which type and origin of stem cells, and which administration route would be the most optimal for therapy. We reviewed the different types and origins of stem cells and routes of administration used for the treatment of DFU in clinical and preclinical studies. Diabetes leads to the impairment of the stem cells in the diseased patients, which makes it less ideal to use autologous stem cells, and requires looking for a matching donor. Moreover, angioplasty could be complementary to stem cell therapy, and scaffolds have a positive impact on the healing process of DFU by stem cell-based therapy. In short, stem cell-based therapy is promising in the field of regenerative medicine, but more studies are still needed to determine the ideal type of stem cells required in therapy, their safety, proper dosing, and optimal administration route.
Collapse
Affiliation(s)
- Racha El Hage
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany;
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (U.K.); (T.A.)
| | - Tobias Arnold
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (U.K.); (T.A.)
| | - Irene Hinterseher
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany;
- Berlin Institute of Health, Vascular Surgery Clinic, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane und der Brandenburgischen Technischen Universität Cottbus—Senftenberg, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
33
|
Fang PH, Lai YY, Chen CL, Wang HY, Chang YN, Lin YC, Yan YT, Lai CH, Cheng B. Cobalt protoporphyrin promotes human keratinocyte migration under hyperglycemic conditions. Mol Med 2022; 28:71. [PMID: 35739477 PMCID: PMC9219158 DOI: 10.1186/s10020-022-00499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background Complete healing of diabetic wounds continues to be a clinically unmet need. Although robust therapies such as stem cell therapy and growth factor treatment are clinically applied, these treatments are costly for most diabetic wound patients. Therefore, a cheaper alternative is needed. Cobalt protoporphyrin (CoPP) has recently been demonstrated to promote tissue regeneration. In this study, the therapeutic benefits of CoPP in diabetic wound healing were examined. Methods An in vitro wound healing model that mimics re-epithelialization was established to examine the effect of CoPP on the migratory capability of human keratinocytes (HaCaT) in either normal glucose (NG) or high glucose (HG) media, as well as in the presence of either H2O2 or lipopolysaccharide (LPS). At the end of the migration assays, cells were collected and subjected to Western blotting analysis and immunostaining. Results HaCaT were found to migrate significantly more slowly in the HG media compared to the NG media. CoPP treatment was found to enhance cell migration in HG media, but was found to decrease cell migration and proliferation when HaCaT were cultured in NG media. CoPP treatment induced high levels of expression of Nrf-2/HO-1 and FoxO1 in HaCaT cultured in either glucose concentration, although the FoxO1 expression was found to be significantly higher in HaCaT that underwent the migration assay in NG media compared to those in HG media. The higher level of FoxO1 expression seen in CoPP-treated HaCaT cultured in NG media resulted in upregulation of CCL20 and downregulation of TGFβ1. In contrast, HaCaT migrated in HG media were found to have high levels of expression of TGFβ1, and low levels of expression of CCL20. Interestingly, in the presence of H2O2, CoPP-pretreated HaCaT cultured in either NG or HG media had similar expression level of Nrf-2/HO-1 and FoxO1 to each other. Moreover, the anti-apoptotic effect of CoPP pretreatment was noticed in HaCaT cultured in either glucose concentration. Additionally, CoPP pretreatment was shown to promote tight junction formation in HaCaT suffering from LPS-induced damage. Conclusions CoPP enhances cell migratory capacity under hyperglycemic conditions, and protects cells from oxidative and LPS-induced cellular damage in HG media containing either H2O2 or LPS. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00499-0.
Collapse
Affiliation(s)
- Peng-Hsiang Fang
- Department of Veterinary Medicine, National Chung-Hsing University, No.145, Xing Da Road, 402, Taichung, Taiwan
| | - Ying-Ying Lai
- Bachelor Program of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Chih-Ling Chen
- Bachelor Program of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Hsin-Yu Wang
- Bachelor Program of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Ya-Ning Chang
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, No.145, Xing Da Road, 402, Taichung, Taiwan
| | - Yung-Chang Lin
- Department of Veterinary Medicine, National Chung-Hsing University, No.145, Xing Da Road, 402, Taichung, Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Cheng-Hung Lai
- Department of Veterinary Medicine, National Chung-Hsing University, No.145, Xing Da Road, 402, Taichung, Taiwan.
| | - Bill Cheng
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, No.145, Xing Da Road, 402, Taichung, Taiwan.
| |
Collapse
|
34
|
Kim KM, An HJ, Kim SH, Kim J, Sim C, Lee J, Park SH, Lee HI, Jang I, Lee S. Therapeutic Effect of Pericytes for Diabetic Wound Healing. Front Cardiovasc Med 2022; 9:868600. [PMID: 35647064 PMCID: PMC9135971 DOI: 10.3389/fcvm.2022.868600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/12/2022] [Indexed: 12/28/2022] Open
Abstract
Objective Numerous attempts have been made to devise treatments for ischemic foot ulcer (IFU), which is one of the most severe and fatal consequences of diabetes mellitus (DM). Pericytes, which are perivascular multipotent cells, are of interest as a treatment option for IFU because they play a critical role in forming and repairing various tissues. In this study, we want to clarify the angiogenic potential of pericytes in DM-induced wounds. Methods We evaluated pericyte stimulation capability for tube formation, angiogenesis, and wound healing (cell migration) in human umbilical vein endothelial cells (HUVECs) with in-vivo and in-vitro models of high glucose conditions. Results When HUVECs were co-cultured with pericytes, their tube-forming capacity and cell migration were enhanced. Our diabetic mouse model showed that pericytes promote wound healing via increased vascularization. Conclusion The findings of this study indicate that pericytes may enhance wound healing in high glucose conditions, consequently making pericyte transplantation suitable for treating IFUs.
Collapse
Affiliation(s)
- Kyeong Mi Kim
- Department of Laboratory Medicine, CHA Ilsan Medical Center, CHA University School of Medicine, Goyang-si, South Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, South Korea
| | - Sang-Hoon Kim
- Department of Cardiology, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-do, South Korea
| | - JuHee Kim
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, South Korea
| | - Changgon Sim
- CHA Graduate School of Medicine, Gyeonggi-do, South Korea
| | - Jaemin Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, South Korea
| | - Sin Hyung Park
- Department of Orthopaedic Surgery, Bucheon Hospital, Soonchunhyang University School of Medicine, Gyeonggi-do, South Korea
| | - Hyun Il Lee
- Department of Orthopedic Surgery, Ilsan Paik Hospital, Inje University, Gyeonggi-do, South Korea
| | - Inseok Jang
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, South Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, South Korea
- *Correspondence: Soonchul Lee
| |
Collapse
|
35
|
Yan S, Ye P, Aleem MT, Chen X, Xie N, Zhang Y. Mesenchymal Stem Cells Overexpressing ACE2 Favorably Ameliorate LPS-Induced Inflammatory Injury in Mammary Epithelial Cells. Front Immunol 2022; 12:796744. [PMID: 35095873 PMCID: PMC8795506 DOI: 10.3389/fimmu.2021.796744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/22/2021] [Indexed: 01/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are capable of homing injury sites to exert anti-inflammatory as well as anti-damage effects and can be used as a vehicle for gene therapy. Angiotensin-converting enzyme 2 (ACE2) plays an important role in numerous inflammatory diseases, but fewer studies have been reported in animal mastitis. We hypothesized that MSCs overexpressing ACE2 is more effective in ameliorating lipopolysaccharide (LPS)-induced inflammatory injury in mammary epithelial cells compared to MSCs alone. The results showed that MSC-ACE2 inhibited the LPS induction by upregulation of TNF-α, IL-Iβ, IL-6, and iNOS mRNA expression levels in EpH4-Ev cells compared with MSCs. Furthermore, results showed that both MSC and MSC-ACE2 were significantly activated IL-10/STAT3/SOCS3 signaling pathway as well as inhibited TLR4/NF-κB and MAPK signaling pathways, but MSC-ACE2 had more significant effects. Meanwhile, MSC-ACE2 promoted the expression of proliferation-associated proteins and inhibited the expression of the apoptosis-associated proteins in EpH4-Ev cells. In addition, MSC and MSC-ACE2 reversed the LPS-induced downregulation expression levels of the tight junction proteins in mammary epithelial cells, indicating that both MSC as well as MSC-ACE2 could promote blood-milk barrier repair, and MSC-ACE2 was more effective. These results suggested that MSCs overexpressing ACE2 were more anti-inflammatory as well as anti-injurious action into LPS-induced inflammatory injury in the EpH4-Ev cells. Thus, MSCs overexpressing ACE2 is expected to serve as a potential strategy for mastitis treatment.
Collapse
Affiliation(s)
- Shuping Yan
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pingsheng Ye
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Tahir Aleem
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xi Chen
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Nana Xie
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanshu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
36
|
Krawczenko A, Klimczak A. Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells and Their Contribution to Angiogenic Processes in Tissue Regeneration. Int J Mol Sci 2022; 23:ijms23052425. [PMID: 35269568 PMCID: PMC8910401 DOI: 10.3390/ijms23052425] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are widely described in the context of their regenerative and immunomodulatory activity. MSCs are isolated from various tissues and organs. The most frequently described sources are bone marrow and adipose tissue. As stem cells, MSCs are able to differentiate into other cell lineages, but they are usually reported with respect to their paracrine potential. In this review, we focus on MSCs derived from adipose tissue (AT-MSCs) and their secretome in regeneration processes. Special attention is given to the contribution of AT-MSCs and their derivatives to angiogenic processes described mainly in the context of angiogenic dysfunction. Finally, we present clinical trials registered to date that concern the application of AT-MSCs and their secretome in various medical conditions.
Collapse
|
37
|
Silva-Carvalho AÉ, Cardoso MH, Alencar-Silva T, Bogéa GMR, Carvalho JL, Franco OL, Saldanha-Araujo F. Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. Pharmacol Ther 2021; 233:108021. [PMID: 34637839 DOI: 10.1016/j.pharmthera.2021.108021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
Among the various biological properties presented by Mesenchymal Stem Cells (MSCs), their ability to control the immune response and fight pathogen infection through the production of antimicrobial peptides (AMPs) have been the subject of intense research in recent years. AMPs secreted by MSCs exhibit activity against a wide range of microorganisms, including bacteria, fungi, yeasts, and viruses. The main AMPs produced by these cells are hepcidin, cathelicidin LL-37, and β-defensin-2. In addition to acting against pathogens, those AMPs have also been shown to interact with MSCs to modulate MSC proliferation, migration, and regeneration, indicating that such peptides exert a more diverse biological effect than initially thought. In the present review, we discuss the production of AMPs by MSCs, revise the multiple functions of these peptides, including their influence over MSCs, and present an overview of clinical situations in which the antimicrobial properties of MSCs may be explored for therapy. Finally, we discuss possibilities of combining MSCs and AMPs to generate improved therapeutic strategies.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil
| | - Thuany Alencar-Silva
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Gabriela Muller Reche Bogéa
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
38
|
Carstens MH, Quintana FJ, Calderwood ST, Sevilla JP, Ríos AB, Rivera CM, Calero DW, Zelaya ML, Garcia N, Bertram KA, Rigdon J, Dos-Anjos S, Correa D. Treatment of chronic diabetic foot ulcers with adipose-derived stromal vascular fraction cell injections: Safety and evidence of efficacy at 1 year. Stem Cells Transl Med 2021; 10:1138-1147. [PMID: 33826245 PMCID: PMC8284780 DOI: 10.1002/sctm.20-0497] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/09/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
Diabetes affects multiple systems in complex manners. Diabetic foot ulcers (DFUs) are a result of diabetes‐induced microarterial vessel disease and peripheral neuropathy. The presence of arteriosclerosis‐induced macroarterial disease can further complicate DFU pathophysiology. Recent studies suggest that mesenchymal stromal cell therapies can enhance tissue regeneration. This phase I study was designed to determine the safety and explore the efficacy of local injections of autologous adipose‐derived stromal vascular fraction (SVF) cells to treat nonhealing DFUs greater than 3 cm in diameter. Sixty‐three patients with type 2 diabetes with chronic DFU—all amputation candidates—were treated with 30 × 106 SVF cells injected in the ulcer bed and periphery and along the pedal arteries. Patients were seen at 6 and 12 months to evaluate ulcer closure. Doppler ultrasounds were performed in a subset of subjects to determine vascular structural parameters. No intervention‐related serious adverse events were reported. At 6 months, 51 subjects had 100% DFU closure, and 8 subjects had ≥75% closure. Three subjects had early amputations, and one subject died. At 12 months, 50 subjects had 100% DFU healing and 4 subjects had ≥85% healing. Five subjects died between the 6‐ and 12‐month follow‐up visits. No deaths were intervention related. Doppler studies in 11 subjects revealed increases in peak systolic velocity and pulsatility index in 33 of 33 arteries, consistent with enhanced distal arterial runoff. These results indicate that SVF can be safely used to treat chronic DFU, with evidence of efficacy (wound healing) and mechanisms of action that include vascular repair and/or angiogenesis.
Collapse
Affiliation(s)
- Michael H Carstens
- Wake Forest Institute of Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA.,Department of Surgery, Universidad Nacional de Nicaragua, León, Nicaragua
| | | | - Santos T Calderwood
- Department of Surgery, Universidad Nacional de Nicaragua, Matagalpa, Nicaragua
| | - Juan P Sevilla
- Department of Surgery, Universidad Nacional de Nicaragua, Matagalpa, Nicaragua
| | - Arlen B Ríos
- Department of Surgery, Universidad Nacional de Nicaragua, Matagalpa, Nicaragua
| | - Carlos M Rivera
- Department of Radiology, Universidad Nacional de Nicaragua, Matagalpa, Nicaragua
| | - Dorian W Calero
- Department of Radiology, Universidad Nacional de Nicaragua, León, Nicaragua
| | - María L Zelaya
- Department of Radiology, Universidad Nacional de Nicaragua, León, Nicaragua
| | - Nelson Garcia
- Department of Medicine, Universidad Nacional de Nicaragua, Matagalpa, Nicaragua
| | - Kenneth A Bertram
- Wake Forest Institute of Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Joseph Rigdon
- Department of Biostatistics and Data Science, School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | | | - Diego Correa
- Diabetes Research Institute and Cellular Transplant Center, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|