1
|
Wang X, Zhu H, Lu Y, Wang Z, Kennedy D. The elastic properties and deformation mechanisms of actin filament networks crosslinked by filamins. J Mech Behav Biomed Mater 2020; 112:104075. [PMID: 32942229 DOI: 10.1016/j.jmbbm.2020.104075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
As a substructure of cell cytoskeleton, the crosslinked actin filament networks (CAFNs) play a major role in different cell functions, however, the elastic properties and the deformation mechanisms of CAFNs still remain to be understood. In this paper, a novel three-dimensional (3D) finite element (FE) model has been developed to mimic the mechanical properties of actin filament (F-actin) networks crosslinked by filamin A (FLNA). The simulation results indicate that although the Young's modulus of CAFNs varies in different directions for each random model, the statistical mean value is in-plane isotropic. The crosslinking density and the actin filament volume fraction are found to strongly affect the in-plane shear modulus of CAFNs. The simulation results agree well with the relevant experimental results. In addition, an L-shaped cantilever beam model has been developed for dimensional analysis on the shear stiffness of CAFNs and for quantifying the deformation mechanisms. It has been demonstrated that the in-plane shear modulus of CAFNs is mainly dominated by FLNA (i.e., cross-linkers), and that the bending and torsion deformations of FLNA have almost the same contribution to the stiffness of CAFNs. It has also been found that the stiffness of CAFNs is almost insensitive to the variation of the Poisson's ratios of FLNA and actin filament in the range from 0.29 to 0.499.
Collapse
Affiliation(s)
- Xiaobo Wang
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| | - Hanxing Zhu
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK.
| | - Yongtao Lu
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
| | - David Kennedy
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| |
Collapse
|
2
|
Law JO, Wong AG, Kusumaatmaja H, Miller MA. Nucleation on a sphere: the roles of curvature, confinement and ensemble. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1483041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Jack O. Law
- Department of Physics, Durham University, Durham, UK
| | - Alex G. Wong
- Department of Chemistry, Durham University, Durham, UK
| | | | | |
Collapse
|
3
|
Single microtubules and small networks become significantly stiffer on short time-scales upon mechanical stimulation. Sci Rep 2017; 7:4229. [PMID: 28652568 PMCID: PMC5484680 DOI: 10.1038/s41598-017-04415-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/16/2017] [Indexed: 01/11/2023] Open
Abstract
The transfer of mechanical signals through cells is a complex phenomenon. To uncover a new mechanotransduction pathway, we study the frequency-dependent transport of mechanical stimuli by single microtubules and small networks in a bottom-up approach using optically trapped beads as anchor points. We interconnected microtubules to linear and triangular geometries to perform micro-rheology by defined oscillations of the beads relative to each other. We found a substantial stiffening of single filaments above a characteristic transition frequency of 1–30 Hz depending on the filament’s molecular composition. Below this frequency, filament elasticity only depends on its contour and persistence length. Interestingly, this elastic behavior is transferable to small networks, where we found the surprising effect that linear two filament connections act as transistor-like, angle dependent momentum filters, whereas triangular networks act as stabilizing elements. These observations implicate that cells can tune mechanical signals by temporal and spatial filtering stronger and more flexibly than expected.
Collapse
|
4
|
Maier T, Haraszti T. Reversibility and Viscoelastic Properties of Micropillar Supported and Oriented Magnesium Bundled F-Actin. PLoS One 2015; 10:e0136432. [PMID: 26322783 PMCID: PMC4556452 DOI: 10.1371/journal.pone.0136432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/04/2015] [Indexed: 11/19/2022] Open
Abstract
Filamentous actin is one of the most important cytoskeletal elements. Not only is it responsible for the elastic properties of many cell types, but it also plays a vital role in cellular adhesion and motility. Understanding the bundling kinetics of actin filaments is important in the formation of various cytoskeletal structures, such as filopodia and stress fibers. Utilizing a unique pillar-structured microfluidic device, we investigated the time dependence of bundling kinetics of pillar supported free-standing actin filaments. Microparticles attached to the filaments allowed the measurement of thermal motion, and we found that bundling takes place at lower concentrations than previously found in 3-dimensional actin gels, i.e. actin filaments formed bundles in the presence of 5-12 mM of magnesium chloride in a time-dependent manner. The filaments also displayed long term stability for up to hours after removing the magnesium ions from the buffer, which suggests that there is an extensive hysteresis between cation induced crosslinking and decrosslinking.
Collapse
Affiliation(s)
- Timo Maier
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenberg str. 3, D-70569 Stuttgart, Germany
- University of Heidelberg, Institute of Physical Chemistry, Department of Biophysical Chemistry, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Tamás Haraszti
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenberg str. 3, D-70569 Stuttgart, Germany
- University of Heidelberg, Institute of Physical Chemistry, Department of Biophysical Chemistry, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| |
Collapse
|
5
|
Heath GR, Abou-Saleh RH, Peyman SA, Johnson BRG, Connell SD, Evans SD. Self-assembly of actin scaffolds on lipid microbubbles. SOFT MATTER 2014; 10:694-700. [PMID: 24652242 DOI: 10.1039/c3sm52199k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microbubbles offer unique properties as combined carriers of therapeutic payloads and diagnostic agents. Here we report on the development of novel microbubble architectures that in addition to the usual lipid shell have an actin cytoskeletal cortex assembled on their exterior. We show, using atomic force microscopy that this biomimetic coating creates a thin mesh that allows tuning of the mechanical properties of microbubbles and that the nature of actin assembly is determined by the fluidity of the lipid layer. Further, we show that it is possible to attach payloads and targeting-ligands to the actin scaffold. Resistance to gas permeation showed that the additional actin layer reduces gas diffusion across the shell and thus increases bubble lifetime. This study demonstrates a one step method to creating more complex microbubble architectures, which would be capable of further modification and tuning through the inclusion of actin binding proteins.
Collapse
Affiliation(s)
- George R Heath
- Molecular Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK. . uk
| | | | | | | | | | | |
Collapse
|
6
|
Sarkar N, Basu A. Generic instabilities in a fluid membrane coupled to a thin layer of ordered active polar fluid. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:86. [PMID: 23933986 DOI: 10.1140/epje/i2013-13086-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/29/2013] [Indexed: 06/02/2023]
Abstract
We develop an effective two-dimensional coarse-grained description for the coupled system of a planar fluid membrane anchored to a thin layer of polar ordered active fluid below. The macroscopic orientation of the active fluid layer is assumed to be perpendicular to the attached membrane. We demonstrate that activity or nonequilibrium drive of the active fluid makes such a system generically linearly unstable for either signature of a model parameter [Formula: see text] [Formula: see text] that characterises the strength of activity. Depending upon boundary conditions and within a range of the model parameters, underdamped propagating waves may be present in our model. We discuss the phenomenological significance of our results.
Collapse
Affiliation(s)
- Niladri Sarkar
- Theoretical Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, 700 064 Calcutta, India.
| | | |
Collapse
|
7
|
Mu X, Zheng W, Sun J, Zhang W, Jiang X. Microfluidics for manipulating cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:9-21. [PMID: 22933509 DOI: 10.1002/smll.201200996] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/05/2012] [Indexed: 05/02/2023]
Abstract
Microfluidics, a toolbox comprising methods for precise manipulation of fluids at small length scales (micrometers to millimeters), has become useful for manipulating cells. Its uses range from dynamic management of cellular interactions to high-throughput screening of cells, and to precise analysis of chemical contents in single cells. Microfluidics demonstrates a completely new perspective and an excellent practical way to manipulate cells for solving various needs in biology and medicine. This review introduces and comments on recent achievements and challenges of using microfluidics to manipulate and analyze cells. It is believed that microfluidics will assume an even greater role in the mechanistic understanding of cell biology and, eventually, in clinical applications.
Collapse
Affiliation(s)
- Xuan Mu
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for NanoScience and Technology, No. 11, Beiyitiao, ZhongGuanCun, Beijing 100190, PR China
| | | | | | | | | |
Collapse
|
8
|
HARASZTI TAMÁS, SCHULZ SIMON, UHRIG KAI, KURRE RAINER, ROOS WOUTER, SCHMITZ CHRISTIANHJ, CURTIS JENNIFERE, MAIER TIMO, CLEMEN ANABELEM, SPATZ JOACHIMP. BIOMIMETIC MODELS OF THE ACTIN CORTEX. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048009001009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cytoskeleton is an actively regulated complex network in the cell. One of the most researched components is actin. In our work we developed and tested two microfluidic systems both being applicable to construct quasi 2-dimensional biomimetic actin networks. The first system uses polydimethylsiloxane micropillars, the other polystyrene microparticles held by holographic optical tweezers as anchoring points. Our devices provide actin networks with mesh sizes from a few micrometers up to the order of 10 micrometers. Qualitative analysis shows similar network formation in both systems. Crosslinking was tested using filamin, α-actinin, Ca and Mg ions. The crosslinking process is characterized by a zipping like event, which is limited only by the high stretching modulus of the actin filaments.
Collapse
Affiliation(s)
- TAMÁS HARASZTI
- Max-Planck Institute for Metals Research, Heisenbergstrasse 3, Stuttgart, 70569, Germany
- Biophysical Chemistry Group, Institute of Physical Chemistry, University of Heidelberg, Im Neuenhelmer Feld 253, Heidelberg, 69120, Germany
| | - SIMON SCHULZ
- Max-Planck Institute for Metals Research, Heisenbergstrasse 3, Stuttgart, 70569, Germany
- Biophysical Chemistry Group, Institute of Physical Chemistry, University of Heidelberg, Im Neuenhelmer Feld 253, Heidelberg, 69120, Germany
| | - KAI UHRIG
- Max-Planck Institute for Metals Research, Heisenbergstrasse 3, Stuttgart, 70569, Germany
- Biophysical Chemistry Group, Institute of Physical Chemistry, University of Heidelberg, Im Neuenhelmer Feld 253, Heidelberg, 69120, Germany
| | - RAINER KURRE
- Max-Planck Institute for Metals Research, Heisenbergstrasse 3, Stuttgart, 70569, Germany
- Biophysical Chemistry Group, Institute of Physical Chemistry, University of Heidelberg, Im Neuenhelmer Feld 253, Heidelberg, 69120, Germany
| | - WOUTER ROOS
- Max-Planck Institute for Metals Research, Heisenbergstrasse 3, Stuttgart, 70569, Germany
- Biophysical Chemistry Group, Institute of Physical Chemistry, University of Heidelberg, Im Neuenhelmer Feld 253, Heidelberg, 69120, Germany
| | - CHRISTIAN H. J. SCHMITZ
- Max-Planck Institute for Metals Research, Heisenbergstrasse 3, Stuttgart, 70569, Germany
- Biophysical Chemistry Group, Institute of Physical Chemistry, University of Heidelberg, Im Neuenhelmer Feld 253, Heidelberg, 69120, Germany
| | - JENNIFER E. CURTIS
- Max-Planck Institute for Metals Research, Heisenbergstrasse 3, Stuttgart, 70569, Germany
- Biophysical Chemistry Group, Institute of Physical Chemistry, University of Heidelberg, Im Neuenhelmer Feld 253, Heidelberg, 69120, Germany
| | - TIMO MAIER
- Max-Planck Institute for Metals Research, Heisenbergstrasse 3, Stuttgart, 70569, Germany
- Biophysical Chemistry Group, Institute of Physical Chemistry, University of Heidelberg, Im Neuenhelmer Feld 253, Heidelberg, 69120, Germany
| | - ANABEL E.-M. CLEMEN
- Max-Planck Institute for Metals Research, Heisenbergstrasse 3, Stuttgart, 70569, Germany
- Biophysical Chemistry Group, Institute of Physical Chemistry, University of Heidelberg, Im Neuenhelmer Feld 253, Heidelberg, 69120, Germany
| | - JOACHIM P. SPATZ
- Max-Planck Institute for Metals Research, Heisenbergstrasse 3, Stuttgart, 70569, Germany
- Biophysical Chemistry Group, Institute of Physical Chemistry, University of Heidelberg, Im Neuenhelmer Feld 253, Heidelberg, 69120, Germany
| |
Collapse
|
9
|
Streichfuss M, Erbs F, Uhrig K, Kurre R, Clemen AEM, Böhm CHJ, Haraszti T, Spatz JP. Measuring forces between two single actin filaments during bundle formation. NANO LETTERS 2011; 11:3676-3680. [PMID: 21838252 DOI: 10.1021/nl201630y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bundles of filamentous actin are dominant cytoskeletal structures, which play a crucial role in various cellular processes. As yet quantifying the fundamental interaction between two individual actin filaments forming the smallest possible bundle has not been realized. Applying holographic optical tweezers integrated with a microfluidic platform, we were able to measure the forces between two actin filaments during bundle formation. Quantitative analysis yields forces up to 0.2 pN depending on the concentration of bundling agents.
Collapse
Affiliation(s)
- Martin Streichfuss
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kalwarczyk T, Ziebacz N, Bielejewska A, Zaboklicka E, Koynov K, Szymański J, Wilk A, Patkowski A, Gapiński J, Butt HJ, Hołyst R. Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale. NANO LETTERS 2011; 11:2157-63. [PMID: 21513331 DOI: 10.1021/nl2008218] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present a scaling formula for size-dependent viscosity coefficients for proteins, polymers, and fluorescent dyes diffusing in complex liquids. The formula was used to analyze the mobilities of probes of different sizes in HeLa and Swiss 3T3 mammalian cells. This analysis unveils in the cytoplasm two length scales: (i) the correlation length ξ (approximately 5 nm in HeLa and 7 nm in Swiss 3T3 cells) and (ii) the limiting length scale that marks the crossover between nano- and macroscale viscosity (approximately 86 nm in HeLa and 30 nm in Swiss 3T3 cells). During motion, probes smaller than ξ experienced matrix viscosity: η(matrix) ≈ 2.0 mPa·s for HeLa and 0.88 mPa·s for Swiss 3T3 cells. Probes much larger than the limiting length scale experienced macroscopic viscosity, η(macro) ≈ 4.4 × 10(-2) and 2.4 × 10(-2) Pa·s for HeLa and Swiss 3T3 cells, respectively. Our results are persistent for the lengths scales from 0.14 nm to a few hundred nanometers.
Collapse
Affiliation(s)
- Tomasz Kalwarczyk
- Department of Soft Condensed Matter, Institute of Physical Chemistry PAS, Kasprzaka 44/52 01-224 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Kasza KE, Nakamura F, Hu S, Kollmannsberger P, Bonakdar N, Fabry B, Stossel TP, Wang N, Weitz DA. Filamin A is essential for active cell stiffening but not passive stiffening under external force. Biophys J 2009; 96:4326-35. [PMID: 19450503 DOI: 10.1016/j.bpj.2009.02.035] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 01/27/2009] [Accepted: 02/18/2009] [Indexed: 10/20/2022] Open
Abstract
The material properties of a cell determine how mechanical forces are transmitted through and sensed by that cell. Some types of cells stiffen passively under large external forces, but they can also alter their own stiffness in response to the local mechanical environment or biochemical cues. Here we show that the actin-binding protein filamin A is essential for the active stiffening of cells plated on collagen-coated substrates. This appears to be due to a diminished capability to build up large internal contractile stresses in the absence of filamin A. To show this, we compare the material properties and contractility of two human melanoma cell lines that differ in filamin A expression. The filamin A-deficient M2 cells are softer than the filamin A-replete A7 cells, and exert much smaller contractile stresses on the substratum, even though the M2 cells have similar levels of phosphorylated myosin II light chain and only somewhat diminished adhesion strength. In contrast to A7 cells, the stiffness and contractility of M2 cells are insensitive to either myosin-inhibiting drugs or the stiffness of the substratum. Surprisingly, however, filamin A is not required for passive stiffening under large external forces.
Collapse
Affiliation(s)
- K E Kasza
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Uhrig K, Kurre R, Schmitz C, Curtis JE, Haraszti T, Clemen AEM, Spatz JP. Optical force sensor array in a microfluidic device based on holographic optical tweezers. LAB ON A CHIP 2009; 9:661-668. [PMID: 19224015 DOI: 10.1039/b817633g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Holographic optical tweezers (HOT) are a versatile technology, with which complex arrays and movements of optical traps can be realized to manipulate multiple microparticles in parallel and to measure the forces affecting them in the piconewton range. We report on the combination of HOT with a fluorescence microscope and a stop-flow, multi-channel microfluidic device. The integration of a high-speed camera into the setup allows for the calibration of all the traps simultaneously both using Boltzmann statistics or the power spectrum density of the particle diffusion within the optical traps. This setup permits complete spatial, chemical and visual control of the microenvironment applicable to probing chemo-mechanical properties of cellular or subcellular structures. As an example we constructed a biomimetic, quasi-two-dimensional actin network on an array of trapped polystyrene microspheres inside the microfluidic chamber. During crosslinking of the actin filaments by Mg(2+) ions, we observe the build up of mechanical tension throughout the actin network. Thus, we demonstrate how our integrated HOT-microfluidics platform can be used as a reconfigurable force sensor array with piconewton resolution to investigate chemo-mechanical processes.
Collapse
Affiliation(s)
- Kai Uhrig
- Max-Planck-Institute for Metals Research, Department of New Materials and Biosystems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Riehemann K, Schneider S, Luger T, Godin B, Ferrari M, Fuchs H. Nanomedizin - Herausforderung und Perspektiven. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802585] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine--challenge and perspectives. Angew Chem Int Ed Engl 2009; 48:872-97. [PMID: 19142939 PMCID: PMC4175737 DOI: 10.1002/anie.200802585] [Citation(s) in RCA: 855] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The application of nanotechnology concepts to medicine joins two large cross-disciplinary fields with an unprecedented societal and economical potential arising from the natural combination of specific achievements in the respective fields. The common basis evolves from the molecular-scale properties relevant to the two fields. Local probes and molecular imaging techniques allow surface and interface properties to be characterized on a nanometer scale at predefined locations, while chemical approaches offer the opportunity to elaborate and address surfaces, for example, for targeted drug delivery, enhanced biocompatibility, and neuroprosthetic purposes. However, concerns arise in this cross-disciplinary area about toxicological aspects and ethical implications. This Review gives an overview of selected recent developments and applications of nanomedicine.
Collapse
Affiliation(s)
- Kristina Riehemann
- Dr. K. Riehemann, Prof. Dr. H. Fuchs, Center for Nanotechnology (CeNTech) and Physical Institute; WWU Münster, Wilhelm Klemm-Str. 10, 48149 Münster, Germany, Fax:+49 (251) 83 33602, , Homepage: http://www.uni-muenster.de/Physik.PI/Fuchs/
| | | | | | | | | | - Harald Fuchs
- Dr. K. Riehemann, Prof. Dr. H. Fuchs, Center for Nanotechnology (CeNTech) and Physical Institute; WWU Münster, Wilhelm Klemm-Str. 10, 48149 Münster, Germany, Fax:+49 (251) 83 33602, , Homepage: http://www.uni-muenster.de/Physik.PI/Fuchs/
| |
Collapse
|
16
|
Jang KJ, Nam JM. Direct-write nanoparticle microarrays for cell assays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:1930-1935. [PMID: 18752201 DOI: 10.1002/smll.200800270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Kyung-Jin Jang
- Department of Chemistry, Seoul National University, Gwanak-gu Seoul, South Korea
| | | |
Collapse
|