1
|
Mojtaba Mousavi S, Alireza Hashemi S, Yari Kalashgrani M, Rahmanian V, Riazi M, Omidifar N, Hamed Althomali R, Rahman MM, Chiang WH, Gholami A. Recent Progress in Prompt Molecular Detection of Exosomes Using CRISPR/Cas and Microfluidic-Assisted Approaches Toward Smart Cancer Diagnosis and Analysis. ChemMedChem 2024; 19:e202300359. [PMID: 37916531 DOI: 10.1002/cmdc.202300359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
Exosomes are essential indicators of molecular mechanisms involved in interacting with cancer cells and the tumor environment. As nanostructures based on lipids and nucleic acids, exosomes provide a communication pathway for information transfer by transporting biomolecules from the target cell to other cells. Importantly, these extracellular vesicles are released into the bloodstream by the most invasive cells, i. e., cancer cells; in this way, they could be considered a promising specific biomarker for cancer diagnosis. In this matter, CRISPR-Cas systems and microfluidic approaches could be considered practical tools for cancer diagnosis and understanding cancer biology. CRISPR-Cas systems, as a genome editing approach, provide a way to inactivate or even remove a target gene from the cell without affecting intracellular mechanisms. These practical systems provide vital information about the factors involved in cancer development that could lead to more effective cancer treatment. Meanwhile, microfluidic approaches can also significantly benefit cancer research due to their proper sensitivity, high throughput, low material consumption, low cost, and advanced spatial and temporal control. Thereby, employing CRISPR-Cas- and microfluidics-based approaches toward exosome monitoring could be considered a valuable source of information for cancer therapy and diagnosis. This review assesses the recent progress in these promising diagnosis approaches toward accurate cancer therapy and in-depth study of cancer cell behavior.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| |
Collapse
|
2
|
Tonis E, Frousiou E, Heliopoulos NS, Kagkoura A, Stangel C, Siamidis D, Galeou A, Prombona A, Stamatakis K, Boukos N, Tagmatarchis N, Vougioukalakis GC. VAR Fabric Modification: Inducing Antibacterial Properties, Altering Wettability/Water Repellence, and Understanding Reactivity at the Molecular Level. ACS OMEGA 2023; 8:44708-44716. [PMID: 38046315 PMCID: PMC10688117 DOI: 10.1021/acsomega.3c05552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/19/2023] [Indexed: 12/05/2023]
Abstract
The present work focuses on the surface coating of VAR technical fibers, consisting of 64% viscose (cellulose), 24% Kevlar, 10% other types of polyamides, and 2% antistatic polymers. Kevlar is an aramid material exhibiting excellent mechanical properties, while cellulose is a natural linear polymer composed of repeating β-d-glucose units, having several applications in the materials industry. Herein, we synthesized novel, tailor-designed organic molecules possessing functional groups able to anchor on VAR fabrics and cellulose materials, thus altering their properties on demand. To this end, we utilized methyl-α-d-glucopyranose as a model compound, both to optimize the reaction conditions, before applying them to the material and to understand the chemical behavior of the material at the molecular level. The efficient coating of the VAR fabric with the tailor-made compounds was then implemented. Thorough characterization studies using Raman and IR spectroscopies as well as SEM imaging and thermogravimetric analysis were also carried out. The wettability and water repellency and antibacterial properties of the modified VAR fabrics were also investigated in detail. To the best of our knowledge, such an approach has not been previously explored, among other factors regarding the understanding of the anchoring mechanism at the molecular level. The proposed modification protocol holds the potential to improve the properties of various cellulose-based materials beyond VAR fabrics.
Collapse
Affiliation(s)
- Efstathios Tonis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Efrosyni Frousiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Nikolaos S Heliopoulos
- 700 Military Factory, Supreme Military Support Command, 50 Anapafseos, Piraeus 18648, Greece
| | - Antonia Kagkoura
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | | | - Angeliki Galeou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Patriarchou Grigoriou E' & Neapoleos Str., Agia Paraskevi,Athens, Attica 15341, Greece
| | - Anastasia Prombona
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Patriarchou Grigoriou E' & Neapoleos Str., Agia Paraskevi,Athens, Attica 15341, Greece
| | - Kostas Stamatakis
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Patriarchou Grigoriou E' & Neapoleos Str., Agia Paraskevi,Athens, Attica 15341, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", Patriarchou Grigoriou E' & Neapoleos Str., Agia Paraskevi,Athens, Attica 15341, Greece
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Georgios C Vougioukalakis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| |
Collapse
|
3
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
4
|
Köktürk M, Yildirim S, Yiğit A, Ozhan G, Bolat İ, Alma MH, Menges N, Alak G, Atamanalp M. What is the eco-toxicological level and effects of graphene oxide-boramidic acid (GO-ED-BA NP) ?: In vivo study on Zebrafish embryo/larvae. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:108443. [DOI: 10.1016/j.jece.2022.108443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
5
|
Mousavi SM, Hashemi SA, Kalashgrani MY, Rahmanian V, Gholami A, Chiang WH, Lai CW. Biomedical Applications of an Ultra-Sensitive Surface Plasmon Resonance Biosensor Based on Smart MXene Quantum Dots (SMQDs). BIOSENSORS 2022; 12:743. [PMID: 36140128 PMCID: PMC9496527 DOI: 10.3390/bios12090743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
In today's world, the use of biosensors occupies a special place in a variety of fields such as agriculture and industry. New biosensor technologies can identify biological compounds accurately and quickly. One of these technologies is the phenomenon of surface plasmon resonance (SPR) in the development of biosensors based on their optical properties, which allow for very sensitive and specific measurements of biomolecules without time delay. Therefore, various nanomaterials have been introduced for the development of SPR biosensors to achieve a high degree of selectivity and sensitivity. The diagnosis of deadly diseases such as cancer depends on the use of nanotechnology. Smart MXene quantum dots (SMQDs), a new class of nanomaterials that are developing at a rapid pace, are perfect for the development of SPR biosensors due to their many advantageous properties. Moreover, SMQDs are two-dimensional (2D) inorganic segments with a limited number of atomic layers that exhibit excellent properties such as high conductivity, plasmonic, and optical properties. Therefore, SMQDs, with their unique properties, are promising contenders for biomedicine, including cancer diagnosis/treatment, biological sensing/imaging, antigen detection, etc. In this review, SPR biosensors based on SMQDs applied in biomedical applications are discussed. To achieve this goal, an introduction to SPR, SPR biosensors, and SMQDs (including their structure, surface functional groups, synthesis, and properties) is given first; then, the fabrication of hybrid nanoparticles (NPs) based on SMQDs and the biomedical applications of SMQDs are discussed. In the next step, SPR biosensors based on SMQDs and advanced 2D SMQDs-based nanobiosensors as ultrasensitive detection tools are presented. This review proposes the use of SMQDs for the improvement of SPR biosensors with high selectivity and sensitivity for biomedical applications.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nano-Materials and Polymer Nano-Composites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Masoomeh Yari Kalashgrani
- The Center of Biotechnology Research, Shiraz University of Medical Science, Shiraz 71468-64685, Iran
| | - Vahid Rahmanian
- The Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ahmad Gholami
- The Center of Biotechnology Research, Shiraz University of Medical Science, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya (MU), Kuala Lumpur 50603, Malaysia
| |
Collapse
|
6
|
Jafari A, Mortaheb HR, Gallucci F. Plasma treatment for enhanced functionalization of graphene nanosheets by octadecylamine. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
C G J, Salunke AD, Joshi M, Kandasubramanian B, Anand A. Cyanate Ester– Epoxy Blends toward Microwave Transparent Polymer Composites through Resin Film Infusion for Wideband Electromagnetic Applications. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1967389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Jayalakshmi C G
- Composites Research Center, Research and Development Establishment (Engineers), DRDO—Ministry of Defence, Pune, India
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Ministry of Defence, Pune - India
| | - Akshaykumar Dipchand Salunke
- Composites Research Center, Research and Development Establishment (Engineers), DRDO—Ministry of Defence, Pune, India
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Ministry of Defence, Pune - India
| | - Makarand Joshi
- Composites Research Center, Research and Development Establishment (Engineers), DRDO—Ministry of Defence, Pune, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Ministry of Defence, Pune - India
| | - Anoop Anand
- Composites Research Center, Research and Development Establishment (Engineers), DRDO—Ministry of Defence, Pune, India
| |
Collapse
|
8
|
Huang J, Fu P, Li W, Xiao L, Chen J, Nie X. Influence of crosslinking density on the mechanical and thermal properties of plant oil-based epoxy resin. RSC Adv 2022; 12:23048-23056. [PMID: 36090445 PMCID: PMC9379777 DOI: 10.1039/d2ra04206a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Plant oil-based epoxy resins are of great interest due to their ecological and economic necessity. Previous studies suggested that the crosslinking density had a considerable influence on the mechanical and thermal properties of plant oil-based epoxy resins. However, so far, the relationship between the crosslinking density and the thermo-mechanical properties of plant oil-based epoxy resins is not clear. To address this issue, model tung oil-based epoxy resins with different crosslinking densities were fabricated to investigate the influence of crosslinking density on the mechanical and thermal properties of tung oil-based epoxy resins. Results show that the tensile strength, Young's modulus, and glass transition temperature are linearly increased with increasing crosslinking density. The elongation at break and tensile toughness show nonlinear downward trends as the crosslinking density increases. The elongation at break decreases gently at first, then dramatically, and finally slowly as the crosslinking density increases. The tensile toughness declines sharply at first and then slowly with increasing crosslinking density. The relationship between the thermostability and the crosslinking density is complex, because the thermostability is determined by both the molecular structure of the curing system and the crosslinking density. These results provide some information for designing plant oil-based epoxy resins according to the requirements of their applications. Plant oil-based epoxy resins are of great interest due to their ecological and economic necessity. In this study, the relationship between the crosslinking density and the thermo-mechanical properties of tung oil-based epoxy resins was established.![]()
Collapse
Affiliation(s)
- Jinrui Huang
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center for Low-Carbon Processing and Utilization of Forest Biomass, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu Province, China
| | - Pan Fu
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center for Low-Carbon Processing and Utilization of Forest Biomass, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu Province, China
| | - Wenbin Li
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center for Low-Carbon Processing and Utilization of Forest Biomass, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu Province, China
| | - Laihui Xiao
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center for Low-Carbon Processing and Utilization of Forest Biomass, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu Province, China
| | - Jie Chen
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center for Low-Carbon Processing and Utilization of Forest Biomass, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu Province, China
| | - Xiaoan Nie
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center for Low-Carbon Processing and Utilization of Forest Biomass, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu Province, China
| |
Collapse
|
9
|
Hashemi SA, Mousavi SM, Bahrani S, Omidifar N, Arjmand M, Ramakrishna S, Hagfeldt A, Lankarani KB, Chiang WH. Decorated graphene oxide flakes with integrated complex of 8-hydroxyquinoline/NiO toward accurate detection of glucose at physiological conditions. J Electroanal Chem (Lausanne) 2021; 893:115303. [DOI: 10.1016/j.jelechem.2021.115303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Towards a High Rejection Desalination Membrane: The Confined Growth of Polyamide Nanofilm Induced by Alkyl-Capped Graphene Oxide. MEMBRANES 2021; 11:membranes11070488. [PMID: 34209924 PMCID: PMC8304696 DOI: 10.3390/membranes11070488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
In this paper, we used an octadecylamine functionalized graphene oxide (ODA@GO) to induce the confined growth of a polyamide nanofilm in the organic and aqueous phase during interfacial polymerization (IP). The ODA@GO, fully dispersed in the organic phase, was applied as a physical barrier to confine the amine diffusion and therefore limiting the IP reaction close to the interface. The morphology and crosslinking degree of the PA nanofilm could be controlled by doping different amounts of ODA@GO (therefore adjusting the diffusion resistance). At standard seawater desalination conditions (32,000 ppm NaCl, ~55 bar), the flux of the resultant thin film nanocomposite (TFN) membrane reached 59.6 L m-2 h-1, which was approximately 17% more than the virgin TFC membrane. Meanwhile, the optimal salt rejection at seawater conditions (i.e., 32,000 ppm NaCl) achieved 99.6%. Concurrently, the boron rejection rate was also elevated by 13.3% compared with the TFC membrane without confined growth.
Collapse
|
11
|
Mousavi SM, Hashemi SA, Gholami A, Omidifar N, Zarei M, Bahrani S, Yousefi K, Chiang WH, Babapoor A. Bioinorganic Synthesis of Polyrhodanine Stabilized Fe 3O 4/Graphene Oxide in Microbial Supernatant Media for Anticancer and Antibacterial Applications. Bioinorg Chem Appl 2021; 2021:9972664. [PMID: 34257633 PMCID: PMC8257353 DOI: 10.1155/2021/9972664] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
Polyrhodanines have been broadly utilized in diverse fields due to their attractive features. The effect of polyrhodanine- (PR-) based materials on human cells can be considered a controversial matter, while many contradictions exist. In this study, we focused on the synthesis of polyrhodanine/Fe3O4 modified by graphene oxide and the effect of kombucha (Ko) supernatant on results. The general structure of synthetic compounds was determined in detail through Fourier-transform infrared spectroscopy (FT-IR). Also, obtained compounds were morphologically, magnetically, and chemically characterized using scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), energy dispersive X-ray (EDX) analysis. The antibacterial effects of all synthesized nanomaterials were done according to CLSI against four infamous pathogens. Also, the cytotoxic effects of the synthesized compounds on the human liver cancer cell line (Hep-G2) were assessed by MTT assay. Our results showed that Go/Fe has the highest average inhibitory effect against Escherichia coli and Pseudomonas aeruginosa, and this compound possesses the least antimicrobial effect on Staphylococcus aureus. Considering the viability percent of cells in the PR/GO/Fe3O4 compound and comparing it with GO/Fe3O4, it can be understood that the toxic effects of polyrhodanine can diminish the metabolic activity of cells at higher concentrations (mostly more than 50 µg/mL), and PR/Fe3O4/Ko exhibited some promotive effects on cell growth, which enhanced the viability percent to more than 100%. Similarly, the cell viability percent of PR/GO/Fe3O4/KO compared to PR/GO/Fe3O4 is much higher, which can be attributed to the presence of kombucha in the compound. Consequently, based on the results, it can be concluded that this novel polyrhodanine-based nanocompound can act as drug carriers due to their low toxic effects and may open a new window on the antibacterial agents.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zarei
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sonia Bahrani
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadije Yousefi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili (UMA), Ardabil, Iran
| |
Collapse
|
12
|
Recent Advancements in Polythiophene-Based Materials and their Biomedical, Geno Sensor and DNA Detection. Int J Mol Sci 2021; 22:ijms22136850. [PMID: 34202199 PMCID: PMC8268102 DOI: 10.3390/ijms22136850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022] Open
Abstract
In this review, the unique properties of intrinsically conducting polymer (ICP) in biomedical engineering fields are summarized. Polythiophene and its valuable derivatives are known as potent materials that can broadly be applied in biosensors, DNA, and gene delivery applications. Moreover, this material plays a basic role in curing and promoting anti-HIV drugs. Some of the thiophene’s derivatives were chosen for different experiments and investigations to study their behavior and effects while binding with different materials and establishing new compounds. Many methods were considered for electrode coating and the conversion of thiophene to different monomers to improve their functions and to use them for a new generation of novel medical usages. It is believed that polythiophenes and their derivatives can be used in the future as a substitute for many old-fashioned ways of creating chemical biosensors polymeric materials and also drugs with lower side effects yet having a more effective response. It can be noted that syncing biochemistry with biomedical engineering will lead to a new generation of science, especially one that involves high-efficiency polymers. Therefore, since polythiophene can be customized with many derivatives, some of the novel combinations are covered in this review.
Collapse
|
13
|
Chen L, Razavi R, Najafi M, Rajabiyoun N, Tahvili A. Examination of properties of nanocages (B18N18 and B18P18) as anode electrodes in metal-ion batteries. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Abdollahifar A, Hashemi SA, Mousavi SM, Rahsepar M, Amani AM. Fabrication of graphene oxide-lead oxide epoxy based composite with enhanced chemical resistance, hydrophobicity and thermo-mechanical properties. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1002/adv.22162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology; School of Advanced Medical Sciences and Technologies; Shiraz University of Medical Sciences; Shiraz Iran
| | - Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology; School of Advanced Medical Sciences and Technologies; Shiraz University of Medical Sciences; Shiraz Iran
| | - Mansour Rahsepar
- Department of Materials Science and Engineering; School of Engineering; Shiraz University; Shiraz Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology; School of Advanced Medical Sciences and Technologies; Shiraz University of Medical Sciences; Shiraz Iran
| |
Collapse
|
15
|
Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani AM, Savar Dashtaki A, Babapoor A, Arjmand O. Green synthesis of silver nanoparticles toward bio and medical applications: review study. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S855-S872. [PMID: 30328732 DOI: 10.1080/21691401.2018.1517769] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Development of biologically inspired green synthesis of silver nanoparticles has attracted considerable worldwide attention in matter of medical science and disease treatment. Herein, the green synthesis of silver nanomaterials using organic green sources has been evaluated and discussed. These kinds of materials are widely used for treatment of antibiotic-resistant bacteria, cancer and etc due to their elegant properties compared with other chemical ways and drugs. Moreover, the outcome of green-based approaches were compared with chemical procedures and obtained data were examined via various analyses including UV-visible spectroscopy, scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscope (TEM), atomic force microscopy (AFM) and Fourier transforms infrared spectroscopy (FT-IR). In this study, variety of green methods were investigated to present a summary of recent achievements toward highlighting biocompatible nanoparticles, all of which can reduce the toxicity of nanoparticles, make them eco-friendly, reduce their side effects and decrease the production cost. The nature of these biological organisms also affect the structure, shape, size and morphology of synthesized nanoparticles.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Seyyed Alireza Hashemi
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Younes Ghasemi
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Amir Atapour
- c Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Ali Mohammad Amani
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Amir Savar Dashtaki
- c Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Aziz Babapoor
- d Department of Chemical Engineering , University of Mohaghegh Ardabili , Ardabil , Iran
| | - Omid Arjmand
- e Department of Chemical Engineering , South Tehran Beranch, Islamic Azad University , Tehran , Iran
| |
Collapse
|