1
|
Peiman S, Maleki B, Ghani M. Dendrimer templated ionic liquid nanomagnetic for efficient coupling reactions. Sci Rep 2024; 14:25082. [PMID: 39443602 PMCID: PMC11499887 DOI: 10.1038/s41598-024-75629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
In this research, a logical strategy with a recyclable synthetic perspective of view and a rational design to prepare a nanocatalyst with a dendrimer template containing ionic liquid is presented. Magnetic silica nanoparticles were prepared using the Stober method. Their surface was modified with the help of cyanuric chloride, melamine, and 1-methylimidazole as Linkers. Finally, the nanocatalyst was decorated with affordable copper metal. The dendrimer-templated nanocatalyst was identified by different analyses, such as FT-IR, SEM, TEM, XRD, EDX, TGA, CHN, and ICP-OES. Fe3O4@SiO2@NTMP-IL-Cu was used as a heterogeneous nanocatalyst with good performance and reusable in coupling syntheses. The synthesis of A3-coupling and Ullmann coupling was performed under solvent-free and THF conditions, respectively, with high yields. Reusability and high efficiency of products in the vicinity of this catalyst, the use of cheap and available metal are desirable features of this synthetic catalyst.
Collapse
Affiliation(s)
- Sahar Peiman
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran
| | - Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran.
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
2
|
Rezayati S, Kalantari F, Ramazani A. Picolylamine-Ni(ii) complex attached on 1,3,5-triazine-immobilized silica-coated Fe 3O 4 core/shell magnetic nanoparticles as an environmentally friendly and recyclable catalyst for the one-pot synthesis of substituted pyridine derivatives. RSC Adv 2023; 13:12869-12888. [PMID: 37114026 PMCID: PMC10128109 DOI: 10.1039/d3ra01826a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
In the current study, an environmentally friendly and facile method was proposed for designing and constructing a catalyst with Ni(ii) attached to a picolylamine complex on 1,3,5-triazine-immobilized Fe3O4 core-shell magnetic nanoparticles (NiII-picolylamine/TCT/APTES@SiO2@Fe3O4) via a stepwise procedure. The as-synthesized nanocatalyst was identified and characterized via Fourier-transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating-sample magnetometry (VSM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), field-emission scanning electron microscopy (FE-SEM), inductively coupled plasma (ICP), and energy-dispersive X-ray spectrometry (EDX). The obtained results from the BET analysis indicated that the synthesized nanocatalyst had high specific area (53.61 m2 g-1) and mesoporous structure. TEM observations confirmed the particle size distribution was in the range 23-33 nm. Moreover, the binding energy peaks observed at 855.8 and 864.9 eV in the XPS analysis confirmed the successful and stable attachment of Ni(ii) on the surface of the picolylamine/TCT/APTES@SiO2@Fe3O4. The as-fabricated catalyst was used to produce pyridine derivatives by the one-pot pseudo-four component reaction of malononitrile, thiophenol, and a variety of aldehyde derivatives under solvent-free conditions or EG at 80 °C. The highest yield achieved was 97% for compound 4d in EG at 80 °C with a TOF of 823 h-1 and TON of 107. It was found that the used catalyst was recyclable for eight consecutive cycles. On the basis of ICP analysis, the results indicated that the Ni leaching was approximately 1%.
Collapse
Affiliation(s)
- Sobhan Rezayati
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Fatemeh Kalantari
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan Zanjan 45371-38791 Iran
| |
Collapse
|
3
|
Nasiruzzaman Shaikh M, Zahir MH. Pd Complex of Ferrocenylphosphine Supported on Magnetic Nanoparticles: A Highly Reusable Catalyst for Transfer Hydrogenation and Coupling Reactions. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Topf C, Timelthaler D. Heterogeneous Hydrogenation of Quinoline Derivatives Effected by a Granular Cobalt Catalyst. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1654-3302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractWe communicate a convenient method for the pressure hydrogenation of quinolines in aqueous solution by using a particulate cobalt-based catalyst that is prepared in situ from simple Co(OAc)2·4H2O through reduction with abundant zinc powder. This catalytic protocol permits a brisk and atom-efficient access to a variety of 1,2,3,4-tetrahydroquinolines thereby relying solely on easy-to-handle reagents that are all readily obtained from commercial sources. Both the reaction setup assembly and the autoclave charging procedure are conducted on the bench outside an inert-gas-operated containment system, thus rendering the overall synthesis time-saving and operationally very simple.
Collapse
|
5
|
Song Q, Xu D, David Wang W, Fang J, Sun X, Li F, Li B, Kou J, Zhu H, Dong Z. Ru clusters confined in Hydrogen-bonded organic frameworks for homogeneous catalytic hydrogenation of N-heterocyclic compounds with heterogeneous recyclability. J Catal 2022. [DOI: 10.1016/j.jcat.2021.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Chen J, Cui C, Liu H, Li G. Study on the Selective Hydrogenation of Quinoline Catalyzed by Composites of Metal-Organic Framework and Pt Nanoparticles ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Antil N, Kumar A, Akhtar N, Begum W, Chauhan M, Newar R, Rawat MS, Manna K. Chemoselective and Tandem Reduction of Arenes Using a Metal-Organic Framework-Supported Single-Site Cobalt Catalyst. Inorg Chem 2021; 61:1031-1040. [PMID: 34967211 DOI: 10.1021/acs.inorgchem.1c03098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of heterogeneous, chemoselective, and tandem catalytic systems using abundant metals is vital for the sustainable synthesis of fine and commodity chemicals. We report a robust and recyclable single-site cobalt-hydride catalyst based on a porous aluminum metal-organic framework (DUT-5 MOF) for chemoselective hydrogenation of arenes. The DUT-5 node-supported cobalt(II) hydride (DUT-5-CoH) is a versatile solid catalyst for chemoselective hydrogenation of a range of nonpolar and polar arenes, including heteroarenes such as pyridines, quinolines, isoquinolines, indoles, and furans to afford cycloalkanes and saturated heterocycles in excellent yields. DUT-5-CoH exhibited excellent functional group tolerance and could be reusable at least five times without decreased activity. The same MOF-Co catalyst was also efficient for tandem hydrogenation-hydrodeoxygenation of aryl carbonyl compounds, including biomass-derived platform molecules such as furfural and hydroxymethylfurfural to cycloalkanes. In the case of hydrogenation of cumene, our spectroscopic, kinetic, and density functional theory (DFT) studies suggest the insertion of a trisubstituted alkene intermediate into the Co-H bond occurring in the turnover limiting step. Our work highlights the potential of MOF-supported single-site base-metal catalysts for sustainable and environment-friendly industrial production of chemicals and biofuels.
Collapse
Affiliation(s)
- Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ajay Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manhar Singh Rawat
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
8
|
Adeyeye Nafiu S, Shaheen Shah S, Aziz A, Shaikh MN. Biogenic Synthesis of Gold Nanoparticles on a Green Support as a Reusable Catalyst for the Hydrogenation of Nitroarene and Quinoline. Chem Asian J 2021; 16:1956-1966. [PMID: 34043274 DOI: 10.1002/asia.202100385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/23/2021] [Indexed: 01/05/2023]
Abstract
Direct attachment of gold nanoparticles to a green support without the use of an external reducing agent and using it for removing toxic pollutants from wastewater, i. e., reduction of nitroarene to amine, are described. A novel approach involving the reduction of gold by the jute plant (Corchorus genus) stem-based (JPS) support itself to form nanoparticles (AuNPs) to be used as a catalytic system ('dip-catalyst') and its catalytic activity for the hydrogenation of series of nitroarenes in aqueous media are presented. AuNPs/JPS catalyst was characterized using SEM, UV-Vis, FTIR, TEM, XPS, and ICP-OES. Confined area elemental mapping exhibits uniform and homogeneous distribution of AuNPs on the support surface. TEM shows multi-faceted AuNPs in the range of 20-30 nm. The reactivity of AuNPs/JPS for the transfer hydrogenation of nitroarene as well as hydrogenation of quinoline under molecular H2 pressure was evaluated. Sodium borohydride, when used as the hydrogen source, demonstrates a high catalytic efficiency in the transfer hydrogenation reduction of 4-nitrophenol (4-NP). Quinoline is quantitatively and chemoselectively hydrogenated to 1,2,3,4-tetrahydroquinoline (py-THQ) using molecular hydrogen. Reusability studies show that AuNPs are stable on the support surface and their selectivity is not affected.
Collapse
Affiliation(s)
- Sodiq Adeyeye Nafiu
- Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Abdul Aziz
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
9
|
Shah SS, Shaikh MN, Khan MY, Alfasane MA, Rahman MM, Aziz MA. Present Status and Future Prospects of Jute in Nanotechnology: A Review. CHEM REC 2021; 21:1631-1665. [PMID: 34132038 DOI: 10.1002/tcr.202100135] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health-related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco-friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano-lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute-based nanotechnology research in the future.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Mohd Yusuf Khan
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | | | - Mohammad Mizanur Rahman
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|