1
|
Asadi Tokmedash M, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering multifunctional surface topography to regulate multiple biological responses. Biomaterials 2025; 319:123136. [PMID: 39978049 PMCID: PMC11893264 DOI: 10.1016/j.biomaterials.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Surface topography or curvature plays a crucial role in regulating cell behavior, influencing processes such as adhesion, proliferation, and gene expression. Recent advancements in nano- and micro-fabrication techniques have enabled the development of biomimetic systems that mimic native extracellular matrix (ECM) structures, providing new insights into cell-adhesion mechanisms, mechanotransduction, and cell-environment interactions. This review examines the diverse applications of engineered topographies across multiple domains, including antibacterial surfaces, immunomodulatory devices, tissue engineering scaffolds, and cancer therapies. It highlights how nanoscale features like nanopillars and nanospikes exhibit bactericidal properties, while many microscale patterns can direct stem cell differentiation and modulate immune cell responses. Furthermore, we discuss the interdisciplinary use of topography for combined applications, such as the simultaneous regulation of immune and tissue cells in 2D and 3D environments. Despite significant advances, key knowledge gaps remain, particularly regarding the effects of topographical cues on multicellular interactions and dynamic 3D contexts. This review summarizes current fabrication methods, explores specific and interdisciplinary applications, and proposes future research directions to enhance the design and utility of topographically patterned biomaterials in clinical and experimental settings.
Collapse
Affiliation(s)
| | - Changheon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay P Chavda
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adrian Li
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob Robins
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jouha Min
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Karimian T, Lanzerstorfer P, Weghuber J. Soft lithography-based biomolecule patterning techniques and their applications in subcellular protein interaction analysis. Mater Today Bio 2025; 32:101672. [PMID: 40177382 PMCID: PMC11964549 DOI: 10.1016/j.mtbio.2025.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 04/05/2025] Open
Abstract
Soft lithography-based contact printing techniques have evolved into versatile methods for creating micro- and nanoscale features of biomolecules on solid substrates. In this review we present the advances in soft lithography for biomolecule deposition and its applications in subcellular protein-protein interaction (PPI) analysis. We discuss various soft lithography techniques, including micro-contact printing (μCP), nano-contact printing (nCP), capillary nanostamping, and polymer-pen-lithography (PPL) and focus on their application in biomolecule patterning on diverse substrates. We then address related challenges and advancements, including substrate selection, surface activation methods, and stamp development. The specific advantages, limitations, and potential solutions for printing various inks and biomolecules are highlighted. Furthermore, recent advances in soft lithography-based biomolecule patterning for subcellular protein interaction analysis are emphasized, demonstrating the importance of these techniques for incorporating complex cellular events into PPI readout modalities and established protein deposition strategies. Finally, an overview of future technologies and enhanced applications is provided.
Collapse
Affiliation(s)
- Tina Karimian
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstrasse 23, 4600, Wels, Austria
| | - Peter Lanzerstorfer
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstrasse 23, 4600, Wels, Austria
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstrasse 23, 4600, Wels, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Stelzhamerstrasse 23, 3430, Tulln, Austria
| |
Collapse
|
3
|
Xia S, Lu Q, Fan C, Zhu S, Wang S, Wang H, Pan Y, Lin Y. Using a Functional Wool Keratin Photoresist to Build Iridescent and Fluorescent 3D Micro-Pattern for Dual-Mode Optical Anti-Counterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502166. [PMID: 40331493 DOI: 10.1002/smll.202502166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/22/2025] [Indexed: 05/08/2025]
Abstract
The construction of bio-nanostructures plays a critical role in the advancement of applications across bioelectronics, bio-optical devices, and biomedicine. Among various fabrication techniques, soft lithography emerges as an efficient and scalable method for producing high-quality intricate surface micropatterns. Herein, a mild and aqueous approach is developed to endow biocompatible wool keratin (WK) with photoresponsiveness; and utilize the gold nanoclusters (AuNCs) incorporated functional bio-photoresist to build iridescent and fluorescent micrometer-scale patterns for dual-mode optical anti-counterfeiting. Specifically, the chemical modification of WK is achieved by using glycidyl methacrylate under mild conditions. And then, the modified WK can function as a green bio-photoresist, which can be cross-linked via UV light-initiated radical polymerization. By combining soft lithography, both positive and negative 3D WK micro-patterns with stability, biocompatibility, and controlled degradability can be facilely fabricated. Notably, the obtained periodic microstructures exhibit typical iridescent behavior with an excellent diffraction efficiency. Interestingly, by using WK as both a reductant and a stabilizer, the AuNCs functional WK resist with significant fluorescence response can be in situ generated. More importantly, through the skillful combination of iridescent micro-patterns and fluorescence, the WK/AuNCs-based hybrid micro-patterns can be further used for dual-mode optical anti-counterfeiting, which can significantly enhance information storage and encryption security.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Qinghong Lu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Chaoyu Fan
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Shuihong Zhu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Sen Wang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Hanqi Wang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Yimin Pan
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
4
|
Ryu J, Jo JS, Choi JH, Kim DY, Kim J, Park DH, Jang JW. Aluminum Hydroxide Nano- and Microstructures Fabricated Using Scanning Probe Lithography with KOH Ink. ACS OMEGA 2023; 8:10439-10448. [PMID: 36969412 PMCID: PMC10034775 DOI: 10.1021/acsomega.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Using scanning probe lithography (SPL) with KOH ink, this study fabricates aluminum hydroxide (Al(OH)3) nano- and microfeatures on a gold (Au) film that has been deposited on an aluminum (Al) layer. Hydroxyl ions (OH-) from the KOH ink loaded onto the Au film can react with the underlying Al layer to form Al(OH)3 structures due to the decrease in the pH of the reacting solution.1 In this process, Al(OH)3 solidification is governed by the pH of the KOH ink solution, which is affected by its volume. Suitably small volumes (down to hundreds of attoliters) of the KOH ink solution can be applied to the substrate surface using dip-pen nanolithography (DPN) and polymer-pen lithography (PPL). Using DPN and PPL printing with the solid (i.e., gel) and liquid phases of KOH ink, sub-micron- (minimum ≈300 nm) and micron-sized (≥4 μm) Al(OH)3 features can be obtained, respectively. The fabrication of Al(OH)3 structures using the proposed pH-dependent solidification process can be achieved with relatively small volumes in ambient conditions without requiring a previously reported molding process.1,2.
Collapse
Affiliation(s)
- Jehyeok Ryu
- Department
of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Jeong-Sik Jo
- Division
of Physics and Semiconductor Science, Dongguk
University, Seoul 04620, Republic
of Korea
| | - Jin-Hyun Choi
- Department
of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Deuk Young Kim
- Division
of Physics and Semiconductor Science, Dongguk
University, Seoul 04620, Republic
of Korea
- Quantum-Functional
Semiconductor Research Center, Dongguk University, Seoul 04620, Republic of Korea
| | - Jiyoun Kim
- Department
of Chemical Engineering, Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dong Hyuk Park
- Department
of Chemical Engineering, Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jae-Won Jang
- Division
of Physics and Semiconductor Science, Dongguk
University, Seoul 04620, Republic
of Korea
- Quantum-Functional
Semiconductor Research Center, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
5
|
Jiao K, Becerra-Mora N, Russell B, Migone A, Gemeinhardt ME, Goodson BM, Kohli P. Simultaneous Writing and Erasing Using Probe Lithography Synchronized Erasing and Deposition (PLiSED). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12630-12643. [PMID: 36201686 DOI: 10.1021/acs.langmuir.2c02096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Simultaneous writing and erasing of two and three molecules in one single step at the microscale using Polymeric Lithography Editor (PLE) probes is demonstrated. Simultaneous writing and erasing of three molecules was accomplished by rastering a nanoporous probe that was loaded with rhodamine B and fluorescein over a quinine-coated glass substrate. The solvated quinine molecules were erased and transported into the probe matrix, whereas both rhodamine and fluorescein molecules were simultaneously deposited and aligned with the path of the erased quinine on the substrate. The simultaneous writing and erasing of molecules is referred to as PLiSED. The writing and erasing speed can be easily tuned by adjusting the probe speed to as large as 10,000 μm2/s. The microscale patterns on the orders of square millimeter area were fabricated by erasing fluorescein with an efficiency (ηe) > 95% while simultaneously depositing rhodamine molecules at the erased spots. The roles of the probe porosity, transport medium, and kinetics of solvation for editing were also investigated─the presence of a transport medium at the probe-substrate interface is required for the transport of the molecules into and out of the probe. The physical and mechanical properties of the polymeric probes influenced molecular editing. Young's modulus values of the hydrated hydrogels composed of varying monomer/cross-linker ratios were estimated using atomic force microscopy. Probes with the highest observed erasing capacity were used for further experiments to investigate the effects of relative humidity and erasing time on editing. Careful control over experimental conditions provided high-quality editing of microscale patterns at high editing speed. Combining erasing and deposition of multiple molecules in one single step offers a unique opportunity to significantly improve the efficiency and the accuracy of lithographic editing at the microscale. PLiSED enables rapid on-site lithographic rectification and has considerable application values in high-quality lithography and solid surface modification.
Collapse
Affiliation(s)
- Kexin Jiao
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Nathalie Becerra-Mora
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Brice Russell
- School of Physics and Applied Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Aldo Migone
- School of Physics and Applied Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Max E Gemeinhardt
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
- Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Punit Kohli
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| |
Collapse
|
6
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Dip-Pen Nanolithography(DPN): from Micro/Nano-patterns to Biosensing. Chem Res Chin Univ 2021; 37:846-854. [PMID: 34376961 PMCID: PMC8339700 DOI: 10.1007/s40242-021-1197-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/06/2021] [Indexed: 02/02/2023]
Abstract
Dip-pen nanolithography is an emerging and attractive surface modification technique that has the capacity to directly and controllably write micro/nano-array patterns on diverse substrates. The superior throughput, resolution, and registration enable DPN an outstanding candidate for biological detection from the molecular level to the cellular level. Herein, we overview the technological evolution of DPN in terms of its advanced derivatives and DPN-enabled versatile sensing patterns featuring multiple compositions and structures for biosensing. Benefitting from uniform, reproducible, and large-area array patterns, DPN-based biosensors have shown high sensitivity, excellent selectivity, and fast response in target analyte detection and specific cellular recognition. We anticipate that DPN-based technologies could offer great potential opportunities to fabricate multiplexed, programmable, and commercial array-based sensing biochips.
Collapse
|
8
|
Agusil JP, Arjona MI, Duch M, Fusté N, Plaza JA. Multidimensional Anisotropic Architectures on Polymeric Microparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004691. [PMID: 33079486 DOI: 10.1002/smll.202004691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Next generation life science technologies will require the integration of building blocks with tunable physical and chemical architectures at the microscale. A central issue is to govern the multidimensional anisotropic space that defines these microparticle attributes. However, this control is limited to one or few dimensions due to profound fabrication tradeoffs, a problem that is exacerbated by miniaturization. Here, a vast number of anisotropic dimensions are integrated combining SU-8 photolithography with (bio)chemical modifications via soft-lithography. Microparticles in a 15-D anisotropic space are demonstrated, covering branching, faceting, fiducial, topography, size, aspect ratio, stiffness, (bio)molecular and quantum dot printing, top/bottom surface coverage, and quasi-0D, 1D, 2D, and 3D surface patterning. The strategy permits controlled miniaturization on physical dimensions below 1 µm and molecular patterns below 1 µm2 . By combining building blocks, anisotropic microparticles detect pH changes, form the basis for a DNA-assay recognition platform, and obtain an extraordinary volumetric barcoding density up to 1093 codes µm-3 in a 3 × 12 × 0.5 µm3 volume.
Collapse
Affiliation(s)
- Juan Pablo Agusil
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Tillers s/n, Campus UAB, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - María Isabel Arjona
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Tillers s/n, Campus UAB, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Departamento de Electrónica y Tecnología de Computadores, Facultad de Ciencias, Universidad de Granada, Av. de la Fuente Nueva s/n, Granada, 18071, Spain
| | - Marta Duch
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Tillers s/n, Campus UAB, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Naüm Fusté
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Tillers s/n, Campus UAB, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - José A Plaza
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Tillers s/n, Campus UAB, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
9
|
Synergies between Surface Microstructuring and Molecular Nanopatterning for Controlling Cell Populations on Polymeric Biointerfaces. Polymers (Basel) 2020; 12:polym12030655. [PMID: 32183081 PMCID: PMC7183046 DOI: 10.3390/polym12030655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/19/2023] Open
Abstract
Polymeric biointerfaces are already being used extensively in a wide set of biomedical devices and systems. The possibility of controlling cell populations on biointerfaces may be essential for connecting biological systems to synthetic materials and for researching relevant interactions between life and matter. In this study, we present and analyze synergies between an innovative approach for surface microstructuring and a molecular nanopatterning procedure of recent development. The combined set of techniques used may be instrumental for the development of a new generation of functional polymeric biointerfaces. Eukaryotic cell cultures placed upon the biointerfaces developed, both before and after molecular patterning, help to validate the proposal and to discuss the synergies between the surface microstructuring and molecular nanopatterning techniques described in the study. Their potential role in the production of versatile polymeric biointerfaces for lab- and organ-on-a-chip biodevices and towards more complex and biomimetic co-culture systems and cell cultivation set-ups are also examined.
Collapse
|
10
|
Writing Behavior of Phospholipids in Polymer Pen Lithography (PPL) for Bioactive Micropatterns. Polymers (Basel) 2019; 11:polym11050891. [PMID: 31096642 PMCID: PMC6572014 DOI: 10.3390/polym11050891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 01/13/2023] Open
Abstract
Lipid-based membranes play crucial roles in regulating the interface between cells and their external environment, the communication within cells, and cellular sensing. To study these important processes, various lipid-based artificial membrane models have been developed in recent years and, indeed, large-area arrays of supported lipid bilayers suit the needs of many of these studies remarkably well. Here, the direct-write scanning probe lithography technique called polymer pen lithography (PPL) was used as a tool for the creation of lipid micropatterns over large areas via polymer-stamp-mediated transfer of lipid-containing inks onto glass substrates. In order to better understand and control the lipid transfer in PPL, we conducted a systematic study of the influence of dwell time (i.e., duration of contact between tip and sample), humidity, and printing pressure on the outcome of PPL with phospholipids and discuss results in comparison to the more often studied dip-pen nanolithography with phospholipids. This is the first systematic study in phospholipid printing with PPL. Biocompatibility of the obtained substrates with up to two different ink compositions was demonstrated. The patterns are suitable to serve as a platform for mast cell activation experiments.
Collapse
|
11
|
Valles DJ, Naeem Y, Carbonell C, Wong AM, Mootoo DR, Braunschweig AB. Maskless Photochemical Printing of Multiplexed Glycan Microarrays for High-Throughput Binding Studies. ACS Biomater Sci Eng 2019; 5:3131-3138. [DOI: 10.1021/acsbiomaterials.9b00033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel J. Valles
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Yasir Naeem
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Carlos Carbonell
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Alexa M. Wong
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - David R. Mootoo
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Adam B. Braunschweig
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
12
|
Rani E, Mohshim SA, Ahmad MZ, Goodacre R, Alang Ahmad SA, Wong LS. Polymer Pen Lithography-Fabricated DNA Arrays for Highly Sensitive and Selective Detection of Unamplified Ganoderma Boninense DNA. Polymers (Basel) 2019; 11:polym11030561. [PMID: 30960545 PMCID: PMC6474127 DOI: 10.3390/polym11030561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/18/2023] Open
Abstract
There is an increasing demand for lithography methods to enable the fabrication of diagnostic devices for the biomedical and agri-food sectors. In this regard, scanning probe lithography methods have emerged as a possible approach for this purpose, as they are not only convenient, robust and accessible, but also enable the deposition of “soft” materials such as complex organic molecules and biomolecules. In this report, the use of polymer pen lithography for the fabrication of DNA oligonucleotide arrays is described, together with the application of the arrays for the sensitive and selective detection of Ganoderma boninense, a fungal pathogen of the oil palm. When used in a sandwich assay format with DNA-conjugated gold nanoparticles, this system is able to generate a visually observable result in the presence of the target DNA. This assay is able to detect as little as 30 ng of Ganoderma-derived DNA without any pre-amplification and without the need for specialist laboratory equipment or training.
Collapse
Affiliation(s)
- Ekta Rani
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Siti Akhtar Mohshim
- Department of Chemistry, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, Serdang 43400, Selangor, Malaysia.
| | - Muhammad Zamharir Ahmad
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, Serdang 43400, Selangor, Malaysia.
| | - Royston Goodacre
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Shahrul Ainliah Alang Ahmad
- Department of Chemistry, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - Lu Shin Wong
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
13
|
Lee IN, Hosford J, Wang S, Hunt JA, Curran JM, Heath WP, Wong LS. Large-area Scanning Probe Nanolithography Facilitated by Automated Alignment and Its Application to Substrate Fabrication for Cell Culture Studies. J Vis Exp 2018:56967. [PMID: 29985313 PMCID: PMC6101695 DOI: 10.3791/56967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Scanning probe microscopy has enabled the creation of a variety of methods for the constructive ('additive') top-down fabrication of nanometer-scale features. Historically, a major drawback of scanning probe lithography has been the intrinsically low throughput of single probe systems. This has been tackled by the use of arrays of multiple probes to enable increased nanolithography throughput. In order to implement such parallelized nanolithography, the accurate alignment of probe arrays with the substrate surface is vital, so that all probes make contact with the surface simultaneously when lithographic patterning begins. This protocol describes the utilization of polymer pen lithography to produce nanometer-scale features over centimeter-sized areas, facilitated by the use of an algorithm for the rapid, accurate, and automated alignment of probe arrays. Here, nanolithography of thiols on gold substrates demonstrates the generation of features with high uniformity. These patterns are then functionalized with fibronectin for use in the context of surface-directed cell morphology studies.
Collapse
Affiliation(s)
- I-Ning Lee
- Manchester Institute of Biotechnology & School of Chemistry, University of Manchester; School of Engineering, University of Liverpool
| | - Joseph Hosford
- Manchester Institute of Biotechnology & School of Chemistry, University of Manchester
| | - Shuai Wang
- School of Electrical and Electronic Engineering, University of Manchester
| | - John A Hunt
- School of Science and Technology, Nottingham Trent University
| | | | - William P Heath
- School of Electrical and Electronic Engineering, University of Manchester
| | - Lu Shin Wong
- Manchester Institute of Biotechnology & School of Chemistry, University of Manchester;
| |
Collapse
|
14
|
Khan MS, Dosoky NS, Patel D, Weimer J, Williams JD. Lipid Bilayer Membrane in a Silicon Based Micron Sized Cavity Accessed by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. BIOSENSORS 2017; 7:E26. [PMID: 28678160 PMCID: PMC5618032 DOI: 10.3390/bios7030026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023]
Abstract
Supported lipid bilayers (SLBs) are widely used in biophysical research to probe the functionality of biological membranes and to provide diagnoses in high throughput drug screening. Formation of SLBs at below phase transition temperature (Tm) has applications in nano-medicine research where low temperature profiles are required. Herein, we report the successful production of SLBs at above-as well as below-the Tm of the lipids in an anisotropically etched, silicon-based micro-cavity. The Si-based cavity walls exhibit controlled temperature which assist in the quick and stable formation of lipid bilayer membranes. Fusion of large unilamellar vesicles was monitored in real time in an aqueous environment inside the Si cavity using atomic force microscopy (AFM), and the lateral organization of the lipid molecules was characterized until the formation of the SLBs. The stability of SLBs produced was also characterized by recording the electrical resistance and the capacitance using electrochemical impedance spectroscopy (EIS). Analysis was done in the frequency regime of 10-2-10⁵ Hz at a signal voltage of 100 mV and giga-ohm sealed impedance was obtained continuously over four days. Finally, the cantilever tip in AFM was utilized to estimate the bilayer thickness and to calculate the rupture force at the interface of the tip and the SLB. We anticipate that a silicon-based, micron-sized cavity has the potential to produce highly-stable SLBs below their Tm. The membranes inside the Si cavity could last for several days and allow robust characterization using AFM or EIS. This could be an excellent platform for nanomedicine experiments that require low operating temperatures.
Collapse
Affiliation(s)
- Muhammad Shuja Khan
- Electrical and Computer Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - Noura Sayed Dosoky
- Biotechnology Science and Engineering Program, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - Darayas Patel
- Department of Mathematics and Computer Science, Oakwood University, Huntsville, AL 35896, USA.
| | - Jeffrey Weimer
- Chemistry/Chemical and Materials Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - John Dalton Williams
- Electrical and Computer Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
15
|
Willems N, Urtizberea A, Verre AF, Iliut M, Lelimousin M, Hirtz M, Vijayaraghavan A, Sansom MSP. Biomimetic Phospholipid Membrane Organization on Graphene and Graphene Oxide Surfaces: A Molecular Dynamics Simulation Study. ACS NANO 2017; 11:1613-1625. [PMID: 28165704 DOI: 10.1021/acsnano.6b07352] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Supported phospholipid membrane patches stabilized on graphene surfaces have shown potential in sensor device functionalization, including biosensors and biocatalysis. Lipid dip-pen nanolithography (L-DPN) is a method useful in generating supported membrane structures that maintain lipid functionality, such as exhibiting specific interactions with protein molecules. Here, we have integrated L-DPN, atomic force microscopy, and coarse-grained molecular dynamics simulation methods to characterize the molecular properties of supported lipid membranes (SLMs) on graphene and graphene oxide supports. We observed substantial differences in the topologies of the stabilized lipid structures depending on the nature of the surface (polar graphene oxide vs nonpolar graphene). Furthermore, the addition of water to SLM systems resulted in large-scale reorganization of the lipid structures, with measurable effects on lipid lateral mobility within the supported membranes. We also observed reduced lipid ordering within the supported structures relative to free-standing lipid bilayers, attributed to the strong hydrophobic interactions between the lipids and support. Together, our results provide insight into the molecular effects of graphene and graphene oxide surfaces on lipid bilayer membranes. This will be important in the design of these surfaces for applications such as biosensor devices.
Collapse
Affiliation(s)
- Nathalie Willems
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Ainhoa Urtizberea
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) , 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea F Verre
- School of Materials and National Graphene Institute, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Maria Iliut
- School of Materials and National Graphene Institute, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Mickael Lelimousin
- CERMAV, CNRS and Université Grenoble Alpes , BP 53, Grenoble 38041 Cedex 9, France
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) , 76344 Eggenstein-Leopoldshafen, Germany
| | - Aravind Vijayaraghavan
- School of Materials and National Graphene Institute, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
16
|
Carbonell C, Braunschweig AB. Toward 4D Nanoprinting with Tip-Induced Organic Surface Reactions. Acc Chem Res 2017; 50:190-198. [PMID: 27643891 DOI: 10.1021/acs.accounts.6b00307] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Future nanomanufacturing tools will prepare organic materials with complex four-dimensional (4D) structure, where the position (x, y, z) and chemical composition within a volume is controlled with sub-1 μm spatial resolution. Such tools could produce substrates that mimic biological interfaces, like the cell surface or the extracellular matrix, whose topology and chemical complexity combine to direct some of the most sophisticated biological events. The control of organic materials at the nanoscale-level of spatial resolution could revolutionize the assembly of next generation optical and electronic devices or substrates for tissue engineering or enable fundamental biological or material science investigations. Organic chemistry provides the requisite control over the orientation and position of matter within a nanoscale reference frame through the formation of new covalent bonds. Several challenges however preclude the integration of organic chemistry with conventional nanomanufacturing approaches, namely most nanolithography platforms would denature or destroy delicate organic and biologically active matter, confirming covalent bond formation at interfaces remains difficult, and finally, only a small handful of the reactions used to transform molecules in solution have been validated on surfaces. Thus, entirely new approaches, where organic transformations and spatial control are considered equally important contributors, are needed to create 4D organic nanoprinting platforms. This Account describes efforts from our group to reconcile nanolithography, and specifically massively parallel scanning probe lithography (SPL), with organic chemistry to further the goal of 4D organic nanoprinting. Massively parallel SPL involves arrays of elastomeric pyramids mounted onto piezoelectric actuators, and creates patterns with feature diameters below 50 nm by using the pyramidal tips for either the direct deposition of ink or the localized delivery of energy to a surface. While other groups have focused on tip and array architetctures, our efforts have been on exploring their use for localizing organic chemistry on surfaces with nanoscale spatial resolution in 3D. Herein we describe the use of massively parallel SPL to create covalently immobilized patterns of organic materials using thermal, catalytic, photochemical, and force-accelerated reactions. In doing so, we have developed a high-throughput protocol for confirming interfacial bond formation. These efforts have resulted in new opportunities for the preparation of glycan arrays, novel approaches for covalently patterning graphene, and a 3D nanoprinter by combining photochemical brush polymerizations with SPL. Achieving true 4D nanoprinting involves advances in surface chemistry and instrumentation development, and to this end 4D micropatterns were produced in a microfluidic photoreactor that can position polymers composed of different monomers within micrometer proximity. A substantial gap remains, however, between these current technologies and the future's 4D nanomanufacturing tools, but the marriage of SPL with organic chemistry is an important step toward this goal. As this field continues to mature we can expect bottom-up 4D nanomanufacturing to begin supplanting conventional top-down strategies for preparing electronics, bioarrays, and functional substrates. In addition, these new printing technologies may enable the preparation of synthetic targets, such as artificial biological interfaces, with a level of organic sophistication that is entirely unachievable using existing technologies.
Collapse
Affiliation(s)
- Carlos Carbonell
- Advanced
Science Research Center, City University of New York, 85 St. Nicholas
Terrace, New York, New York 10031, United States
| | - Adam B. Braunschweig
- Advanced
Science Research Center, City University of New York, 85 St. Nicholas
Terrace, New York, New York 10031, United States
- Department
of Chemistry and Biochemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States
| |
Collapse
|
17
|
Guardingo M, González-Monje P, Novio F, Bellido E, Busqué F, Molnár G, Bousseksou A, Ruiz-Molina D. Synthesis of Nanoscale Coordination Polymers in Femtoliter Reactors on Surfaces. ACS NANO 2016; 10:3206-3213. [PMID: 26839077 DOI: 10.1021/acsnano.5b05071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the present work, AFM-assisted lithography was used to perform the synthesis of a coordination polymer inside femtoliter droplets deposited on surfaces. For this, solutions of the metal salt and the organic ligand were independently transferred to adjacent tips of the same AFM probe array and were sequentially delivered on the same position of the surface, creating femtoliter-sized reaction vessels where the coordination reaction and particle growth occurred. Alternatively, the two reagents were mixed in the cantilever array by loading an excess of the inks, and transferred to the surface immediately after, before the precipitation of the coordination polymer took place. The in situ synthesis allowed the reproducible obtaining of round-shaped coordination polymer nanostructures with control over their XY positioning on the surface, as characterized by microscopy and spectroscopy techniques.
Collapse
Affiliation(s)
- Mireia Guardingo
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Pablo González-Monje
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Fernando Novio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Elena Bellido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona (UAB) , Campus UAB. Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Gábor Molnár
- Laboratoire de Chimie de Coordination, Centre National de la Recherche Scientifique , 205, route de Narbonne, Toulouse 31077 Cedex 04, France
| | - Azzedine Bousseksou
- Laboratoire de Chimie de Coordination, Centre National de la Recherche Scientifique , 205, route de Narbonne, Toulouse 31077 Cedex 04, France
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
18
|
Angelin A, Weigel S, Garrecht R, Meyer R, Bauer J, Kumar RK, Hirtz M, Niemeyer CM. Multiscale Origami Structures as Interface for Cells. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509772] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alessandro Angelin
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Simone Weigel
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Ruben Garrecht
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Rebecca Meyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Jens Bauer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Ravi Kapoor Kumar
- Karlsruhe Institute of Technology (KIT), Institute for Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Michael Hirtz
- Karlsruhe Institute of Technology (KIT), Institute for Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| |
Collapse
|
19
|
Angelin A, Weigel S, Garrecht R, Meyer R, Bauer J, Kumar RK, Hirtz M, Niemeyer CM. Multiscale Origami Structures as Interface for Cells. Angew Chem Int Ed Engl 2015; 54:15813-7. [DOI: 10.1002/anie.201509772] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/12/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Alessandro Angelin
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Simone Weigel
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Ruben Garrecht
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Rebecca Meyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Jens Bauer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Ravi Kapoor Kumar
- Karlsruhe Institute of Technology (KIT), Institute for Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Michael Hirtz
- Karlsruhe Institute of Technology (KIT), Institute for Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| |
Collapse
|
20
|
Brinkmann F, Hirtz M, Haller A, Gorges TM, Vellekoop MJ, Riethdorf S, Müller V, Pantel K, Fuchs H. A Versatile Microarray Platform for Capturing Rare Cells. Sci Rep 2015; 5:15342. [PMID: 26493176 PMCID: PMC4615978 DOI: 10.1038/srep15342] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
Analyses of rare events occurring at extremely low frequencies in body fluids are still challenging. We established a versatile microarray-based platform able to capture single target cells from large background populations. As use case we chose the challenging application of detecting circulating tumor cells (CTCs) – about one cell in a billion normal blood cells. After incubation with an antibody cocktail, targeted cells are extracted on a microarray in a microfluidic chip. The accessibility of our platform allows for subsequent recovery of targets for further analysis. The microarray facilitates exclusion of false positive capture events by co-localization allowing for detection without fluorescent labelling. Analyzing blood samples from cancer patients with our platform reached and partly outreached gold standard performance, demonstrating feasibility for clinical application. Clinical researchers free choice of antibody cocktail without need for altered chip manufacturing or incubation protocol, allows virtual arbitrary targeting of capture species and therefore wide spread applications in biomedical sciences.
Collapse
Affiliation(s)
- Falko Brinkmann
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Germany.,Physical Institute and Center for Nanotechnology (CeNTech), University of Münster, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Germany
| | - Anna Haller
- Institute of Sensor and Actuator Systems, Vienna University of Technology, Austria
| | - Tobias M Gorges
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Michael J Vellekoop
- Institute for Microsensors, -Actuators and -Systems, University of Bremen, Germany
| | - Sabine Riethdorf
- Institute for Microsensors, -Actuators and -Systems, University of Bremen, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Germany
| | - Klaus Pantel
- Institute for Microsensors, -Actuators and -Systems, University of Bremen, Germany
| | - Harald Fuchs
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Germany.,Physical Institute and Center for Nanotechnology (CeNTech), University of Münster, Germany
| |
Collapse
|
21
|
Xie Z, Zhou Y, Hedrick JL, Chen P, He S, Shahjamali MM, Wang S, Zheng Z, Mirkin CA. On‐Tip Photo‐Modulated Molecular Printing. Angew Chem Int Ed Engl 2015; 54:12894-9. [DOI: 10.1002/anie.201505150] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/03/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Zhuang Xie
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA)
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (China)
| | - Yu Zhou
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208 (USA)
| | - James L. Hedrick
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA)
| | - Peng‐Cheng Chen
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208 (USA)
| | - Shu He
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA)
| | - Mohammad M. Shahjamali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA)
| | - Shunzhi Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA)
| | - Zijian Zheng
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR (China)
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA)
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208 (USA)
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA)
| |
Collapse
|
22
|
|
23
|
Bian S, Zieba SB, Morris W, Han X, Richter DC, Brown KA, Mirkin CA, Braunschweig AB. Beam pen lithography as a new tool for spatially controlled photochemistry, and its utilization in the synthesis of multivalent glycan arrays. Chem Sci 2014; 5:2023-2030. [PMID: 34113434 PMCID: PMC8188604 DOI: 10.1039/c3sc53315h] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Herein, we describe how cantilever-free scanning probes can be used to deposit precursor material and subsequently irradiate the precursor to initiate polymerization, resulting in a 3D lithographic method wherein the position, height and diameter of each feature can be tuned independently. Specifically, acrylate and methacrylate monomers were patterned onto thiol terminated glass and subsequently exposed to UV light produced brush polymers by a photoinduced radical acrylate polymerization reaction. Here, we report the first examples of glycan arrays, comprised of methacrylate brush polymers that are side-chain functionalized with α-glucose, by this new lithographic approach. Their binding with fluorophore labeled concanavalin A (ConA) was assayed by fluorescence microscopy. The fluorescence of these brush polymers was compared to glycan arrays composed of monolayers of α-mannosides and α-glucosides prepared by combining polymer pen lithography (PPL) with the thiol-ene photochemical reaction or the copper-catalyzed azide-alkyne cycloaddition. At high ConA concentration, the fluorescence signal of the brush polymer was nearly 20 times greater than that of the glycan monolayers, and the brush polymer arrays had a detection limit nearly two orders of magnitude better than their monolayer counterparts. Because of the ability of this method to control precisely the polymer length, the relationship between limit of detection and multivalency could be explored, and it was found that the longer polymers (136 nm) are an order of magnitude more sensitive towards ConA binding than the shorter polymers (8 nm) and that binding affinity decreased systematically with length. These glycan arrays are a new tool to study the role of multivalency on carbohydrate recognition, and the photopolymerization route towards forming multivalent glycan scaffolds described herein, is a promising route to create multiplexed glycan arrays with nanoscale feature dimensions.
Collapse
Affiliation(s)
- Shudan Bian
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Sylwia B Zieba
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - William Morris
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Xu Han
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Daniel C Richter
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Keith A Brown
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
24
|
Abstract
The challenge of constructing surfaces with nanostructured chemical functionality is central to many areas of biology and biotechnology. This protocol describes the steps required for performing molecular printing using polymer pen lithography (PPL), a cantilever-free scanning probe-based technique that can generate sub-100-nm molecular features in a massively parallel fashion. To illustrate how such molecular printing can be used for a variety of biologically relevant applications, we detail the fabrication of the lithographic apparatus and the deposition of two materials, an alkanethiol and a polymer onto a gold and silicon surface, respectively, and show how the present approach can be used to generate nanostructures composed of proteins and metals. Finally, we describe how PPL enables researchers to easily create combinatorial arrays of nanostructures, a powerful approach for high-throughput screening. A typical protocol for fabricating PPL arrays and printing with the arrays takes 48-72 h to complete, including two overnight waiting steps.
Collapse
|