1
|
Serna S, Comino N, Reichardt NC, López-Gallego F. Preparative Isolation of N-Glycans from Natural Sources Mediated by a Deglycosylating Heterogeneous Biocatalyst in Flow. CHEMSUSCHEM 2025; 18:e202402346. [PMID: 39817794 DOI: 10.1002/cssc.202402346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
Efficient methods for isolating N-glycans are essential to understanding the functions and characteristics of the entire N-glycome. Enzymatic release using PNGaseF is the most effective approach for releasing mammalian N-glycans for analytical purposes. However, the use of PNGaseF for preparative N-glycan isolation is precluded due to the enzyme's cost and limited stability. In this work, we develop a PNGaseF heterogeneous biocatalyst for the preparative isolation of N-glycans from natural sources. By controlling the immobilization conditions, 100-51 % of offered PNGaseF is immobilized on aldehyde-functionalized agarose porous microbeads through distinct protein orientations, achieving different performances. The enzyme orientation through the N-terminus provides the best activity/operational stability balance, being 20 % more efficient than that randomly oriented. This active and stable heterogeneous biocatalyst eases its application in a packed bed reactor (PBR) for continuous release of free N-glycans from a model glycoprotein. This PBR processes 1 g of ovalbumin from chicken egg white to isolate 95 % of its N-glycans upon operating the PBR for 7 days. Finally, by tuning the flow rate, we can control the profile of N-glycans isolated due to different enzyme kinetics for the deglycosylation reactions. In-line methodologies to isolate N-glycans open new paths for more sustainable protocols to prepare relevant glycans.
Collapse
Affiliation(s)
- Sonia Serna
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
| | - Natalia Comino
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
| | - Niels C Reichardt
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 20014, Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| |
Collapse
|
2
|
Yuan H, Chen P, Wan C, Li Y, Liu BF. Merging microfluidics with luminescence immunoassays for urgent point-of-care diagnostics of COVID-19. Trends Analyt Chem 2022; 157:116814. [PMID: 36373139 PMCID: PMC9637550 DOI: 10.1016/j.trac.2022.116814] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
The Coronavirus disease 2019 (COVID-19) outbreak has urged the establishment of a global-wide rapid diagnostic system. Current widely-used tests for COVID-19 include nucleic acid assays, immunoassays, and radiological imaging. Immunoassays play an irreplaceable role in rapidly diagnosing COVID-19 and monitoring the patients for the assessment of their severity, risks of the immune storm, and prediction of treatment outcomes. Despite of the enormous needs for immunoassays, the widespread use of traditional immunoassay platforms is still limited by high cost and low automation, which are currently not suitable for point-of-care tests (POCTs). Microfluidic chips with the features of low consumption, high throughput, and integration, provide the potential to enable immunoassays for POCTs, especially in remote areas. Meanwhile, luminescence detection can be merged with immunoassays on microfluidic platforms for their good performance in quantification, sensitivity, and specificity. This review introduces both homogenous and heterogenous luminescence immunoassays with various microfluidic platforms. We also summarize the strengths and weaknesses of the categorized methods, highlighting their recent typical progress. Additionally, different microfluidic platforms are described for comparison. The latest advances in combining luminescence immunoassays with microfluidic platforms for POCTs of COVID-19 are further explained with antigens, antibodies, and related cytokines. Finally, challenges and future perspectives were discussed.
Collapse
Affiliation(s)
- Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
3
|
Chen S, Qin C, Fang Q, Duo L, Wang M, Deng Z, Chen H, Lin Q. Rapid and Economical Drug-Eluting IOL Preparation via Thermoresponsive Agarose Coating for Effective Posterior Capsular Opacification Prevention. Front Bioeng Biotechnol 2022; 10:930540. [PMID: 35992334 PMCID: PMC9388942 DOI: 10.3389/fbioe.2022.930540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Posterior capsular opacification (PCO), the highest incidence complication after cataract surgery, is mainly due to the attachment, proliferation, and migration of the residual lens epithelial cells (LECs). Although the drug-eluting IOLs have been proved to be an effective way to prevent PCO incidence, its preparations are time consuming and require tedious preparation steps. Herein, the thermoreversible agarose is adopted to prepare drug-eluting IOL. Such functional coating can be obtained easily by simple immersion in the antiproliferative drug containing hot agarose and taken out for cooling, which not only does not affect the optical property but also can effectively decrease the PCO incidence after intraocular implantation. As a result, the proposed agarose coating provides a rapid and economical alternative of drug-eluting IOL fabrication for PCO prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hao Chen
- *Correspondence: Hao Chen, ; Quankui Lin,
| | | |
Collapse
|
4
|
Velasco-Lozano S, Castro SAD, Sanchez-Cano C, Benítez-Mateos AI, López-Gallego F, Salassa L. Metal substrate catalysis in the confined space for platinum drug delivery. Chem Sci 2021; 13:59-67. [PMID: 35059151 PMCID: PMC8694326 DOI: 10.1039/d1sc05151b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023] Open
Abstract
Catalysis-based approaches for the activation of anticancer agents hold considerable promise. These principally rely on the use of metal catalysts capable of deprotecting inactive precursors of organic drugs or transforming key biomolecules available in the cellular environment. Nevertheless, the efficiency of most of the schemes described so far is rather low, limiting the benefits of catalytic amplification as strategy for controlling the therapeutic effects of anticancer compounds. In the work presented here, we show that flavin reactivity within a hydrogel matrix provides a viable solution for the efficient catalytic activation and delivery of cisplatin, a worldwide clinically-approved inorganic chemotherapy agent. This is achieved by ionically adsorbing a flavin catalyst and a Pt(iv) prodrug as substrate into porous amino-functionalized agarose beads. The hydrogel chassis supplies high local concentrations of electron donating groups/molecules in the surrounding of the catalyst, ultimately boosting substrate conversion rates (TOF >200 min-1) and enabling controlled liberation of the drug by light or chemical stimuli. Overall, this approach can afford platforms for the efficient delivery of platinum drugs as demonstrated herein by using a transdermal diffusion model simulating the human skin.
Collapse
Affiliation(s)
- Susana Velasco-Lozano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 San Sebastián 20014 Spain
| | | | - Carlos Sanchez-Cano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 San Sebastián 20014 Spain
- Donostia International Physics Center Paseo Manuel de Lardizabal 4 Donostia 20018 Spain
- Ikerbasque, Basque Foundation for Science Bilbao 48011 Spain
| | - Ana I Benítez-Mateos
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 San Sebastián 20014 Spain
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 San Sebastián 20014 Spain
- Ikerbasque, Basque Foundation for Science Bilbao 48011 Spain
| | - Luca Salassa
- Donostia International Physics Center Paseo Manuel de Lardizabal 4 Donostia 20018 Spain
- Ikerbasque, Basque Foundation for Science Bilbao 48011 Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU Paseo Manuel de Lardizabal 3 Donostia 20018 Spain
| |
Collapse
|
5
|
Salva ML, Rocca M, Niemeyer CM, Delamarche E. Methods for immobilizing receptors in microfluidic devices: A review. MICRO AND NANO ENGINEERING 2021. [DOI: 10.1016/j.mne.2021.100085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Benítez-Mateos AI, Huber C, Nidetzky B, Bolivar JM, López-Gallego F. Design of the Enzyme-Carrier Interface to Overcome the O 2 and NADH Mass Transfer Limitations of an Immobilized Flavin Oxidase. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56027-56038. [PMID: 33275418 DOI: 10.1021/acsami.0c17568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding how the immobilization of enzymes on solid carriers affects their performance is paramount for the design of highly efficient heterogeneous biocatalysts. An efficient supply of substrates onto the solid phase is one of the main challenges to maximize the activity of the immobilized enzymes. Herein, we apply advanced single-particle analysis to decipher the optimal design of an immobilized NADH oxidase (NOX) whose activity depends both on O2 and NADH concentrations. Carrier physicochemical properties and its functionality along with the enzyme distribution across the carrier were implemented as design variables to study the effects of the intraparticle concentration of substrates (O2 and NADH) on the activity. Intraparticle O2-sensing analysis revealed the superior performance of the enzyme immobilized at the outer surface in terms of effective supply of O2. Furthermore, the co-immobilization of NADH and NOX within the tuned surface of porous microbeads increases the effective concentration of NADH in the surroundings of the enzyme. As a result, the optimal spatial organization of NOX and its confinement with NADH allow a 100% recovery of the activity of the soluble enzyme upon the immobilization process. By engineering these variables, we increase the NADH oxidation activity of the heterogeneous biocatalyst by up to 650% compared to NOX immobilized under suboptimal conditions. In conclusion, this work highlights the rational design and engineering of the enzyme-carrier interface to maximize the efficiency of heterogeneous biocatalysts.
Collapse
Affiliation(s)
- Ana I Benítez-Mateos
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, Donostia San Sebastián 20014, Spain
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza 50009, Spain
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse3, Bern 3012, Switzerland
| | - Christina Huber
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz A-8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz A-8010, Austria
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, Graz A-8010, Austria
| | - Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz A-8010, Austria
- Department of Chemical and Materials Engineering, Complutense University of Madrid, 28040, Madrid, Spain
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, Donostia San Sebastián 20014, Spain
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza 50009, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, Bilbao 48013, Spain
| |
Collapse
|
7
|
McRae MP, Simmons GW, Christodoulides NJ, Lu Z, Kang SK, Fenyo D, Alcorn T, Dapkins IP, Sharif I, Vurmaz D, Modak SS, Srinivasan K, Warhadpande S, Shrivastav R, McDevitt JT. Clinical decision support tool and rapid point-of-care platform for determining disease severity in patients with COVID-19. LAB ON A CHIP 2020; 20:2075-2085. [PMID: 32490853 PMCID: PMC7360344 DOI: 10.1039/d0lc00373e] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
SARS-CoV-2 is the virus that causes coronavirus disease (COVID-19) which has reached pandemic levels resulting in significant morbidity and mortality affecting every inhabited continent. The large number of patients requiring intensive care threatens to overwhelm healthcare systems globally. Likewise, there is a compelling need for a COVID-19 disease severity test to prioritize care and resources for patients at elevated risk of mortality. Here, an integrated point-of-care COVID-19 Severity Score and clinical decision support system is presented using biomarker measurements of C-reactive protein (CRP), N-terminus pro B type natriuretic peptide (NT-proBNP), myoglobin (MYO), D-dimer, procalcitonin (PCT), creatine kinase-myocardial band (CK-MB), and cardiac troponin I (cTnI). The COVID-19 Severity Score combines multiplex biomarker measurements and risk factors in a statistical learning algorithm to predict mortality. The COVID-19 Severity Score was trained and evaluated using data from 160 hospitalized COVID-19 patients from Wuhan, China. Our analysis finds that COVID-19 Severity Scores were significantly higher for the group that died versus the group that was discharged with median (interquartile range) scores of 59 (40-83) and 9 (6-17), respectively, and area under the curve of 0.94 (95% CI 0.89-0.99). Although this analysis represents patients with cardiac comorbidities (hypertension), the inclusion of biomarkers from other pathophysiologies implicated in COVID-19 (e.g., D-dimer for thrombotic events, CRP for infection or inflammation, and PCT for bacterial co-infection and sepsis) may improve future predictions for a more general population. These promising initial models pave the way for a point-of-care COVID-19 Severity Score system to impact patient care after further validation with externally collected clinical data. Clinical decision support tools for COVID-19 have strong potential to empower healthcare providers to save lives by prioritizing critical care in patients at high risk for adverse outcomes.
Collapse
Affiliation(s)
- Michael P McRae
- Department of Biomaterials, Bioengineering Institute, New York University, 433 First Avenue, Room 820, New York, NY 10010-4086, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
McRae MP, Simmons GW, Christodoulides NJ, Lu Z, Kang SK, Fenyo D, Alcorn T, Dapkins IP, Sharif I, Vurmaz D, Modak SS, Srinivasan K, Warhadpande S, Shrivastav R, McDevitt JT. Clinical Decision Support Tool and Rapid Point-of-Care Platform for Determining Disease Severity in Patients with COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.04.16.20068411. [PMID: 32511607 PMCID: PMC7276034 DOI: 10.1101/2020.04.16.20068411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
SARS-CoV-2 is the virus that causes coronavirus disease (COVID-19) which has reached pandemic levels resulting in significant morbidity and mortality affecting every inhabited continent. The large number of patients requiring intensive care threatens to overwhelm healthcare systems globally. Likewise, there is a compelling need for a COVID-19 disease severity test to prioritize care and resources for patients at elevated risk of mortality. Here, an integrated point-of-care COVID-19 Severity Score and clinical decision support system is presented using biomarker measurements of C-reactive protein (CRP), N-terminus pro B type natriuretic peptide (NT-proBNP), myoglobin (MYO), D-dimer, procalcitonin (PCT), creatine kinase-myocardial band (CK-MB), and cardiac troponin I (cTnI). The COVID-19 Severity Score combines multiplex biomarker measurements and risk factors in a statistical learning algorithm to predict mortality. The COVID-19 Severity Score was trained and evaluated using data from 160 hospitalized COVID-19 patients from Wuhan, China. Our analysis finds that COVID-19 Severity Scores were significantly higher for the group that died versus the group that was discharged with median (interquartile range) scores of 59 (40-83) and 9 (6-17), respectively, and area under the curve of 0.94 (95% CI 0.89-0.99). These promising initial models pave the way for a point-of-care COVID-19 Severity Score system to impact patient care after further validation with externally collected clinical data. Clinical decision support tools for COVID-19 have strong potential to empower healthcare providers to save lives by prioritizing critical care in patients at high risk for adverse outcomes.
Collapse
Affiliation(s)
- Michael P McRae
- Department of Biomaterials, Bioengineering Institute, New York University, New York, NY, USA
| | - Glennon W Simmons
- Department of Biomaterials, Bioengineering Institute, New York University, New York, NY, USA
| | | | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Stella K Kang
- Departments of Radiology, Population Health New York University School of Medicine, New York, NY, USA
| | - David Fenyo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | | | - Isaac P Dapkins
- Department of Population Health and Internal Medicine, New York University School of Medicine, New York, NY, USA
| | - Iman Sharif
- Departments of Pediatrics and Population Health, New York University School of Medicine, New York, NY, USA
| | - Deniz Vurmaz
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, New York University, New York, NY, USA
| | - Sayli S Modak
- Department of Biomaterials, Bioengineering Institute, New York University, New York, NY, USA
| | - Kritika Srinivasan
- Departments of Biomaterials, Pathology, New York University School of Medicine, New York University, New York, NY, USA
| | - Shruti Warhadpande
- Department of Biomaterials, Bioengineering Institute, New York University, New York, NY, USA
| | - Ravi Shrivastav
- Department of Biomaterials, Bioengineering Institute, New York University, New York, NY, USA
| | - John T McDevitt
- Department of Biomaterials, Bioengineering Institute, New York University, New York, NY, USA
| |
Collapse
|
9
|
Feroz H, Meisenhelter J, Jokhadze G, Bruening M, Kumar M. Rapid screening and scale‐up of ultracentrifugation‐free, membrane‐based procedures for purification of His‐tagged membrane proteins. Biotechnol Prog 2019; 35:e2859. [DOI: 10.1002/btpr.2859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 04/13/2019] [Accepted: 05/03/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Hasin Feroz
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania
| | - Joshua Meisenhelter
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania
| | | | - Merlin Bruening
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana
| | - Manish Kumar
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania
| |
Collapse
|
10
|
Christodoulides N, McRae MP, Simmons GW, Modak SS, McDevitt JT. Sensors that Learn: The Evolution from Taste Fingerprints to Patterns of Early Disease Detection. MICROMACHINES 2019; 10:E251. [PMID: 30995728 PMCID: PMC6523560 DOI: 10.3390/mi10040251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/22/2019] [Accepted: 04/12/2019] [Indexed: 11/23/2022]
Abstract
The McDevitt group has sustained efforts to develop a programmable sensing platform that offers advanced, multiplexed/multiclass chem-/bio-detection capabilities. This scalable chip-based platform has been optimized to service real-world biological specimens and validated for analytical performance. Fashioned as a sensor that learns, the platform can host new content for the application at hand. Identification of biomarker-based fingerprints from complex mixtures has a direct linkage to e-nose and e-tongue research. Recently, we have moved to the point of big data acquisition alongside the linkage to machine learning and artificial intelligence. Here, exciting opportunities are afforded by multiparameter sensing that mimics the sense of taste, overcoming the limitations of salty, sweet, sour, bitter, and glutamate sensing and moving into fingerprints of health and wellness. This article summarizes developments related to the electronic taste chip system evolving into a platform that digitizes biology and affords clinical decision support tools. A dynamic body of literature and key review articles that have contributed to the shaping of these activities are also highlighted. This fully integrated sensor promises more rapid transition of biomarker panels into wide-spread clinical practice yielding valuable new insights into health diagnostics, benefiting early disease detection.
Collapse
Affiliation(s)
- Nicolaos Christodoulides
- Department of Biomaterials, College of Dentistry, Bioengineering Institute, New York University, New York, NY 10010, USA.
| | - Michael P McRae
- Department of Biomaterials, College of Dentistry, Bioengineering Institute, New York University, New York, NY 10010, USA.
| | - Glennon W Simmons
- Department of Biomaterials, College of Dentistry, Bioengineering Institute, New York University, New York, NY 10010, USA.
| | - Sayli S Modak
- Department of Biomaterials, College of Dentistry, Bioengineering Institute, New York University, New York, NY 10010, USA.
| | - John T McDevitt
- Department of Biomaterials, College of Dentistry, Bioengineering Institute, New York University, New York, NY 10010, USA.
| |
Collapse
|
11
|
Choudhuri K, de Silva UK, Huynh V, Wylie RG, Lapitsky Y. Photolithographically assembled polyelectrolyte complexes as shape-directing templates for thermoreversible gels. J Mater Chem B 2018; 6:7594-7604. [PMID: 32254881 DOI: 10.1039/c8tb02104j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of soft materials with diverse, customized shapes has been a topic of intense research interest. To this end, we have recently demonstrated photolithographic directed assembly as a strategy for customizing polyelectrolyte complex (PEC) shape. This process uses in situ photopolymerization of an anionic monomer in the presence of a cationic polymer, which drives localized PEC formation at the irradiation sites. Here, we show how such photolithographically assembled PECs can serve as structure-directing templates for tailoring the shapes of other soft materials; namely, thermoreversible gels. These templated hydrogels are prepared by adding a thermogelling polymer (agarose) to the anionic monomer/cationic polymer/photoinitiator precursor solutions so that, upon irradiation, custom-shaped PECs form within agarose gel matrices. Once these PECs are formed, the surrounding agarose gels are melted (through heating) and washed away which, upon returning the samples to room temperature, produces interpenetrating PEC/agarose gel networks with photopatterned shapes and dimensions. Dissolution of these sacrificial PEC templates in concentrated NaCl solutions then generates photolithographically templated agarose gels, whose shapes and dimensions match those of their PEC templates. Besides tuning their shapes and sizes, the mechanical properties of these gels can be easily tailored by varying the initial agarose concentrations used. Moreover, this PEC-templated gel synthesis appears to not adversely affect hydrogel cytocompatibility, suggesting its potential suitability for biological and biomedical applications. Though the present study uses only agarose as the model gel system, this PEC-based strategy for customizing gel shape can likely also be applied to other thermoreversible gel networks (e.g., those based on methylcellulose, poloxamers or thermoresponsive chitosan derivatives) and could have many attractive applications, ranging from drug delivery and tissue engineering, to sensing and soft robotics.
Collapse
Affiliation(s)
- Kunal Choudhuri
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, USA.
| | | | | | | | | |
Collapse
|
12
|
Shapiro SJ, Dendukuri D, Doyle PS. Design of Hydrogel Particle Morphology for Rapid Bioassays. Anal Chem 2018; 90:13572-13579. [PMID: 30339359 DOI: 10.1021/acs.analchem.8b03728] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydrogel microparticles have been extensively used in the field of medical diagnostics for detecting targets ranging from proteins to nucleic acids. However, little is known about how the shape of hydrogel particles impacts the signal from a bioassay. In this article, we analyze the flux into porous hydrogel particles to develop scaling laws for the signal from a point-of-care bioassay. The signal can be increased by increasing the ratio of the surface area of the hydrogel particle to the two-dimensional projected imaging area used for analysis. We show that adding internal surface area to hydrogel particles increases the assay signal in a biotin-streptavidin bioassay. We also demonstrate the application of this technique to a protein-based assay for thyroid-stimulating hormone, reducing the limit of detection of the assay sixfold by changing particle shape. We anticipate that these strategies can be used broadly to optimize hydrogel-based systems for point-of-care diagnostics.
Collapse
Affiliation(s)
- Sarah J Shapiro
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Dhananjaya Dendukuri
- Achira Laboratories Pvt. Ltd. , 66B, 13th Cross Road, Dollar Layout, JP Nagar Phase III , Bangalore 560078 , India
| | - Patrick S Doyle
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
13
|
Yang H, Yao Y, Li H, Ho LWC, Yin B, Yung WY, Leung KCF, Mak AFT, Choi CHJ. Promoting intracellular delivery of sub-25 nm nanoparticles via defined levels of compression. NANOSCALE 2018; 10:15090-15102. [PMID: 30059120 DOI: 10.1039/c8nr04927k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many investigations into the interactions between nanoparticles and mammalian cells entail the use of culture systems that do not account for the effect of extracellular mechanical cues, such as compression. In this work, we present an experimental set-up to systematically investigate the combined effects of nanoparticle size and compressive stress on the cellular uptake and intracellular localization of poly(ethylene glycol)-coated gold nanoparticles (Au-PEG NPs). Specifically, we employ an automated micromechanical system to apply defined levels of compressive strain to an agarose gel, which transmits defined amounts of unconfined, uniaxial compressive stress to a monolayer of C2C12 mouse myoblasts seeded underneath the gel without compromising cell viability. Notably, uptake of Au-PEG NPs smaller than 25 nm by compressed myoblasts is up to 5-fold higher than that by uncompressed cells. The optimal compressive stress for maximizing the cellular uptake of sub-25 nm NPs monotonically increases with NP size. With and without compression, the Au-PEG NPs enter C2C12 cells via energy-dependent uptake; they also enter compressed cells via clathrin-mediated endocytosis as the major pathway. Upon cellular entry, the Au-PEG NPs more readily reside in the late endosomes or lysosomes of compressed cells than uncompressed cells. Results from our experimental set-up yield mechanistic insights into the delivery of NPs to cell types under extracellular compression.
Collapse
Affiliation(s)
- Hongrong Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Miller EA, Jabbour Al Maalouf Y, Sikes HD. Design Principles for Enhancing Sensitivity in Paper-Based Diagnostics via Large-Volume Processing. Anal Chem 2018; 90:9472-9479. [PMID: 29924932 DOI: 10.1021/acs.analchem.8b02113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this work, we characterize the impact of large-volume processing upon the analytical sensitivity of flow-through paper-based immunoassays. Larger sample volumes feature greater molar quantities of available analyte, but the assay design principles which would enable the rapid collection of this dilute target are ill-defined. We developed a finite-element model to explore the operating conditions under which processing large sample volumes via pressure-driven convective flow would yield an improved binding signal. Our simulation results underscore the importance of establishing a high local concentration of the analyte-binding species within the porous substrate. This elevated abundance serves to enhance the binding kinetics, matching the time scale of target capture to the period during which the sample is in contact with the test zone (i.e., the effective residence time). These findings were experimentally validated using the rcSso7d-cellulose-binding domain (CBD) fusion construct, a bifunctional binding protein which adsorbs to cellulose in high abundance. As predicted by our modeling efforts, the local concentration achieved using the rcSso7d-CBD species is uniquely enabling for sensitivity enhancement through large-volume processing. The rapid analyte depletion which occurs at this high surface density also permits the processing of large sample volumes within practical time scales and flow regimes. Using these findings, we present guidance for the optimal means of processing large sample volumes for enhanced assay sensitivity.
Collapse
Affiliation(s)
- Eric A Miller
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02142 , United States
| | - Yara Jabbour Al Maalouf
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02142 , United States
| | - Hadley D Sikes
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02142 , United States
| |
Collapse
|
15
|
Tirapu-Azpiroz J, Temiz Y, Delamarche E. Dielectrophoretic microbead sorting using modular electrode design and capillary-driven microfluidics. Biomed Microdevices 2017; 19:95. [DOI: 10.1007/s10544-017-0238-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Mou L, Jiang X. Materials for Microfluidic Immunoassays: A Review. Adv Healthc Mater 2017; 6. [PMID: 28322517 DOI: 10.1002/adhm.201601403] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/06/2017] [Indexed: 01/07/2023]
Abstract
Conventional immunoassays suffer from at least one of these following limitations: long processing time, high costs, poor user-friendliness, technical complexity, poor sensitivity and specificity. Microfluidics, a technology characterized by the engineered manipulation of fluids in channels with characteristic lengthscale of tens of micrometers, has shown considerable promise for improving immunoassays that could overcome these limitations in medical diagnostics and biology research. The combination of microfluidics and immunoassay can detect biomarkers with faster assay time, reduced volumes of reagents, lower power requirements, and higher levels of integration and automation compared to traditional approaches. This review focuses on the materials-related aspects of the recent advances in microfluidics-based immunoassays for point-of-care (POC) diagnostics of biomarkers. We compare the materials for microfluidic chips fabrication in five aspects: fabrication, integration, function, modification and cost, and describe their advantages and drawbacks. In addition, we review materials for modifying antibodies to improve the performance of the reaction of immunoassay. We also review the state of the art in microfluidic immunoassays POC platforms, from the laboratory to routine clinical practice, and also commercial products in the market. Finally, we discuss the current challenges and future developments in microfluidic immunoassays.
Collapse
Affiliation(s)
- Lei Mou
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences; 19 A Yuquan Road Shijingshan District Beijing 100049 P. R. China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences; 19 A Yuquan Road Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
17
|
Christodoulides NJ, McRae MP, Abram TJ, Simmons GW, McDevitt JT. Innovative Programmable Bio-Nano-Chip Digitizes Biology Using Sensors That Learn Bridging Biomarker Discovery and Clinical Implementation. Front Public Health 2017; 5:110. [PMID: 28589118 PMCID: PMC5441161 DOI: 10.3389/fpubh.2017.00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/02/2017] [Indexed: 11/13/2022] Open
Abstract
The lack of standard tools and methodologies and the absence of a streamlined multimarker approval process have hindered the translation rate of new biomarkers into clinical practice for a variety of diseases afflicting humankind. Advanced novel technologies with superior analytical performance and reduced reagent costs, like the programmable bio-nano-chip system featured in this article, have potential to change the delivery of healthcare. This universal platform system has the capacity to digitize biology, resulting in a sensor modality with a capacity to learn. With well-planned device design, development, and distribution plans, there is an opportunity to translate benchtop discoveries in the genomics, proteomics, metabolomics, and glycomics fields by transforming the information content of key biomarkers into actionable signatures that can empower physicians and patients for a better management of healthcare. While the process is complicated and will take some time, showcased here are three application areas for this flexible platform that combines biomarker content with minimally invasive or non-invasive sampling, such as brush biopsy for oral cancer risk assessment; serum, plasma, and small volumes of blood for the assessment of cardiac risk and wellness; and oral fluid sampling for drugs of abuse testing at the point of need.
Collapse
Affiliation(s)
- Nicolaos J. Christodoulides
- Department of Biomaterials, Bioengineering Institute, New York University College of Dentistry, New York, NY, USA
| | - Michael P. McRae
- Department of Biomaterials, Bioengineering Institute, New York University College of Dentistry, New York, NY, USA
| | | | - Glennon W. Simmons
- Department of Biomaterials, Bioengineering Institute, New York University College of Dentistry, New York, NY, USA
| | - John T. McDevitt
- Department of Biomaterials, Bioengineering Institute, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
18
|
Xu Y, Zhang X, Luan C, Wang H, Chen B, Zhao Y. Hybrid hydrogel photonic barcodes for multiplex detection of tumor markers. Biosens Bioelectron 2017; 87:264-270. [DOI: 10.1016/j.bios.2016.08.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/20/2022]
|
19
|
Choi JR, Yong KW, Tang R, Gong Y, Wen T, Yang H, Li A, Chia YC, Pingguan-Murphy B, Xu F. Lateral Flow Assay Based on Paper-Hydrogel Hybrid Material for Sensitive Point-of-Care Detection of Dengue Virus. Adv Healthc Mater 2017; 6. [PMID: 27860384 DOI: 10.1002/adhm.201600920] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/09/2016] [Indexed: 11/09/2022]
Abstract
Paper-based devices have been broadly used for the point-of-care detection of dengue viral nucleic acids due to their simplicity, cost-effectiveness, and readily observable colorimetric readout. However, their moderate sensitivity and functionality have limited their applications. Despite the above-mentioned advantages, paper substrates are lacking in their ability to control fluid flow, in contrast to the flow control enabled by polymer substrates (e.g., agarose) with readily tunable pore size and porosity. Herein, taking the benefits from both materials, the authors propose a strategy to create a hybrid substrate by incorporating agarose into the test strip to achieve flow control for optimal biomolecule interactions. As compared to the unmodified test strip, this strategy allows sensitive detection of targets with an approximately tenfold signal improvement. Additionally, the authors showcase the potential of functionality improvement by creating multiple test zones for semi-quantification of targets, suggesting that the number of visible test zones is directly proportional to the target concentration. The authors further demonstrate the potential of their proposed strategy for clinical assessment by applying it to their prototype sample-to-result test strip to sensitively and semi-quantitatively detect dengue viral RNA from the clinical blood samples. This proposed strategy holds significant promise for detecting various targets for diverse future applications.
Collapse
Affiliation(s)
- Jane Ru Choi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Kar Wey Yong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Ruihua Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yan Gong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Xi'an Diandi Biotech Company, Xi'an, 710049, P. R. China
| | - Ting Wen
- Xi'an Diandi Biotech Company, Xi'an, 710049, P. R. China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yook Chin Chia
- Department of Primary Care Medicine, University of Malaya Primary Care Research Group, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
20
|
McRae MP, Simmons G, Wong J, McDevitt JT. Programmable Bio-nanochip Platform: A Point-of-Care Biosensor System with the Capacity To Learn. Acc Chem Res 2016; 49:1359-68. [PMID: 27380817 PMCID: PMC6504240 DOI: 10.1021/acs.accounts.6b00112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The combination of point-of-care (POC) medical microdevices and machine learning has the potential transform the practice of medicine. In this area, scalable lab-on-a-chip (LOC) devices have many advantages over standard laboratory methods, including faster analysis, reduced cost, lower power consumption, and higher levels of integration and automation. Despite significant advances in LOC technologies over the years, several remaining obstacles are preventing clinical implementation and market penetration of these novel medical microdevices. Similarly, while machine learning has seen explosive growth in recent years and promises to shift the practice of medicine toward data-intensive and evidence-based decision making, its uptake has been hindered due to the lack of integration between clinical measurements and disease determinations. In this Account, we describe recent developments in the programmable bio-nanochip (p-BNC) system, a biosensor platform with the capacity for learning. The p-BNC is a "platform to digitize biology" in which small quantities of patient sample generate immunofluorescent signal on agarose bead sensors that is optically extracted and converted to antigen concentrations. The platform comprises disposable microfluidic cartridges, a portable analyzer, automated data analysis software, and intuitive mobile health interfaces. The single-use cartridges are fully integrated, self-contained microfluidic devices containing aqueous buffers conveniently embedded for POC use. A novel fluid delivery method was developed to provide accurate and repeatable flow rates via actuation of the cartridge's blister packs. A portable analyzer instrument was designed to integrate fluid delivery, optical detection, image analysis, and user interface, representing a universal system for acquiring, processing, and managing clinical data while overcoming many of the challenges facing the widespread clinical adoption of LOC technologies. We demonstrate the p-BNC's flexibility through the completion of multiplex assays within the single-use disposable cartridges for three clinical applications: prostate cancer, ovarian cancer, and acute myocardial infarction. Toward the goal of creating "sensors that learn", we have developed and describe here the Cardiac ScoreCard, a clinical decision support system for a spectrum of cardiovascular disease. The Cardiac ScoreCard approach comprises a comprehensive biomarker panel and risk factor information in a predictive model capable of assessing early risk and late-stage disease progression for heart attack and heart failure patients. These marker-driven tests have the potential to radically reduce costs, decrease wait times, and introduce new options for patients needing regular health monitoring. Further, these efforts demonstrate the clinical utility of fusing data from information-rich biomarkers and the Internet of Things (IoT) using predictive analytics to generate single-index assessments for wellness/illness status. By promoting disease prevention and personalized wellness management, tools of this nature have the potential to improve health care exponentially.
Collapse
Affiliation(s)
- Michael P. McRae
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Glennon Simmons
- Department of Biomaterials, Bioengineering Institute, New York University College of Dentistry, New York, New York 10010, United States
| | - Jorge Wong
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - John T. McDevitt
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
- Department of Biomaterials, Bioengineering Institute, New York University College of Dentistry, New York, New York 10010, United States
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
21
|
McRae MP, Bozkurt B, Ballantyne CM, Sanchez X, Christodoulides N, Simmons G, Nambi V, Misra A, Miller CS, Ebersole JL, Campbell C, McDevitt JT. Cardiac ScoreCard: A Diagnostic Multivariate Index Assay System for Predicting a Spectrum of Cardiovascular Disease. EXPERT SYSTEMS WITH APPLICATIONS 2016; 54:136-147. [PMID: 31467464 PMCID: PMC6715313 DOI: 10.1016/j.eswa.2016.01.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Clinical decision support systems (CDSSs) have the potential to save lives and reduce unnecessary costs through early detection and frequent monitoring of both traditional risk factors and novel biomarkers for cardiovascular disease (CVD). However, the widespread adoption of CDSSs for the identification of heart diseases has been limited, likely due to the poor interpretability of clinically relevant results and the lack of seamless integration between measurements and disease predictions. In this paper we present the Cardiac ScoreCard-a multivariate index assay system with the potential to assist in the diagnosis and prognosis of a spectrum of CVD. The Cardiac ScoreCard system is based on lasso logistic regression techniques which utilize both patient demographics and novel biomarker data for the prediction of heart failure (HF) and cardiac wellness. Lasso logistic regression models were trained on a merged clinical dataset comprising 579 patients with 6 traditional risk factors and 14 biomarker measurements. The prediction performance of the Cardiac ScoreCard was assessed with 5-fold cross-validation and compared with reference methods. The experimental results reveal that the ScoreCard models improved performance in discriminating disease versus non-case (AUC = 0.8403 and 0.9412 for cardiac wellness and HF, respectively), and the models exhibit good calibration. Clinical insights to the prediction of HF and cardiac wellness are provided in the form of logistic regression coefficients which suggest that augmenting the traditional risk factors with a multimarker panel spanning a diverse cardiovascular pathophysiology provides improved performance over reference methods. Additionally, a framework is provided for seamless integration with biomarker measurements from point-of-care medical microdevices, and a lasso-based feature selection process is described for the down-selection of biomarkers in multimarker panels.
Collapse
Affiliation(s)
| | - Biykem Bozkurt
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
- Section of Cardiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Ximena Sanchez
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Nicolaos Christodoulides
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Glennon Simmons
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Vijay Nambi
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
- Section of Cardiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Craig S. Miller
- Department of Oral Health Practice, Center for Oral Health Research, College of Dentistry University of Kentucky, Lexington, KY, USA
| | - Jeffrey L. Ebersole
- Department of Oral Health Practice, Center for Oral Health Research, College of Dentistry University of Kentucky, Lexington, KY, USA
| | - Charles Campbell
- Department of Cardiology, Erlanger Health System, Chattanooga, TN, USA
| | - John T. McDevitt
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| |
Collapse
|
22
|
McRae MP, Simmons G, McDevitt JT. Challenges and opportunities for translating medical microdevices: insights from the programmable bio-nano-chip. Bioanalysis 2016; 8:905-19. [PMID: 27071710 PMCID: PMC4870725 DOI: 10.4155/bio-2015-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/04/2016] [Indexed: 12/11/2022] Open
Abstract
This perspective highlights the major challenges for the bioanalytical community, in particular the area of lab-on-a-chip sensors, as they relate to point-of-care diagnostics. There is a strong need for general-purpose and universal biosensing platforms that can perform multiplexed and multiclass assays on real-world clinical samples. However, the adoption of novel lab-on-a-chip/microfluidic devices has been slow as several key challenges remain for the translation of these new devices to clinical practice. A pipeline of promising medical microdevice technologies will be made possible by addressing the challenges of integration, failure to compete with cost and performance of existing technologies, requisite for new content, and regulatory approval and clinical adoption.
Collapse
Affiliation(s)
- Michael P McRae
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Glennon Simmons
- Department of Biomaterials, New York University, New York, NY, USA
| | - John T McDevitt
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Biomaterials, New York University, New York, NY, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| |
Collapse
|
23
|
Orrego AH, García C, Mancheño JM, Guisán JM, Lillo MP, López-Gallego F. Two-Photon Fluorescence Anisotropy Imaging to Elucidate the Dynamics and the Stability of Immobilized Proteins. J Phys Chem B 2016; 120:485-91. [DOI: 10.1021/acs.jpcb.5b12385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Alejandro H. Orrego
- Enzymatic
Engineering Group, Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain
| | - Carolina García
- Fluorescence
Molecular Biophysics Group, Instituto Química Física
“Rocasolano”, CSIC, Serrano 119, 28006 Madrid, Spain
| | - José M. Mancheño
- Crystallography
and Structural Biology Group, Instituto Química Física
“Rocasolano”, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Jose M. Guisán
- Enzymatic
Engineering Group, Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain
| | - M. Pilar Lillo
- Fluorescence
Molecular Biophysics Group, Instituto Química Física
“Rocasolano”, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Fernando López-Gallego
- Heterogeneus
Biocatalysis Group, CIC BiomaGUNE, Pase Miramon 182, 20009 San Sebastian-Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
24
|
McRae MP, Simmons GW, Wong J, Shadfan B, Gopalkrishnan S, Christodoulides N, McDevitt JT. Programmable bio-nano-chip system: a flexible point-of-care platform for bioscience and clinical measurements. LAB ON A CHIP 2015; 15:4020-31. [PMID: 26308851 PMCID: PMC4589532 DOI: 10.1039/c5lc00636h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of integrated instrumentation for universal bioassay systems serves as a key goal for the lab-on-a-chip community. The programmable bio-nano-chip (p-BNC) system is a versatile multiplexed and multiclass chemical- and bio-sensing system for bioscience and clinical measurements. The system is comprised of two main components, a disposable cartridge and a portable analyzer. The customizable single-use plastic cartridges, which now can be manufactured in high volumes using injection molding, are designed for analytical performance, ease of use, reproducibility, and low cost. These labcard devices implement high surface area nano-structured biomarker capture elements that enable high performance signaling and are index-matched to real-world biological specimens. This detection modality, along with the convenience of on-chip fluid storage in blisters and self-contained waste, represents a standard process to digitize biological signatures at the point-of-care. A companion portable analyzer prototype has been developed to integrate fluid motivation, optical detection, and automated data analysis, and it serves as the human interface for complete assay automation. In this report, we provide a systems-level perspective of the p-BNC universal biosensing platform with an emphasis on flow control, device integration, and automation. To demonstrate the flexibility of the p-BNC, we distinguish diseased and non-case patients across three significant disease applications: prostate cancer, ovarian cancer, and acute myocardial infarction. Progress towards developing a rapid 7 minute myoglobin assay is presented using the fully automated p-BNC system.
Collapse
Affiliation(s)
| | - Glennon. W. Simmons
- Department of Bioengineering, Rice University, Houston, TX, U.S.A
- Department of Chemistry, Rice University, Houston, TX, U.S.A
| | - Jorge Wong
- Department of Bioengineering, Rice University, Houston, TX, U.S.A
- Department of Chemistry, Rice University, Houston, TX, U.S.A
| | - Basil Shadfan
- Department of Chemistry, Rice University, Houston, TX, U.S.A
| | | | - Nicolaos Christodoulides
- Department of Bioengineering, Rice University, Houston, TX, U.S.A
- Department of Chemistry, Rice University, Houston, TX, U.S.A
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, U.S.A
| | - John T. McDevitt
- Department of Bioengineering, Rice University, Houston, TX, U.S.A
- Department of Chemistry, Rice University, Houston, TX, U.S.A
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, U.S.A
| |
Collapse
|
25
|
Optimizing the biological activity of Fab fragments by controlling their molecular orientation and spatial distribution across porous hydrogels. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Kisley L, Brunetti R, Tauzin LJ, Shuang B, Yi X, Kirkeminde AW, Higgins DA, Weiss S, Landes CF. Characterization of Porous Materials by Fluorescence Correlation Spectroscopy Super-resolution Optical Fluctuation Imaging. ACS NANO 2015; 9:9158-66. [PMID: 26235127 PMCID: PMC10706734 DOI: 10.1021/acsnano.5b03430] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Porous materials such as cellular cytosol, hydrogels, and block copolymers have nanoscale features that determine macroscale properties. Characterizing the structure of nanopores is difficult with current techniques due to imaging, sample preparation, and computational challenges. We produce a super-resolution optical image that simultaneously characterizes the nanometer dimensions of and diffusion dynamics within porous structures by correlating stochastic fluctuations from diffusing fluorescent probes in the pores of the sample, dubbed here as "fluorescence correlation spectroscopy super-resolution optical fluctuation imaging" or "fcsSOFI". Simulations demonstrate that structural features and diffusion properties can be accurately obtained at sub-diffraction-limited resolution. We apply our technique to image agarose hydrogels and aqueous lyotropic liquid crystal gels. The heterogeneous pore resolution is improved by up to a factor of 2, and diffusion coefficients are accurately obtained through our method compared to diffraction-limited fluorescence imaging and single-particle tracking. Moreover, fcsSOFI allows for rapid and high-throughput characterization of porous materials. fcsSOFI could be applied to soft porous environments such hydrogels, polymers, and membranes in addition to hard materials such as zeolites and mesoporous silica.
Collapse
Affiliation(s)
- Lydia Kisley
- Department of Chemistry and Rice University, Houston, Texas 77251, United States
| | - Rachel Brunetti
- Department of Physics, Scripps College, Claremont, California 91711, United States
| | - Lawrence J. Tauzin
- Department of Chemistry and Rice University, Houston, Texas 77251, United States
| | - Bo Shuang
- Department of Chemistry and Rice University, Houston, Texas 77251, United States
| | - Xiyu Yi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Alec W. Kirkeminde
- Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| | - Daniel A. Higgins
- Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Physiology, and University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Christy F. Landes
- Department of Chemistry and Rice University, Houston, Texas 77251, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, United States
| |
Collapse
|
27
|
Kulla E, Chou J, Simmons G, Wong J, McRae MP, Patel R, Floriano PN, Christodoulides N, Leach RJ, Thompson IM, McDevitt JT. Enhancement of performance in porous bead-based microchip sensors: Effects of chip geometry on bio-agent capture. RSC Adv 2015; 5:48194-48206. [PMID: 26097696 PMCID: PMC4470495 DOI: 10.1039/c5ra07910a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Measuring low concentrations of clinically-important biomarkers using porous bead-based lab-on-a-chip (LOC) platforms is critical for the successful implementation of point-of-care (POC) devices. One way to meet this objective is to optimize the geometry of the bead holder, referred to here as a micro-container. In this work, two geometric micro-containers were explored, the inverted pyramid frustum (PF) and the inverted clipped pyramid frustum (CPF). Finite element models of this bead array assay system were developed to optimize the micro-container and bead geometries for increased pressure, to increase analyte capture in porous bead-based fluorescence immunoassays. Custom micro-milled micro-container structures containing an inverted CPF geometry resulted in a 28% reduction in flow-through regions from traditional anisotropically-etched pyramidal geometry derived from Si-111 termination layers. This novel "reduced flow-through" design resulted in a 33% increase in analyte penetration into the bead and twofold increase in fluorescence signal intensity as demonstrated with C-Reactive Protein (CRP) antigen, an important biomarker of inflammation. A consequent twofold decrease in the limit of detection (LOD) and the limit of quantification (LOQ) of a proof-of-concept assay for the free isoform of Prostate-Specific Antigen (free PSA), an important biomarker for prostate cancer detection, is also presented. Furthermore, a 53% decrease in the bead diameter is shown to result in a 160% increase in pressure and 2.5-fold increase in signal, as estimated by COMSOL models and confirmed experimentally by epi-fluorescence microscopy. Such optimizations of the bead micro-container and bead geometries have the potential to significantly reduce the LODs and reagent costs for spatially programmed bead-based assay systems of this type.
Collapse
Affiliation(s)
- Eliona Kulla
- Department of Chemistry, Rice University, Houston, Texas 77005
| | - Jie Chou
- Department of Bioengineering, Rice University, Houston, Texas 77005
| | - Glennon Simmons
- Department of Chemistry, Rice University, Houston, Texas 77005
- Department of Bioengineering, Rice University, Houston, Texas 77005
| | - Jorge Wong
- Department of Chemistry, Rice University, Houston, Texas 77005
- Department of Bioengineering, Rice University, Houston, Texas 77005
| | - Michael P. McRae
- Department of Bioengineering, Rice University, Houston, Texas 77005
| | - Rushi Patel
- Department of Bioengineering, Rice University, Houston, Texas 77005
| | | | - Nicolaos Christodoulides
- Department of Chemistry, Rice University, Houston, Texas 77005
- Department of Bioengineering, Rice University, Houston, Texas 77005
| | - Robin J. Leach
- Urology, University of Texas Health Science Center at San Antonio, Texas 78229
| | - Ian M. Thompson
- Urology, University of Texas Health Science Center at San Antonio, Texas 78229
| | - John T. McDevitt
- Department of Chemistry, Rice University, Houston, Texas 77005
- Department of Bioengineering, Rice University, Houston, Texas 77005
| |
Collapse
|
28
|
McDevitt JT, McRae MP, Simmons GW, Christodoulides N. Programmable bio-nano-chip system: a flexible diagnostic platform that learns. JOURNAL OF BIOSENSORS & BIOELECTRONICS 2015; 6:e137. [PMID: 30918744 PMCID: PMC6432931 DOI: 10.4172/2155-6210.1000e137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- John T McDevitt
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Michael P McRae
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Glennon W Simmons
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Nicolaos Christodoulides
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| |
Collapse
|
29
|
Shadfan BH, Simmons AR, Simmons GW, Ho A, Wong J, Lu KH, Bast RC, McDevitt JT. A multiplexable, microfluidic platform for the rapid quantitation of a biomarker panel for early ovarian cancer detection at the point-of-care. Cancer Prev Res (Phila) 2014; 8:37-48. [PMID: 25388014 DOI: 10.1158/1940-6207.capr-14-0248] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Point-of-care (POC) diagnostic platforms have the potential to enable low-cost, large-scale screening. As no single biomarker is shed by all ovarian cancers, multiplexed biomarker panels promise improved sensitivity and specificity to address the unmet need for early detection of ovarian cancer. We have configured the programmable bio-nano-chip (p-BNC)-a multiplexable, microfluidic, modular platform-to quantify a novel multi-marker panel comprising CA125, HE4, MMP-7, and CA72-4. The p-BNC is a bead-based immunoanalyzer system with a credit-card-sized footprint that integrates automated sample metering, bubble and debris removal, reagent storage and waste disposal, permitting POC analysis. Multiplexed p-BNC immunoassays demonstrated high specificity, low cross-reactivity, low limits of detection suitable for early detection, and a short analysis time of 43 minutes. Day-to-day variability, a critical factor for longitudinally monitoring biomarkers, ranged between 5.4% and 10.5%, well below the biologic variation for all four markers. Biomarker concentrations for 31 late-stage sera correlated well (R(2) = 0.71 to 0.93 for various biomarkers) with values obtained on the Luminex platform. In a 31 patient cohort encompassing early- and late-stage ovarian cancers along with benign and healthy controls, the multiplexed p-BNC panel was able to distinguish cases from controls with 68.7% sensitivity at 80% specificity. Utility for longitudinal biomarker monitoring was demonstrated with prediagnostic plasma from 2 cases and 4 controls. Taken together, the p-BNC shows strong promise as a diagnostic tool for large-scale screening that takes advantage of faster results and lower costs while leveraging possible improvement in sensitivity and specificity from biomarker panels.
Collapse
Affiliation(s)
| | - Archana R Simmons
- Department of Chemistry, Rice University, Houston, Texas. Department of Bioengineering, Rice University, Houston, Texas
| | - Glennon W Simmons
- Department of Chemistry, Rice University, Houston, Texas. Department of Bioengineering, Rice University, Houston, Texas
| | - Andy Ho
- Department of Chemistry, Rice University, Houston, Texas. Department of Bioengineering, Rice University, Houston, Texas
| | - Jorge Wong
- Department of Chemistry, Rice University, Houston, Texas. Department of Bioengineering, Rice University, Houston, Texas
| | - Karen H Lu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John T McDevitt
- Department of Chemistry, Rice University, Houston, Texas. Department of Bioengineering, Rice University, Houston, Texas.
| |
Collapse
|
30
|
Zhang W, Chen Y, Shao Y, Fan LJ. Facile preparation of polydiacetylene-based uniform porous fluorescent microspheres for potential immunoassay applications. J Mater Chem B 2014; 2:5249-5255. [DOI: 10.1039/c4tb00561a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent microspheres are prepared by loading PDA onto the substrate microspheresviaa self-assembled vesicle precursor pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Yun Chen
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Ya Shao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Li-Juan Fan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
31
|
Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS. Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 2013; 65:1933-50. [PMID: 23906934 DOI: 10.1016/j.addr.2013.07.015] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 01/11/2023]
Abstract
Biosensors are important tools in biomedical research. Moreover, they are becoming an essential part of modern healthcare. In the future, biosensor development will become even more crucial due to the demand for personalized-medicine, point-of care devices and cheaper diagnostic tools. Substantial advances in sensor technology are often fueled by the advent of new materials. Therefore, nanomaterials have motivated a large body of research and such materials have been implemented into biosensor devices. Among these new materials carbon nanotubes (CNTs) are especially promising building blocks for biosensors due to their unique electronic and optical properties. Carbon nanotubes are rolled-up cylinders of carbon monolayers (graphene). They can be chemically modified in such a way that biologically relevant molecules can be detected with high sensitivity and selectivity. In this review article we will discuss how carbon nanotubes can be used to create biosensors. We review the latest advancements of optical carbon nanotube based biosensors with a special focus on near-infrared (NIR)-fluorescence, Raman-scattering and fluorescence quenching.
Collapse
Affiliation(s)
- Sebastian Kruss
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | | | | | | | | | |
Collapse
|
32
|
Rennerfeldt DA, Renth AN, Talata Z, Gehrke SH, Detamore MS. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering. Biomaterials 2013; 34:8241-57. [PMID: 23932504 PMCID: PMC3773240 DOI: 10.1016/j.biomaterials.2013.07.052] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
Hydrogels are attractive for tissue engineering applications due to their incredible versatility, but they can be limited in cartilage tissue engineering applications due to inadequate mechanical performance. In an effort to address this limitation, our team previously reported the drastic improvement in the mechanical performance of interpenetrating networks (IPNs) of poly(ethylene glycol) diacrylate (PEG-DA) and agarose relative to pure PEG-DA and agarose networks. The goal of the current study was specifically to determine the relative importance of PEG-DA concentration, agarose concentration, and PEG-DA molecular weight in controlling mechanical performance, swelling characteristics, and network parameters. IPNs consistently had compressive and shear moduli greater than the additive sum of either single network when compared to pure PEG-DA gels with a similar PEG-DA content. IPNs withstood a maximum stress of up to 4.0 MPa in unconfined compression, with increased PEG-DA molecular weight being the greatest contributing factor to improved failure properties. However, aside from failure properties, PEG-DA concentration was the most influential factor for the large majority of properties. Increasing the agarose and PEG-DA concentrations as well as the PEG-DA molecular weight of agarose/PEG-DA IPNs and pure PEG-DA gels improved moduli and maximum stresses by as much as an order of magnitude or greater compared to pure PEG-DA gels in our previous studies. Although the viability of encapsulated chondrocytes was not significantly affected by IPN formulation, glycosaminoglycan (GAG) content was significantly influenced, with a 12-fold increase over a three-week period in gels with a lower PEG-DA concentration. These results suggest that mechanical performance of IPNs may be tuned with partial but not complete independence from biological performance of encapsulated cells.
Collapse
Affiliation(s)
- Deena A Rennerfeldt
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | |
Collapse
|
33
|
Hitzbleck M, Delamarche E. Reagents in microfluidics: an 'in' and 'out' challenge. Chem Soc Rev 2013; 42:8494-516. [PMID: 23925517 DOI: 10.1039/c3cs60118h] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microfluidic devices are excellent at downscaling chemical and biochemical reactions and thereby can make reactions faster, better and more efficient. It is therefore understandable that we are seeing these devices being developed and used for many applications and research areas. However, microfluidic devices are more complex than test tubes or microtitre plates and the integration of reagents into them is a real challenge. This review looks at state-of-the-art methods and strategies for integrating various classes of reagents inside microfluidics and similarly surveys how reagents can be released inside microfluidics. The number of methods used for integrating and releasing reagents is surprisingly large and involves reagents in dry and liquid forms, directly-integrated reagents or reagents linked to carriers, as well as active, passive and hybrid release methods. We also made a brief excursion into the field of drug release and delivery. With this review, we hope to provide a large number of examples of integrating and releasing reagents that can be used by developers and users of microfluidics for their specific needs.
Collapse
|
34
|
Barbosa O, Torres R, Ortiz C, Berenguer-Murcia Á, Rodrigues RC, Fernandez-Lafuente R. Heterofunctional Supports in Enzyme Immobilization: From Traditional Immobilization Protocols to Opportunities in Tuning Enzyme Properties. Biomacromolecules 2013; 14:2433-62. [DOI: 10.1021/bm400762h] [Citation(s) in RCA: 356] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Oveimar Barbosa
- Escuela de Química, Grupo
de investigación en Bioquímica y Microbiología
(GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Rodrigo Torres
- Escuela de Química, Grupo
de investigación en Bioquímica y Microbiología
(GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Claudia Ortiz
- Escuela de Bacteriología
y Laboratorio Clínico, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales,
Departamento de Química Inorgánica, Universidad de Alicante, Campus de San Vicente del Raspeig, Ap.
99 - 03080 Alicante, Spain
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology
Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves,
9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC, Campus UAM-CSIC,
Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
35
|
Chou J, Li LE, Kulla E, Christodoulides N, Floriano PN, McDevitt JT. Effects of sample delivery on analyte capture in porous bead sensors. LAB ON A CHIP 2012; 12:5249-56. [PMID: 23117481 PMCID: PMC3541674 DOI: 10.1039/c2lc40752c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sample delivery is a crucial aspect of point-of-care applications where sample volumes need to be low and assay times short, while providing high analytical and clinical sensitivity. In this paper, we explore the influence of the factors surrounding sample delivery on analyte capture in an immunoassay-based sensor array manifold of porous beads resting in individual wells. We model using computational fluid dynamics and a flow-through device containing beads sensitized specifically to C-reactive protein (CRP) to explore the effects of volume of sample, rate of sample delivery, and use of recirculation vs. unilateral delivery on the effectiveness of the capture of CRP on and within the porous bead sensor. Rate of sample delivery lends to the development of a time-dependent, shrinking depletion region around the bead exterior. Our findings reveal that at significantly high rates of delivery, unique to porous bead substrates, capture at the rim of the bead is reaction-limited, while capture in the interior of the bead is transport-limited. While the fluorescence signal results from the aggregate of captured material throughout the bead, multiple kinetic regimes exist within the bead. Further, under constant pressure conditions dictated by the array architecture, we reveal the existence of an optimal flow rate that generates the highest signal, under point-of-care constraints of limited-volume and limited-time. When high sensitivity is needed, recirculation can be implemented to overcome the analyte capture limitations due to volume and time constraints. Computational simulations agree with experimental results performed under similar conditions.
Collapse
Affiliation(s)
- Jie Chou
- Department of Bioengineering, Rice University, Houston, Texas77005, USA
| | | | | | | | | | | |
Collapse
|
36
|
A protein microarray for the rapid screening of patients suspected of infection with various food-borne helminthiases. PLoS Negl Trop Dis 2012; 6:e1899. [PMID: 23209851 PMCID: PMC3510079 DOI: 10.1371/journal.pntd.0001899] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 09/26/2012] [Indexed: 11/19/2022] Open
Abstract
Background Food-borne helminthiases (FBHs) have become increasingly important due to frequent occurrence and worldwide distribution. There is increasing demand for developing more sensitive, high-throughput techniques for the simultaneous detection of multiple parasitic diseases due to limitations in differential clinical diagnosis of FBHs with similar symptoms. These infections are difficult to diagnose correctly by conventional diagnostic approaches including serological approaches. Methodology/Principal Findings In this study, antigens obtained from 5 parasite species, namely Cysticercus cellulosae, Angiostrongylus cantonensis, Paragonimus westermani, Trichinella spiralis and Spirometra sp., were semi-purified after immunoblotting. Sera from 365 human cases of helminthiasis and 80 healthy individuals were assayed with semi-purified antigens by both a protein microarray and the enzyme-linked immunosorbent assay (ELISA). The sensitivity, specificity and simplicity of each test for the end-user were evaluated. The specificity of the tests ranged from 97.0% (95% confidence interval (CI): 95.3–98.7%) to 100.0% (95% CI: 100.0%) in the protein microarray and from 97.7% (95% CI: 96.2–99.2%) to 100.0% (95% CI: 100.0%) in ELISA. The sensitivity varied from 85.7% (95% CI: 75.1–96.3%) to 92.1% (95% CI: 83.5–100.0%) in the protein microarray, while the corresponding values for ELISA were 82.0% (95% CI: 71.4–92.6%) to 92.1% (95% CI: 83.5–100.0%). Furthermore, the Youden index spanned from 0.83 to 0.92 in the protein microarray and from 0.80 to 0.92 in ELISA. For each parasite, the Youden index from the protein microarray was often slightly higher than the one from ELISA even though the same antigen was used. Conclusions/Significance The protein microarray platform is a convenient, versatile, high-throughput method that can easily be adapted to massive FBH screening. Food-borne helminthiases (FBHs) have caused significant problems in public health and also posed socio-economic concerns. Common FBHs, such as cysticercosis, trichinellosis, paragonimiasis, sparganosis and angiostrongyliasis, have a worldwide distribution with high morbidity and even death. The objective of the present study was to develop and test a rapid assay suitable for large-scale screening for FBHs that would also allow differential diagnosis between the various parasite species. We tested archived, well-characterized serum specimens and prioritized tests for future evaluation in rapid and simultaneous screening of five different FBHs, i.e. cysticercosis, trichinellosis, paragonimiasis, sparganosis and angiostrongyliasis. This was done with a multiplex protein microarray assay equipped with semi-purified antigens capable of detecting disease-specific antibodies. Results showed that the protein microarray developed displayed a good specificity, ranging from 97.0% to 100.0%, and a sensitivity, ranging from 85.7% to 92.1%, with a Youden index variation from 0.83 to 0.92. It was concluded that the protein microarray provides a sensitive, high-throughput technique for the simultaneous detection of multiple FBHs overcoming the limitations of conventional diagnostics.
Collapse
|
37
|
Chou J, Wong J, Christodoulides N, Floriano PN, Sanchez X, McDevitt J. Porous bead-based diagnostic platforms: bridging the gaps in healthcare. SENSORS (BASEL, SWITZERLAND) 2012; 12:15467-99. [PMID: 23202219 PMCID: PMC3522972 DOI: 10.3390/s121115467] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/25/2012] [Accepted: 11/01/2012] [Indexed: 01/11/2023]
Abstract
Advances in lab-on-a-chip systems have strong potential for multiplexed detection of a wide range of analytes with reduced sample and reagent volume; lower costs and shorter analysis times. The completion of high-fidelity multiplexed and multiclass assays remains a challenge for the medical microdevice field; as it struggles to achieve and expand upon at the point-of-care the quality of results that are achieved now routinely in remote laboratory settings. This review article serves to explore for the first time the key intersection of multiplexed bead-based detection systems with integrated microfluidic structures alongside porous capture elements together with biomarker validation studies. These strategically important elements are evaluated here in the context of platform generation as suitable for near-patient testing. Essential issues related to the scalability of these modular sensor ensembles are explored as are attempts to move such multiplexed and multiclass platforms into large-scale clinical trials. Recent efforts in these bead sensors have shown advantages over planar microarrays in terms of their capacity to generate multiplexed test results with shorter analysis times. Through high surface-to-volume ratios and encoding capabilities; porous bead-based ensembles; when combined with microfluidic elements; allow for high-throughput testing for enzymatic assays; general chemistries; protein; antibody and oligonucleotide applications.
Collapse
Affiliation(s)
- Jie Chou
- Department of Bioengineering, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA; E-Mails: (J.C.); (N.C.); (P.N.F.); (X.S.)
| | - Jorge Wong
- Department of Chemistry, University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA; E-Mail:
| | - Nicolaos Christodoulides
- Department of Bioengineering, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA; E-Mails: (J.C.); (N.C.); (P.N.F.); (X.S.)
- Department of Chemistry, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA
| | - Pierre N. Floriano
- Department of Bioengineering, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA; E-Mails: (J.C.); (N.C.); (P.N.F.); (X.S.)
- Department of Chemistry, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA
| | - Ximena Sanchez
- Department of Bioengineering, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA; E-Mails: (J.C.); (N.C.); (P.N.F.); (X.S.)
- Department of Chemistry, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA
| | - John McDevitt
- Department of Bioengineering, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA; E-Mails: (J.C.); (N.C.); (P.N.F.); (X.S.)
- Department of Chemistry, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA
| |
Collapse
|
38
|
Batalla P, Bolívar JM, Lopez-Gallego F, Guisan JM. Oriented covalent immobilization of antibodies onto heterofunctional agarose supports: A highly efficient immuno-affinity chromatography platform. J Chromatogr A 2012; 1262:56-63. [DOI: 10.1016/j.chroma.2012.08.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/14/2012] [Accepted: 08/19/2012] [Indexed: 11/30/2022]
|
39
|
Abstract
Over the past decade, there has been a growth of interest in the translation of microfluidic systems into real-world clinical practice, especially for use in point-of-care or near patient settings. While initial fabrication advances in microfluidics involved mainly the etching of silicon and glass, the economics of scaling of these materials is not amendable for point-of-care usage where single-test applications force cost considerations to be kept low and throughput high. As such, materials base more consistent with point-of-care needs is required. In this manuscript, the fabrication of a hot embossed, through-hole low-density polyethylene ensembles derived from an anisotropically etched silicon wafer is discussed. This semi-opaque polymer that can be easily sterilized and recycled provides low background noise for fluorescence measurements and yields more affordable cost than other thermoplastics commonly used for microfluidic applications such as cyclic olefin copolymer (COC). To fabrication through-hole microchips from this alternative material for microfluidics, a fabrication technique that uses a high-temperature, high-pressure resistant mold is described. This aluminum-based epoxy mold, serving as the positive master mold for embossing, is casted over etched arrays of pyramidal pits in a silicon wafer. Methods of surface treatment of the wafer prior to casting and PDMS casting of the epoxy are discussed to preserve the silicon wafer for future use. Changes in the thickness of polyethylene are observed for varying embossing temperatures. The methodology described herein can quickly fabricate 20 disposable, single use chips in less than 30 min with the ability to scale up 4 times by using multiple molds simultaneously. When coupled as a platform supporting porous bead sensors, as in the recently developed Programmable Bio-Nano-Chip, this bead chip system can achieve limits of detection, for the cardiac biomarker C-reactive protein, of 0.3 ng/mL, thereby demonstrating that the approach is compatible with high performance, real-world clinical measurements in the context of point-of-care testing.
Collapse
|
40
|
Raamanathan A, Simmons GW, Christodoulides N, Floriano PN, Furmaga WB, Redding SW, Lu KH, Bast RC, McDevitt JT. Programmable bio-nano-chip systems for serum CA125 quantification: toward ovarian cancer diagnostics at the point-of-care. Cancer Prev Res (Phila) 2012; 5:706-16. [PMID: 22490510 DOI: 10.1158/1940-6207.capr-11-0508] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Point-of-care (POC) implementation of early detection and screening methodologies for ovarian cancer may enable improved survival rates through early intervention. Current laboratory-confined immunoanalyzers have long turnaround times and are often incompatible with multiplexing and POC implementation. Rapid, sensitive, and multiplexable POC diagnostic platforms compatible with promising early detection approaches for ovarian cancer are needed. To this end, we report the adaptation of the programmable bio-nano-chip (p-BNC), an integrated, microfluidic, and modular (programmable) platform for CA125 serum quantitation, a biomarker prominently implicated in multimodal and multimarker screening approaches. In the p-BNCs, CA125 from diseased sera (Bio) is sequestered and assessed with a fluorescence-based sandwich immunoassay, completed in the nano-nets (Nano) of sensitized agarose microbeads localized in individually addressable wells (Chip), housed in a microfluidic module, capable of integrating multiple sample, reagent and biowaste processing, and handling steps. Antibody pairs that bind to distinct epitopes on CA125 were screened. To permit efficient biomarker sequestration in a three-dimensional microfluidic environment, the p-BNC operating variables (incubation times, flow rates, and reagent concentrations) were tuned to deliver optimal analytical performance under 45 minutes. With short analysis times, competitive analytical performance (inter- and intra-assay precision of 1.2% and 1.9% and limit of detection of 1.0 U/mL) was achieved on this minisensor ensemble. Furthermore, validation with sera of patients with ovarian cancer (n = 20) showed excellent correlation (R(2) = 0.97) with gold-standard ELISA. Building on the integration capabilities of novel microfluidic systems programmed for ovarian cancer, the rapid, precise, and sensitive miniaturized p-BNC system shows strong promise for ovarian cancer diagnostics.
Collapse
Affiliation(s)
- Archana Raamanathan
- Departments of Bioengineering and Chemistry, Rice University, Houston, TX 77005, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fu E, Yager P, Floriano PN, Christodoulides N, McDevitt JT. Perspective on diagnostics for global health. IEEE Pulse 2012; 2:40-50. [PMID: 22147068 DOI: 10.1109/mpul.2011.942766] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Elain Fu
- Department of Bioengineering, University of Washington, Washington, USA.
| | | | | | | | | |
Collapse
|
42
|
López-Gallego F, Acebrón I, Mancheño JM, Raja S, Lillo MP, Guisán Seijas JM. Directed, strong, and reversible immobilization of proteins tagged with a β-trefoil lectin domain: a simple method to immobilize biomolecules on plain agarose matrixes. Bioconjug Chem 2012; 23:565-73. [PMID: 22372708 DOI: 10.1021/bc2006237] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly stable lipase from Geobacillus thermocatenolatus (BTL2) and the enhanced green fluorescent protein from Aquorea victoria (EGFP) were recombinantly produced N-terminally tagged to the lectin domain of the hemolytic pore-forming toxin LSLa from the mushroom Laetiporus sulphureus . Such a domain (LSL(150)), recently described as a novel fusion tag, is based on a β-trefoil scaffold with two operative binding sites for galactose or galactose-containing derivatives. The fusion proteins herein analyzed have enabled us to characterize the binding mode of LSL(150) to polymeric and solid substrates such as agarose beads. The lectin-fusion proteins are able to be quantitatively bound to both cross-linked and non-cross-linked agarose matrixes in a very rapid manner, resulting in a surprisingly dynamic protein distribution inside the porous beads that evolves from heterogeneous to homogeneous along the postimmobilization time. Such dynamic distribution can be related to the reversible nature of the LSL(150)-agarose interaction. Furthermore, this latter interaction is temperature dependent since it is 4-fold stronger when the immobilization takes place at 25 °C than when it does at 4 °C. The strongest lectin-agarose interaction is also quite stable under a survey of different conditions such as high temperatures (up to 60 °C) or high organic solvent concentrations (up to 60% of acetonitrile). Notably, the use of cross-linked agarose would endow the system with more robustness due to its better mechanical properties compared to the noncross-linked one. The stability of the LSL(150)-agarose interaction would prevent protein leaching during the operation process unless high pH media are used. In summary, we believe that the LSL(150) lectin domain exhibits interesting structural features as an immobilization domain that makes it suitable to reversibly immobilize industrially relevant enzymes in very simple carriers as agarose.
Collapse
Affiliation(s)
- Fernando López-Gallego
- Departamento de Biocatálisis, Instituto de Catálisis, CSIC, Campus UAM, Cantoblanco 28049, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Chou J, Lennart A, Wong J, Ali MF, Floriano PN, Christodoulides N, Camp J, McDevitt JT. Modeling analyte transport and capture in porous bead sensors. Anal Chem 2012; 84:2569-75. [PMID: 22250703 DOI: 10.1021/ac2022822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Porous agarose microbeads, with high surface to volume ratios and high binding densities, are attracting attention as highly sensitive, affordable sensor elements for a variety of high performance bioassays. While such polymer microspheres have been extensively studied and reported on previously and are now moving into real-world clinical practice, very little work has been completed to date to model the convection, diffusion, and binding kinetics of soluble reagents captured within such fibrous networks. Here, we report the development of a three-dimensional computational model and provide the initial evidence for its agreement with experimental outcomes derived from the capture and detection of representative protein and genetic biomolecules in 290 μm porous beads. We compare this model to antibody-mediated capture of C-reactive protein and bovine serum albumin, along with hybridization of oligonucleotide sequences to DNA probes. These results suggest that, due to the porous interior of the agarose bead, internal analyte transport is both diffusion and convection based, and regardless of the nature of analyte, the bead interiors reveal an interesting trickle of convection-driven internal flow. On the basis of this model, the internal to external flow rate ratio is found to be in the range of 1:170 to 1:3100 for beads with agarose concentration ranging from 0.5% to 8% for the sensor ensembles here studied. Further, both model and experimental evidence suggest that binding kinetics strongly affect analyte distribution of captured reagents within the beads. These findings reveal that high association constants create a steep moving boundary in which unbound analytes are held back at the periphery of the bead sensor. Low association constants create a more shallow moving boundary in which unbound analytes diffuse further into the bead before binding. These models agree with experimental evidence and thus serve as a new tool set for the study of bioagent transport processes within a new class of medical microdevices.
Collapse
Affiliation(s)
- Jie Chou
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Jungnickel H, Luch A. A personalized life: biomarker monitoring from cradle to grave. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 101:471-98. [PMID: 22945580 DOI: 10.1007/978-3-7643-8340-4_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Considering the holy grail of future medical treatment being personalized medicines, biomarker research will become more and more the focus for attention not only to develop new medical treatment regimes, based on changes in biomarker patterns, but also for nutritional advice to guarantee a lifelong optimized health condition. The current review gives an outline of how personalized medicine can become established for actual medical treatment using new biomarker concepts. Starting from the development of biomarker research using mainly immunological techniques, the review gives an overview about biomarkers of prediction evolved and focuses on new methodology for the identification of biomarkers using hyphenated analytical techniques like metabolomics and lipidomics. The actual use of multivariate statistical methods in combination with metabolomics and lipidomics is discussed not only for medical treatment but also for precautionary risk identification in human biomonitoring studies.
Collapse
Affiliation(s)
- Harald Jungnickel
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Gemany,
| | | |
Collapse
|
45
|
Liu J, Yang X, Wang K, Wang Q, Ji H, Wu C, Li J, He X, Tang J, Huang J. Combining physical embedding and covalent bonding for stable encapsulation of quantum dots into agarose hydrogels. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c1jm13090k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Modulation of the distribution of small proteins within porous matrixes by smart-control of the immobilization rate. J Biotechnol 2011; 155:412-20. [DOI: 10.1016/j.jbiotec.2011.07.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/04/2011] [Accepted: 07/28/2011] [Indexed: 11/23/2022]
|
47
|
Du N, Chou J, Kulla E, Floriano PN, Christodoulides N, McDevitt JT. A disposable bio-nano-chip using agarose beads for high performance immunoassays. Biosens Bioelectron 2011; 28:251-6. [PMID: 21852104 DOI: 10.1016/j.bios.2011.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022]
Abstract
This article reports on the fabrication of a disposable bio-nano-chip (BNC), a microfluidic device composed of polydimethylsiloxane (PDMS) and thiolene-based optical epoxy which is both cost-effective and suitable for high performance immunoassays. A novel room temperature (RT) bonding technique was utilized so as to achieve irreversible covalent bonding between PDMS and thiolene-based epoxy layers, while at the same time being compatible with the insertion of agarose bead sensors, selectively arranged in an array of pyramidal microcavities replicated in the thiolene thin film layer. In the sealed device, the bead-supporting epoxy film is sandwiched between two PDMS layers comprising of fluidic injection and drain channels. The agarose bead sensors used in the device are sensitized with anti-C-reactive protein (CRP) antibody, and a fluorescent sandwich-type immunoassay was run to characterize the performance of this device. Computational fluid dynamics (CFD) was used based on the device specifications to model the bead penetration. Experimental data revealed analyte penetration of the immunocomplex to 100 μm into the 280 μm diameter agarose beads, which correlated well with the simulation. A dose-response curve was obtained and the linear dynamic range of the assay was established over 1 ng/mL to 50 ng/mL with a limit of detection less than 1 ng/mL.
Collapse
Affiliation(s)
- Nan Du
- Rice Quantum Institute, Rice University, Houston, TX 77005, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
In recent years, there has been a growing interest in using porous microbeads such as agarose beads as solid supports to bind target molecules from complex fluid samples. Porous beads have large surface area to volume ratios and high receptor concentrations, and they facilitate relatively high sensitivity detection and multiplexing. Unfortunately, to take full advantage of the porous beads' attributes, long incubation times are needed due to the relatively slow mass transfer of target molecules from the exterior solution into the beads' interior. To accelerate the mass transfer process, we propose a novel assay in which functionalized porous beads are periodically compressed and expanded. Preliminary experiments were carried out to compare the performance of the pulsating beads with that of conventional, nonpulsating beads. These experiments indicate that the pulsating beads significantly accelerate binding rates with minimal increase in nonspecific binding. Thus, pulsing has the potential of significantly reducing assay time.
Collapse
Affiliation(s)
- Jason A. Thompson
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315, USA
| | - Haim H. Bau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315, USA
| |
Collapse
|