1
|
Sarkar T, Gogoi NR, Jana BK, Mazumder B. Formulation Advances in Posterior Segment Ocular Drug Delivery. J Ocul Pharmacol Ther 2025; 41:101-130. [PMID: 39842469 DOI: 10.1089/jop.2024.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Posterior segment ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and retinal vein occlusion, are leading causes of vision impairment and blindness worldwide. Effective management of these conditions remains a formidable challenge due to the unique anatomical and physiological barriers of the eye, including the blood-retinal barrier and rapid drug clearance mechanisms. To address these hurdles, nanostructured drug delivery systems are proposed to overcome ocular barriers, target the retina, and enhance permeation while ensuring controlled release. Traditional therapeutic approaches, such as intravitreal injections, pose significant drawbacks, including patient discomfort, poor compliance, and potential complications. Therefore, understanding the physiology and clearance mechanism of eye could aid in the design of novel formulations that could be noninvasive and deliver drugs to reach the target site is pivotal for effective treatment strategies. This review focuses on recent advances in formulation strategies for posterior segment ocular drug delivery, highlighting their potential to overcome these limitations. Furthermore, the potential of nanocarrier systems such as in-situ gel, niosomes, hydrogels, dendrimers, liposomes, nanoparticles, and nanoemulsions for drug delivery more effectively and selectively is explored, and supplemented with illustrative examples, figures, and tables. This review aims to provide insights into the current state of posterior segment drug delivery, emphasizing the need for interdisciplinary approaches to develop patient-centric, minimally invasive, and effective therapeutic solutions.
Collapse
Affiliation(s)
- Tumpa Sarkar
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Bani Kumar Jana
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
2
|
Vincze A, Simon E, Koplányi G, Stankovits JG, Balogh-Weiser D, Gyarmati B, Nagy ZZ, Balogh GT. Toward a high-throughput in vitro model for estimating vitreous humor permeability of topically applied drugs. Sci Rep 2025; 15:8768. [PMID: 40082516 PMCID: PMC11906762 DOI: 10.1038/s41598-025-93425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
The vitreous humor of the eye presents a crucial target for posterior segment therapy due to its proximity to the retina and relatively easy accessibility. Although intravitreous injections have long been the primary method for treating posterior segment disorders, recent successes in non-invasive topical treatments have led to the exploration of alternative administration routes. The objective of our study is to establish a platform for a Parallel Artificial Membrane Permeability Assay (PAMPA) model that mimics the posterior segment, modelling the permeation process of compounds applied topically on the eye. The study demonstrates the acceptor-phase effects of sodium hyaluronate and agar on passive permeability, while applying a previously published vitreous humor-mimetic material. Physicochemical similarities of the acceptor phase media and freshly excised porcine vitreous humor further support the applicability of the mimetic material, based on viscosity and zeta potential measurement. As a result, a new concept is introduced for measuring posterior segment permeability, with potential for future high throughput screening applications.
Collapse
Affiliation(s)
- Anna Vincze
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Street 9, Budapest, H-1092, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői Street 26, Budapest, H-1092, Hungary.
| | - Eszter Simon
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Műegyetem Quay 3, Budapest, H-1111, Hungary
| | - Gábor Koplányi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Quay 3, Budapest, H-1111, Hungary
| | - József Gergely Stankovits
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Quay 3, Budapest, H-1111, Hungary
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Quay 3, Budapest, H-1111, Hungary
| | - Benjámin Gyarmati
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Quay 3, Budapest, H-1111, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Mária Street 39, Budapest, H-1085, Hungary
| | - György T Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Street 9, Budapest, H-1092, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői Street 26, Budapest, H-1092, Hungary.
| |
Collapse
|
3
|
Bingaman D, Appidi T, Pejavar J, Ensign LM. Can Sustained Suppression of VEGF Be Achieved by Topical Ocular Delivery? Am J Ophthalmol 2025:S0002-9394(25)00126-6. [PMID: 40081746 DOI: 10.1016/j.ajo.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Affiliation(s)
- David Bingaman
- From the PanOptica, Inc. (D.B.), Freehold, New Jersey, USA
| | - Tejaswini Appidi
- The Center for Nanomedicine (T.A., J.P., L.M.E.), Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jahnavi Pejavar
- The Center for Nanomedicine (T.A., J.P., L.M.E.), Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Chemical and Biomolecular Engineering (L.M.E., J.P.), Johns Hopkins University, Baltimore, Maryland, USA
| | - Laura M Ensign
- The Center for Nanomedicine (T.A., J.P., L.M.E.), Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Chemical and Biomolecular Engineering (L.M.E., J.P.), Johns Hopkins University, Baltimore, Maryland, USA; Departments of Pharmacology and Molecular Sciences, Biomedical Engineering, Gynecology and Obstetrics, Oncology, and Division of Infectious Diseases (L.M.E.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Zhang JM, Han H, Fu B, Li YC, Li K, Liu JW, Yu EM, Liu LP. Identification of potential geosmin-binding proteins in grass carp gill based on affinity responsive target stability and tandem mass tag proteomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117832. [PMID: 39904256 DOI: 10.1016/j.ecoenv.2025.117832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
The escalating issue of water pollution, especially the accumulation of organic off-flavor pollutants, poses significant challenges. Geosmin, a typical off-flavor compound in aquatic environments, not only compromises the quality of aquatic products but also deters consumers. Its impact extends to aquatic organisms, with current research focusing on dose-response and ecotoxicity, while neglecting the molecular-level study of geosmin-binding proteins. This study employs an integrated approach combing affinity-responsive target stability in vitro, tandem mass tag proteomics in vivo, and molecular docking to identify geosmin-binding proteins in the gill tissue of grass carp (Ctenopharyngodon idella). ARTS analysis identified 56 proteins, predominantly membrane-associated proteins, such as catenin beta-1, annexin, and integrin beta. Proteomic analysis revealed 256 differentially expressed proteins in geosmin-exposure group, with 18 common proteins screened by in vivo and in vitro methods. Among these, annexin, cathepsin D, and interleukin-1 receptors were highlighted as potential geosmin targets, with annexin demonstrating the highest binding affinity in silico. This study provides a robust protocol integrating in vivo, in vitro, and in silico approaches to elucidate geosmin's target proteins in grass carp gill tissue, advancing our understanding of pollutant-biological interactions and enhancing environmental risk assessment accuracy.
Collapse
Affiliation(s)
- Jun-Ming Zhang
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Huan Han
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Bing Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
| | - Yi-Chao Li
- Guangxi Academy of Marine Sciences, Nanning, 530000, China
| | - Kang Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China.
| | - Jing-Wei Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Er-Meng Yu
- Guangxi Academy of Marine Sciences, Nanning, 530000, China
| | - Li-Ping Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Baghban R, Namvar E, Attar A, Mortazavi M. Progressing nanotechnology to improve diagnosis and targeted therapy of Diabetic Retinopathy. Biomed Pharmacother 2025; 183:117786. [PMID: 39753094 DOI: 10.1016/j.biopha.2024.117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 02/08/2025] Open
Abstract
The inherent limitations of traditional treatments for Diabetic Retinopathy (DR) have spurred the development of various nanotechnologies, offering a safer and more efficient approach to managing the disease. Nanomedicine platforms present promising advancements in the diagnosis and treatment of DR by enhancing imaging capabilities, enabling targeted and controlled drug delivery. These innovations ultimately lead to more effective and personalized treatments with fewer side effects. This review highlights the progress, challenges, and opportunities in developing effective diagnostics and therapeutics for DR. Additionally, it explores innovative engineering techniques that leverage our growing understanding of nano-bio interactions to create more potent nanotherapeutics for patients.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Namvar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Alireza Attar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
6
|
Nikolaidou A, Spyratou E, Sandali A, Gianni T, Platoni K, Lamprogiannis L, Efstathopoulos EP. Utilization of Nanoparticles for Treating Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2025; 18:162. [PMID: 40005976 PMCID: PMC11858808 DOI: 10.3390/ph18020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Age-related macular degeneration (AMD) is a predominant cause of vision loss, posing significant challenges in its management despite advancements such as anti-vascular endothelial growth factor (anti-VEGF) therapy. Nanomedicine, with its novel properties and capabilities, offers promising potential to transform the treatment paradigm for AMD. This review reports the significant advancements in the use of diverse nanoparticles (NPs) for AMD in vitro, in vivo, and ex vivo, including liposomes, lipid nanoparticles, nanoceria, nanofibers, magnetic nanoparticles, quantum dots, dendrimers, and polymer nanoparticles delivered in forms such as gels, eye drops, intravitreally, or intravenously. Drug delivery was the most common use of NPs for AMD, followed by photodynamic therapy dose enhancement, antioxidant function for nanoceria, biomimetic activity, and immune modulation. Innovative approaches arising included nanotechnology-based photodynamic therapy and light-responsive nanoparticles for controlled drug release, as well as gene therapy transfer. Nanomedicine offers a transformative approach to the treatment and management of AMD, with diverse applications. The integration of nanotechnology in AMD management not only provides innovative solutions to overcome current therapeutic limitations but also shows potential in enhancing outcomes and patient quality of life.
Collapse
Affiliation(s)
- Anna Nikolaidou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ellas Spyratou
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (E.P.E.)
| | - Athanasia Sandali
- Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodora Gianni
- Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kalliopi Platoni
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (E.P.E.)
| | | | - Efstathios P. Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (E.P.E.)
| |
Collapse
|
7
|
Shetty S, Singh K, Barve K. Therapeutic Management and New Upcoming Approaches for Age Related Macular Degeneration. Curr Drug Res Rev 2025; 17:59-75. [PMID: 37779414 DOI: 10.2174/0125899775250144230920053548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/04/2023] [Accepted: 07/21/2023] [Indexed: 10/03/2023]
Abstract
Age-related Macular Degeneration (AMD) is a severe eye illness that is going to lead in the race for incurable blindness globally among the elderly population. AMD is the third common reason responsible for affecting the quality of life globally. The macula and the retinal layers are adversely affected during AMD and are responsible for the loss of vision eventually. Numerous genetic variables, lipid metabolism, ageing and oxidative damage are the causative factors in the genesis of AMD. Lack of antioxidants, smoking and excessive alcohol intake contribute to increasing the risk of AMD. Management of dry AMD involves the use of nutritional supplements like zinc and antioxidants, along with conventional treatment, however, the use of nutritional supplements can only give minor benefits on the progression of dry AMD. Later stages of AMD need to be managed by cell-based interventions where the damaged or lost cells are replaced with fresh donor cells. A plethora of treatment methods are used in the management of AMD, such as nutrition, antibody-based treatments, stem cell management and nanotherapeutics. The available expensive treatments come with a number of adverse effects and future developments require the involvement of risk factor modification approaches, personalized therapy, targeting the disease specific pathways, exploring better anti-vascular endothelial growth factor (VEGF) inhibitors and many other regenerative approaches, that will broaden techniques to diagnose, control and treat AMD. This review provides an overview of the progression of AMD and the causative factors, with considerable emphasises on the current and potential prospects.
Collapse
Affiliation(s)
- Srishti Shetty
- Shobhaben Pratapbhai Patel, School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), MUMBAI, 400056, Maharashtra, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel, School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), MUMBAI, 400056, Maharashtra, India
| | - Kalyani Barve
- Shobhaben Pratapbhai Patel, School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), MUMBAI, 400056, Maharashtra, India
| |
Collapse
|
8
|
Yang R, Tang S, Xie X, Jin C, Tong Y, Huang W, Zan X. Enhanced Ocular Delivery of Beva via Ultra-Small Polymeric Micelles for Noninvasive Anti-VEGF Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314126. [PMID: 38819852 DOI: 10.1002/adma.202314126] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Pathological ocular neovascularization resulting from retinal ischemia constitutes a major cause of vision loss. Current anti-VEGF therapies rely on burdensome intravitreal injections of Bevacizumab (Beva). Herein ultrasmall polymeric micelles encapsulating Beva (P@Beva) are developed for noninvasive topical delivery to posterior eye tissues. Beva is efficiently loaded into 11 nm micelles fabricated via self-assembly of hyperbranched amphiphilic copolymers. The neutral, brush-like micelles demonstrate excellent drug encapsulation and colloidal stability. In vitro, P@Beva enhances intracellular delivery of Beva in ocular cells versus free drug. Ex vivo corneal and conjunctival-sclera-choroidal tissues transport after eye drops are improved 23-fold and 7.9-fold, respectively. Anti-angiogenic bioactivity is retained with P@Beva eliciting greater inhibition of endothelial tube formation and choroid sprouting over Beva alone. Remarkably, in an oxygen-induced retinopathy (OIR) model, topical P@Beva matching efficacy of intravitreal Beva injection, is the clinical standard. Comprehensive biocompatibility verifies safety. Overall, this pioneering protein delivery platform holds promise to shift paradigms from invasive intravitreal injections toward simplified, noninvasive administration of biotherapeutics targeting posterior eye diseases.
Collapse
Affiliation(s)
- Ruhui Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou, Zhejiang Province, 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Sicheng Tang
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Xiaoling Xie
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou, Zhejiang Province, 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Chaofan Jin
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Yuhua Tong
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, 324000, China
| | - Wenjuan Huang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou, Zhejiang Province, 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| |
Collapse
|
9
|
Frostegård A, Haegerstrand A. New Therapeutic Strategies in Retinal Vascular Diseases: A Lipid Target, Phosphatidylserine, and Annexin A5-A Future Theranostic Pairing in Ophthalmology. Pharmaceuticals (Basel) 2024; 17:979. [PMID: 39204083 PMCID: PMC11357257 DOI: 10.3390/ph17080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024] Open
Abstract
Despite progress in the management of patients with retinal vascular and degenerative diseases, there is still an unmet clinical need for safe and effective therapeutic options with novel mechanisms of action. Recent mechanistic insights into the pathogenesis of retinal diseases with a prominent vascular component, such as retinal vein occlusion (RVO), diabetic retinopathy (DR) and wet age-related macular degeneration (AMD), may open up new treatment paradigms that reach beyond the inhibition of vascular endothelial growth factor (VEGF). Phosphatidylserine (PS) is a novel lipid target that is linked to the pathophysiology of several human diseases, including retinal diseases. PS acts upstream of VEGF and complement signaling pathways. Annexin A5 is a protein that targets PS and inhibits PS signaling. This review explores the current understanding of the potential roles of PS as a target and Annexin A5 as a therapeutic. The clinical development status of Annexin A5 as a therapeutic and the potential utility of PS-Annexin A5 as a theranostic pairing in retinal vascular conditions in particular is described.
Collapse
Affiliation(s)
- Anna Frostegård
- Annexin Pharmaceuticals AB, Kammakargatan 48, S-111 60 Stockholm, Sweden
- Unit of Immunology and Chronic Disease, IMM, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
10
|
Ma MY, Wu FY, Xu YP, Mu GQ, Qian F, Zhu XM. Study on the interaction mechanism of whey protein isolate with phosphatidylcholine: By multispectral methods and molecular docking. J Food Sci 2024; 89:4109-4122. [PMID: 38957103 DOI: 10.1111/1750-3841.17175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
The elucidation of the interaction mechanism between phospholipids and milk proteins within emulsions is pivotal for comprehending the properties of infant formula fat globules. In this study, multispectral methods and molecular docking were employed to explore the relationship between phosphatidylcholine (PC) and whey protein isolate (WPI). Observations indicate that the binding constant, alongside thermodynamic parameters, diminishes as temperature ascends, hinting at a predominantly static quenching mechanism. Predominantly, van der Waals forces and hydrogen bonds constitute the core interactions between WPI and PC. This assertion is further substantiated by Fourier transform infrared spectroscopy, which verifies PC's influence on WPI's secondary structure. A detailed assessment of thermodynamic parameters coupled with molecular docking reveals that PC predominantly adheres to specific sites within α-lactalbumin, β-lactoglobulin, and bovine serum albumin, propelled by a synergy of hydrophobic interactions, hydrogen bonding, and van der Waals forces, with binding energies noted at -5.59, -6.71, and -7.85 kcal/mol, respectively. An increment in PC concentration is observed to amplify the emulsification properties of WPI whilst concurrently diminishing the zeta potential. This study establishes a theoretical foundation for applying the PC-WPI interaction mechanism in food.
Collapse
Affiliation(s)
- Ming-Yang Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Fei-Yang Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yun-Peng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Guang-Qing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Xue-Mei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
11
|
Faria MJ, González-Méijome JM, Real Oliveira MECD, Carracedo G, Lúcio M. Recent advances and strategies for nanocarrier-mediated topical therapy and theranostic for posterior eye disease. Adv Drug Deliv Rev 2024; 210:115321. [PMID: 38679293 DOI: 10.1016/j.addr.2024.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Posterior eye disorders, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, have a significant impact on human quality of life and are the primary cause of age-related retinal diseases among adults. There is a pressing need for innovative topical approaches to treat posterior eye disorders, as current methods often rely on invasive procedures with inherent risks. Limited success was attained in the realm of topical ophthalmic delivery through non-invasive means. Additionally, there exists a dearth of literature that delves into the potential of this approach for drug delivery and theranostic purposes, or that offers comprehensive design strategies for nanocarrier developers to surmount the significant physiological ocular barriers. This review offers a thorough and up-to-date state-of-the-art overview of 40 studies on therapeutic loaded nanocarriers and theranostic devices that, to the best of our knowledge, represent all successful works that reached posterior eye segments through a topical non-invasive administration. Most importantly, based on the successful literature studies, this review provides a comprehensive summary of the potential design strategies that can be implemented during nanocarrier development to overcome each ocular barrier.
Collapse
Affiliation(s)
- Maria João Faria
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - José M González-Méijome
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal; CEORLab - Clinical and Experimental Optometry Research Lab, Centre of Physics, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - M Elisabete C D Real Oliveira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Gonzalo Carracedo
- Department of Optometry and Vision, Faculty of Optics and Optometry, University Complutense of Madrid, C/Arcos de Jalon 118, Madrid 28037, Spain.
| | - Marlene Lúcio
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal; CBMA - Centre of Molecular and Environmental Biology, Department of Biology, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| |
Collapse
|
12
|
Geng F, Fan X, Liu Y, Lu W, Wei G. Recent advances in nanocrystal-based technologies applied for ocular drug delivery. Expert Opin Drug Deliv 2024; 21:211-227. [PMID: 38271023 DOI: 10.1080/17425247.2024.2311119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
INTRODUCTION The intricate physiological barriers of the eye and the limited volume of eye drops impede efficient delivery of poorly water-soluble drugs. In the last decade, nanocrystals have emerged as versatile drug delivery systems in various administration routes from bench to bedside. The unique superiorities of nanocrystals, mainly embodied in high drug-loading capacity, good mucosal adhesion and penetration, and greatly improved drug solubility, reveal a promising prospect for ocular delivery of poorly water-soluble drugs. AREAS COVERED This article focuses on the ophthalmic nanocrystal technologies and products that are in the literature, clinical trials, and even on the market. The recent research progress in the preparation, ocular application, and absorption of nanocrystals are highlighted, and the pros and cons of nanocrystals in overcoming the physiological barriers of the eye are also summarized. EXPERT OPINION Nanocrystals have demonstrated success as glucocorticoid eye drops in the treatment of anterior segment diseases. However, the thermodynamic stability of nanocrystals remains the major challenge in product development. New technologies for efficiently optimizing stabilizers and sterilization processes are still expected. Strategies to confer more diverse functions via surface modification are also worth exploration to improve the potential of nanocrystals in delivering poorly water-soluble drugs to posterior segment of the eye.
Collapse
Affiliation(s)
- Feiyang Geng
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xingyan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yu Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Engineering Research Center of ImmunoTherapeutics, Shanghai, China
| |
Collapse
|
13
|
Malakouti-Nejad M, Monti D, Burgalassi S, Bardania H, Elahi E, Morshedi D. A comparison between the effects of two liposome-encapsulated bevacizumab formulations on ocular neovascularization inhibition. Colloids Surf B Biointerfaces 2024; 234:113708. [PMID: 38141384 DOI: 10.1016/j.colsurfb.2023.113708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Bevacizumab (BVZ), an anti-VEGF antibody, has demonstrated reliable outcomes in the treatment of irritating ocular neovascularization. Frequent intravitreal injections are necessitated due to rapid clearance and short local accessibility. We recruited liposome as a highly prevailing drug delivery system to enhance drug availability. Two liposome formulations were characterized and their in vitro stability was analyzed. The toxicity of the formulations on some ocular cell lines was also evaluated. In addition, the anti-angiogenic effects of formulations were examined. Drug permeation was measured across ARPE-19 and HCE cell lines as in vitro cellular barrier models. Results revealed that NLP-DOPE-BVZ acquired high stability at 4 °C, 24 °C, and 37 °C for 45 days. It also showed more capacity to entrap BVZ in NLP-DOPE-BVZ (DEE% 69.1 ± 1.4 and DLE% 55.66 ± 1.15) as compared to NLP-BVZ (DEE% 43.57 ± 14.64, and DLE% 37.72 ± 12.01). Although both formulations inhibited the migration and proliferation of HUVECs, NLP-DOPE-BVZ was more effective at inhibiting angiogenesis. Furthermore, NLP-DOPE-BVZ better crossed our established barrier cellular models. Based on the findings, the inclusion of DOPE in NLPs has significantly enhanced the features of drug carriers. This makes them a potential candidate for treating ocular neovascularization and other related ailments.
Collapse
Affiliation(s)
- Maryam Malakouti-Nejad
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56126 Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56126 Pisa, Italy
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Dina Morshedi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
14
|
Ponnusamy C, Ayarivan P, Selvamuthu P, Natesan S. Age-Related Macular Degeneration - Therapies and Their Delivery. Curr Drug Deliv 2024; 21:683-696. [PMID: 37165500 DOI: 10.2174/1567201820666230510100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 05/12/2023]
Abstract
Age-related macular degeneration (ARMD) is a degenerative ocular disease that is the most important cause of irreversible vision loss in old-aged people in developed countries. Around fifty percent of vision impairments in developed countries are due to ARMD. It is a multifaceted disease that is associated with both genetic and environmental risk factors. The most important treatments option for ARMD includes laser photocoagulation, photodynamic therapy (PDT), Anti-VEGF Injections, and combination therapies. In this review, we also propose that topical ocular drug delivery with nanocarriers has more attention for the treatment of ARMD. The nanocarriers were specially designed for enhanced corneal residential time, prolonged drug release and action, and minimizing the frequency of administrations. Different types of nanocarriers were developed for the topical ocular delivery system, such as nanomicelles, nanoemulsions, nanosuspensions, liposomes, and polymeric nanoparticles. These topical ocular nanocarriers were administered topically, and they can fix the hydrophobic substances, increase solubility and improve the bioavailability of an administered drug. Hence the topical ocular delivery systems with nanocarriers provide a safe and effective therapeutic strategy and promising tool for the treatment of posterior segment ocular diseases ARMD.
Collapse
Affiliation(s)
- Chandrasekar Ponnusamy
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli-620024, Tamil Nadu, India
| | - Puratchikody Ayarivan
- Drug Discovery and Development Research Group, Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli-620024, Tamil Nadu, India
| | - Preethi Selvamuthu
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli-620024, Tamil Nadu, India
| | - Subramanian Natesan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, ChunilalBhawan, Kolkata-700054, West Bengal, India
| |
Collapse
|
15
|
Pimple P, Sawant A, Nair S, Sawarkar SP. Current Insights into Targeting Strategies for the Effective Therapy of Diseases of the Posterior Eye Segment. Crit Rev Ther Drug Carrier Syst 2024; 41:1-50. [PMID: 37938189 DOI: 10.1615/critrevtherdrugcarriersyst.2023044057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The eye is one a unique sophisticated human sense organ with a complex anatomical structure. It is encased by variety of protective barriers as responsible for vision. There has been a paradigm shift in the prevalence of several major vision threatening ocular conditions with enhanced reliance on computer-based technologies in our workaday life and work-from-home modalities although aging, pollution, injury, harmful chemicals, lifestyle changes will always remain the root cause. Treating posterior eye diseases is a challenge faced by clinicians worldwide. The clinical use of conventional drug delivery systems for posterior eye targeting is restricted by the ocular barriers. Indeed, for overcoming various ocular barriers for efficient delivery of the therapeutic moiety and prolonged therapeutic effect requires prudent and target-specific approaches. Therefore, for efficient drug delivery to the posterior ocular segment, advancements in the development of sustained release and nanotechnology-based ocular drug delivery systems have gained immense importance. Therapeutic efficacy and patient compliance are of paramount importance in clinical translation of these investigative drug delivery systems. This review provides an insight into the various strategies employed for improving the treatment efficacies of the posterior eye diseases. Various drug delivery systems such as systemic and intraocular injections, implants have demonstrated promising outcomes, along with that they have also exhibited side-effects, limitations and strategies employed to overcome them are discussed in this review. The application of artificial intelligence-based technologies along with an appreciation of disease, delivery systems, and patient-specific outcomes will likely enable more effective therapy for targeting the posterior eye segment.
Collapse
Affiliation(s)
- Prachi Pimple
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| | - Apurva Sawant
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| | - Sujit Nair
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| |
Collapse
|
16
|
Wang W(J, Snider N. Discovery and Potential Utility of a Novel Non-Invasive Ocular Delivery Platform. Pharmaceutics 2023; 15:2344. [PMID: 37765311 PMCID: PMC10535219 DOI: 10.3390/pharmaceutics15092344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
To this day, the use of oily eye drops and non-invasive retinal delivery remain a major challenge. Oily eye drops usually cause ocular irritation and interfere with the normal functioning of the eye, while ocular injections for retinal drug delivery cause significant adverse effects and a high burden on the healthcare system. Here, the authors report a novel topical non-invasive ocular delivery platform (NIODP) through the periorbital skin for high-efficiency anterior and posterior ocular delivery in a non-human primate model (NHP). A single dose of about 7 mg JV-MD2 (omega 3 DHA) was delivered via the NIODP and reached the retina at a Cmax of 111 µg/g and the cornea at a Cmax of 66 µg/g. The NIODP also delivered JV-DE1, an anti-inflammatory agent in development for dry eye diseases, as efficiently as eye drops did to the anterior segments of the NHP. The topical NIODP seems to transport drug candidates through the corneal pathway to the anterior and via the conjunctiva/sclera pathway to the posterior segments of the eye. The novel NIODP method has the potential to reshape the landscape of ocular drug delivery. This is especially the case for oily eye drops and retinal delivery, where the success of the treatment lies in the ocular tolerability and bioavailability of drugs in the target tissue.
Collapse
|
17
|
Sapowadia A, Ghanbariamin D, Zhou L, Zhou Q, Schmidt T, Tamayol A, Chen Y. Biomaterial Drug Delivery Systems for Prominent Ocular Diseases. Pharmaceutics 2023; 15:1959. [PMID: 37514145 PMCID: PMC10383518 DOI: 10.3390/pharmaceutics15071959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, have had a profound impact on millions of patients. In the past couple of decades, these diseases have been treated using conventional techniques but have also presented certain challenges and limitations that affect patient experience and outcomes. To address this, biomaterials have been used for ocular drug delivery, and a wide range of systems have been developed. This review will discuss some of the major classes and examples of biomaterials used for the treatment of prominent ocular diseases, including ocular implants (biodegradable and non-biodegradable), nanocarriers (hydrogels, liposomes, nanomicelles, DNA-inspired nanoparticles, and dendrimers), microneedles, and drug-loaded contact lenses. We will also discuss the advantages of these biomaterials over conventional approaches with support from the results of clinical trials that demonstrate their efficacy.
Collapse
Affiliation(s)
- Avin Sapowadia
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Delaram Ghanbariamin
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Libo Zhou
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Tannin Schmidt
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
18
|
Shamsher E, Khan RS, Davis BM, Dine K, Luong V, Somavarapu S, Cordeiro MF, Shindler KS. Nanoparticles Enhance Solubility and Neuroprotective Effects of Resveratrol in Demyelinating Disease. Neurotherapeutics 2023; 20:1138-1153. [PMID: 37160530 PMCID: PMC10457259 DOI: 10.1007/s13311-023-01378-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/11/2023] Open
Abstract
Resveratrol is a natural polyphenol which may be useful for treating neurodegenerative diseases such as multiple sclerosis (MS). To date, current immunomodulatory treatments for MS aim to reduce inflammation with limited effects on the neurodegenerative component of this disease. The purpose of the current study is to develop a novel nanoparticle formulation of resveratrol to increase its solubility, and to assess its ability to prevent optic nerve and spinal cord degeneration in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Resveratrol nanoparticles (RNs) were made using a thin rehydration technique. EAE mice received a daily oral administration of vehicle, RNs or unconjugated resveratrol for one month. They were assessed daily for clinical signs of paralysis and weekly for their visual acuity with optokinetic responses (OKR). After one month, their spinal cords and optic nerves were stained for inflammation and demyelination and retinal ganglion cells immunostained for Brn3a. RNs were stable for three months. The administration of RNs did not have any effect on clinical manifestation of EAE and did not preserve OKR scores but reduced the intensity of the disease. It did not reduce inflammation and demyelination in the spinal cord and the optic nerve. However, RNs were able to decrease RGC loss compared to the vehicle. Results demonstrate that resveratrol is neuroprotective by reducing RGC loss. Interestingly, neuroprotective effects and decreased disease severity occurred without reduction of inflammation or demyelination, suggesting this therapy may fill an unmet need to limit the neurodegenerative component of MS.
Collapse
Affiliation(s)
- Ehtesham Shamsher
- Institute of Ophthalmology, University College London, London, UK
- Jules-Gonin Eye Hospital, Lausanne University, Lausanne, Switzerland
| | - Reas S Khan
- Departments of Ophthalmology and Neurology, Scheie Eye Institute, University of Pennsylvania, 51 N 39th Street, Philadelphia, PA, 19104, USA
| | - Benjamin M Davis
- Institute of Ophthalmology, University College London, London, UK
| | - Kimberly Dine
- Departments of Ophthalmology and Neurology, Scheie Eye Institute, University of Pennsylvania, 51 N 39th Street, Philadelphia, PA, 19104, USA
| | - Vy Luong
- Institute of Ophthalmology, University College London, London, UK
| | | | - M Francesca Cordeiro
- Institute of Ophthalmology, University College London, London, UK
- Imperial College London Ophthalmology Research Group, London, UK
- Western Eye Hospital, London, UK
| | - Kenneth S Shindler
- Departments of Ophthalmology and Neurology, Scheie Eye Institute, University of Pennsylvania, 51 N 39th Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Fan X, Jiang K, Geng F, Lu W, Wei G. Ocular therapies with biomacromolecules: From local injection to eyedrop and emerging noninvasive delivery strategies. Adv Drug Deliv Rev 2023; 197:114864. [PMID: 37156266 DOI: 10.1016/j.addr.2023.114864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/15/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
The last two decades have witnessed a continuously increasing number of biomacromolecules approved for the treatment of ocular diseases. The eye possesses multiple protective mechanisms to resist the invasion of exogenous substances, but meanwhile these physiological defense systems also act as strong barriers, impeding absorption of most biomacromolecules into the eye. As a result, local injections play predominant roles for posterior ocular delivery of biomacromolecules in clinical practice. To achieve safe and convenient application of biomacromolecules, alternative strategies to realize noninvasive intraocular delivery are necessary. Various nanocarriers, novel penetration enhancers and physical strategies have been explored to facilitate delivery of biomacromolecules to both anterior and posterior ocular segments but still suffered difficulties in clinical translation. This review compares the anatomical and physiological characteristics of the eyes from those frequently adopted experimental species and profiles the well-established animal models of ocular diseases. We also summarize the ophthalmic biomacromolecules launched on the market and put emphasis on emerging noninvasive intraocular delivery strategies of peptides, proteins and genes.
Collapse
Affiliation(s)
- Xingyan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Kuan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200030, P.R. China
| | - Feiyang Geng
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; The Institutes of Integrative Medicine of Fudan University, Shanghai, 200040, PR China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; The Institutes of Integrative Medicine of Fudan University, Shanghai, 200040, PR China; Shanghai Engineering Research Center of ImmunoTherapeutics, Shanghai, 201203, PR China.
| |
Collapse
|
20
|
Christensen G, Urimi D, Lorenzo-Soler L, Schipper N, Paquet-Durand F. Ocular permeability, intraocular biodistribution of lipid nanocapsule formulation intended for retinal drug delivery. Eur J Pharm Biopharm 2023; 187:175-183. [PMID: 37088247 DOI: 10.1016/j.ejpb.2023.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Recently, cGMP analogues have been investigated for the treatment of inherited retinal degenerations (IRD) using intravitreal injections. However, higher vitreous elimination rates limit the possibility to treat the retina with small molecule drugs. Here, we investigated the potential of lipid nanocapsules (LNCs) as vehicles to reduce clearance and prolong the delivery of cGMP analogue, CN03 to the retinal photoreceptors. Initially LNCs were investigated for both topical/periocular and intravitreal administration routes. While LNC-mediated drug permeation through the cornea proved to be too low for clinical applications, intravitreal application showed significant promise. Intravitreally administered LNCs containing fluorescent tracer in ex vivo porcine eyes showed complete intravitreal dispersal within 24 h. Ocular bio-distribution on histological sections showed that around 10 % of the LNCs had reached the retina, and 40 % accumulated in the ciliary body. For comparison, we used fluorescently labeled liposomes and these showed a different intraocular distribution with 48 % accumulated in the retina, and almost none were in the ciliary body. LNCs were then tested in retinal explants prepared from wild-type (WT) and rd1 mouse. In WT retina LNCs showed no significant toxic effects up to a concentration of 5 mg/mL. In rd1 retina, the LNC/CN03 formulation protected rd1 photoreceptors with similar efficacy to that of free CN03, demonstrating the usefulness of LNC/CN03 formulation in the treatment of IRD. Overall, our results indicate the suitability of LNCs for intraocular administration and drug delivery to both the retina and the ciliary body.
Collapse
Affiliation(s)
- Gustav Christensen
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn Straße 5-7, 72076 Tübingen, Germany
| | - Dileep Urimi
- Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, RISE Research Institutes of Sweden, Forskargatan 18, Södertälje 151 36, Sweden; Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, Reykjavík IS-107, Iceland
| | - Laura Lorenzo-Soler
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, Reykjavík IS-107, Iceland
| | - Nicolaas Schipper
- Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, RISE Research Institutes of Sweden, Forskargatan 18, Södertälje 151 36, Sweden
| | - François Paquet-Durand
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn Straße 5-7, 72076 Tübingen, Germany.
| |
Collapse
|
21
|
Han H, Li S, Xu M, Zhong Y, Fan W, Xu J, Zhou T, Ji J, Ye J, Yao K. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev 2023; 196:114770. [PMID: 36894134 DOI: 10.1016/j.addr.2023.114770] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ocular diseases seriously affect patients' vision and life quality, with a global morbidity of over 43 million blindness. However, efficient drug delivery to treat ocular diseases, particularly intraocular disorders, remains a huge challenge due to multiple ocular barriers that significantly affect the ultimate therapeutic efficacy of drugs. Recent advances in nanocarrier technology offer a promising opportunity to overcome these barriers by providing enhanced penetration, increased retention, improved solubility, reduced toxicity, prolonged release, and targeted delivery of the loaded drug to the eyes. This review primarily provides an overview of the progress and contemporary applications of nanocarriers, mainly polymer- and lipid-based nanocarriers, in treating various eye diseases, highlighting their value in achieving efficient ocular drug delivery. Additionally, the review covers the ocular barriers and administration routes, as well as the prospective future developments and challenges in the field of nanocarriers for treating ocular diseases.
Collapse
Affiliation(s)
- Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Wenjie Fan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jingwei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Tinglian Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
22
|
Shastri DH, Silva AC, Almeida H. Ocular Delivery of Therapeutic Proteins: A Review. Pharmaceutics 2023; 15:pharmaceutics15010205. [PMID: 36678834 PMCID: PMC9864358 DOI: 10.3390/pharmaceutics15010205] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Therapeutic proteins, including monoclonal antibodies, single chain variable fragment (ScFv), crystallizable fragment (Fc), and fragment antigen binding (Fab), have accounted for one-third of all drugs on the world market. In particular, these medicines have been widely used in ocular therapies in the treatment of various diseases, such as age-related macular degeneration, corneal neovascularization, diabetic retinopathy, and retinal vein occlusion. However, the formulation of these biomacromolecules is challenging due to their high molecular weight, complex structure, instability, short half-life, enzymatic degradation, and immunogenicity, which leads to the failure of therapies. Various efforts have been made to overcome the ocular barriers, providing effective delivery of therapeutic proteins, such as altering the protein structure or including it in new delivery systems. These strategies are not only cost-effective and beneficial to patients but have also been shown to allow for fewer drug side effects. In this review, we discuss several factors that affect the design of formulations and the delivery of therapeutic proteins to ocular tissues, such as the use of injectable micro/nanocarriers, hydrogels, implants, iontophoresis, cell-based therapy, and combination techniques. In addition, other approaches are briefly discussed, related to the structural modification of these proteins, improving their bioavailability in the posterior segments of the eye without affecting their stability. Future research should be conducted toward the development of more effective, stable, noninvasive, and cost-effective formulations for the ocular delivery of therapeutic proteins. In addition, more insights into preclinical to clinical translation are needed.
Collapse
Affiliation(s)
- Divyesh H. Shastri
- Department of Pharmaceutics & Pharmaceutical Technology, K.B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gandhinagar 382016, India
- Correspondence:
| | - Ana Catarina Silva
- FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Hugo Almeida
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mesosystem Investigação & Investimentos by Spinpark, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
23
|
Gogoi NR, Marbaniang D, Pal P, Ray S, Mazumder B. Targeted Nanotherapies for the Posterior Segment of the Eye: An Integrative Review on Recent Advancements and Challenges. Pharm Nanotechnol 2022; 10:268-278. [PMID: 35946098 DOI: 10.2174/2211738510666220806102612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 12/29/2022]
Abstract
The eye is a one-of-a-kind sensory organ with intricate anatomy and physiology. It is protected by a variety of barriers, ranging from static barriers to dynamic barriers. Although these barriers are very effective at protecting the eye from exogenous substances and external stress, they are highly compromised by various vision-impairing diseases of both the anterior and the posterior segment of the eye. Due to ocular elimination systems and intricate obstacles that selectively limit drug entry into the eye, effective drug delivery to the posterior segment of the eye (PSE) continues to be a challenge in ophthalmology. Since more than half of the most debilitating eye illnesses are thought to originate in the posterior segment (PS), understanding the physiology and clearance mechanism of the eye could help design improved formulations that could be noninvasive and intended for targeted posterior segment therapeutics. Moreover, the major drawback associated with the conventional drug delivery system to PSE is minimal therapeutic drug concentration in the desired ocular tissue and life-threatening ophthalmic complications. One possible approach that can be implemented to overcome these ocular barriers for efficient ocular therapy, non-invasive and targeted drug action to the posterior tissues is by designing nanomedicines. This review summarizes the recent non-invasive and patient compliant advances in designing nanomedicines targeting PSE. The various routes and pathways of drug administration to the ocular tissue are also summarized.
Collapse
Affiliation(s)
- Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Daphisha Marbaniang
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Paulami Pal
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Subhabrata Ray
- Department of Pharmaceutical Sciences, Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, West Bengal, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
24
|
André da Silva R, Moraes de Paiva Roda V, Philipe de Souza Ferreira L, Oliani SM, Paula Girol A, Gil CD. Annexins as potential targets in ocular diseases. Drug Discov Today 2022; 27:103367. [PMID: 36165812 DOI: 10.1016/j.drudis.2022.103367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022]
Abstract
Annexins (AnxAs) are Ca2+/phospholipid-binding proteins extensively studied and generally involved in several diseases. Although evidence exists regarding the distribuition of AnxAs in the visual system, their exact roles and the exact cell types of the eye where these proteins are expressed are not well-understood. AnxAs have pro-resolving roles in infectious, autoimmune, degenerative, fibrotic and angiogenic conditions, making them an important target in ocular tissue homeostasis. This review summarizes the current knowledge on the distribution and function of AnxA1-8 isoforms under normal and pathological conditions in the visual system, as well as perspectives for ophthalmologic treatments, including the potential use of the AnxA1 recombinant and/or its mimetic peptide Ac2-26.
Collapse
Affiliation(s)
- Rafael André da Silva
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP 15054-000, Brazil
| | - Vinicius Moraes de Paiva Roda
- Life Systems Biology Graduate Program, Institute of Biomedical Sciences, Universidade de São Paulo (USP), São Paulo, SP 05508-000, Brazil
| | - Luiz Philipe de Souza Ferreira
- Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil
| | - Sonia M Oliani
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil; Advanced Research Center in Medicine (CEPAM) Unilago, São José do Rio Preto, SP 15030-070, Brazil
| | - Ana Paula Girol
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil; Centro Universitário Padre Albino (UNIFIPA), Catanduva, SP 15809-144, Brazil
| | - Cristiane D Gil
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil.
| |
Collapse
|
25
|
Tang B, Xie X, Yang R, Zhou S, Hu R, Feng J, Zheng Q, Zan X. Decorating hexahistidine-metal assemblies with tyrosine enhances the ability of proteins to pass through corneal biobarriers. Acta Biomater 2022; 153:231-242. [PMID: 36126912 DOI: 10.1016/j.actbio.2022.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 11/01/2022]
Abstract
In recent decades, the use of protein drugs has increased dramatically for almost every clinical indication, including autoimmunity and cancer infection, given their high specificity and limited side effects. However, their easy deactivation by the surrounding microenvironment and limited ability to pass through biological barriers pose large challenges to the use of these agents for therapeutic effects; these deficits could be greatly improved by nanodelivery using platforms with suitable physicochemical properties. Here, to assess the effect of the hydrophilicity of nanoparticles on their ability to penetrate biological barriers, the hydrophobic amino acid tyrosine (Y) was decorated onto hexahistidine peptide, and two nanosized YHmA and HmA particles were generated, in which Avastin (Ava, a protein drug) was encapsulated by a coassembly strategy. In vitro and in vivo tests demonstrated that these nanoparticles effectively retained the bioactivity of Ava and protected Ava from proteinase K hydrolysis. Importantly, YHmA displayed a considerably higher affinity to the ocular surface than HmA, and YHmA also exhibited the ability to transfer proteins across the barriers of the anterior segment, which greatly improved the bioavailability of the encapsulated Ava and produced surprisingly good therapeutic outcomes in a model of corneal neovascularization. STATEMENT OF SIGNIFICANCE: Improving the ability to penetrate tissue barriers and averting inactivation caused by surrounding environments, are the keys to broaden the application of protein drugs. By decorating hydrophobic amino acid, tyrosine (Y), on hexahistidine peptide, YHmA encapsulated protein drug Ava with high efficiency by co-assembly strategy. YHmA displayed promising ability to maintain bioactivity of Ava during encapsulation and delivery, and protected Ava from proteinase K hydrolysis. Importantly, YHmA transferred Ava across the corneal epithelial barrier and greatly improved its bioavailability, producing surprisingly good therapeutic outcomes in a model of corneal neovascularization. Our results contributed to not only the strategy to overcome shortcomings of protein drugs, but also suggestion on hydrophilicity as a nonnegligible factor in nanodrug penetration through biobarriers.
Collapse
Affiliation(s)
- Bojiao Tang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China; Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, PR China
| | - Xiaoling Xie
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Ruhui Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Sijie Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Ronggui Hu
- Department of Anesthesiology, Wenzhou Key Laboratory of perioperative medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jiayao Feng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Qinxiang Zheng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China.
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China; Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, PR China.
| |
Collapse
|
26
|
Garkal A, Bangar P, Rajput A, Pingale P, Dhas N, Sami A, Mathur K, Joshi S, Dhuri S, Parikh D, Mutalik S, Mehta T. Long-acting formulation strategies for protein and peptide delivery in the treatment of PSED. J Control Release 2022; 350:538-568. [PMID: 36030993 DOI: 10.1016/j.jconrel.2022.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/17/2022]
Abstract
The invigoration of protein and peptides in serious eye disease includes age-related macular degeneration, choroidal neovascularization, retinal neovascularization, and diabetic retinopathy. The transportation of macromolecules like aptamers, recombinant proteins, and monoclonal antibodies to the posterior segment of the eye is challenging due to their high molecular weight, rapid degradation, and low solubility. Moreover, it requires frequent administration for prolonged therapy. The long-acting novel formulation strategies are helpful to overcome these issues and provide superior therapy. It avoids frequent administration, improves stability, high retention time, and avoids burst release. This review briefly enlightens posterior segments of eye diseases with their diagnosis techniques and treatments. This article mainly focuses on recent advanced approaches like intravitreal implants and injectables, electrospun injectables, 3D printed drug-loaded implants, nanostructure thin-film polymer devices encapsulated cell technology-based intravitreal implants, injectable and depots, microneedles, PDS with ranibizumab, polymer nanoparticles, inorganic nanoparticles, hydrogels and microparticles for delivering macromolecules in the eye for intended therapy. Furthermore, novel techniques like aptamer, small Interference RNA, and stem cell therapy were also discussed. It is predicted that these systems will make revolutionary changes in treating posterior segment eye diseases in future.
Collapse
Affiliation(s)
- Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Priyanka Bangar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Pune, Maharashtra 411038, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik, Maharashtra 422005, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Anam Sami
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Khushboo Mathur
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shubham Joshi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Sonika Dhuri
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Dhaivat Parikh
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
27
|
Delgado-Tirado S, Gonzalez-Buendia L, An M, Amarnani D, Isaacs-Bernal D, Whitmore H, Arevalo-Alquichire S, Leyton-Cifuentes D, Ruiz-Moreno JM, Arboleda-Velasquez JF, Kim LA. Topical Nanoemulsion of an Runt-related Transcription Factor 1 Inhibitor for the Treatment of Pathologic Ocular Angiogenesis. OPHTHALMOLOGY SCIENCE 2022; 2. [PMID: 36213726 PMCID: PMC9536424 DOI: 10.1016/j.xops.2022.100163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Purpose To test the efficacy of runt-related transcription factor 1 (RUNX1) inhibition with topical nanoemulsion containing Ro5-3335 (eNano-Ro5) in experimental ocular neovascularization. Design Preclinical experimental study. Participants In vitro primary culture human retinal endothelial cell (HREC) culture. C57BL/6J 6- to 10-week-old male and female mice. Methods We evaluated the effect of eNano-Ro5 in cell proliferation, cell toxicity, and migration of HRECs. We used an alkali burn model of corneal neovascularization and a laser-induced model of choroidal neovascularization to test in vivo efficacy of eNano-Ro5 in pathologic angiogenesis in mice. We used mass spectrometry to measure penetration of Ro5-3335 released from the nanoemulsion in ocular tissues. Main Outcome Measures Neovascular area. Results RUNX1 inhibition reduced cell proliferation and migration in vitro. Mass spectrometry analysis revealed detectable levels of the active RUNX1 small-molecule inhibitor Ro5-3335 in the anterior and posterior segment of the mice eyes. Topical treatment with eNano-Ro5 significantly reduced corneal neovascularization and improved corneal wound healing after alkali burn. Choroidal neovascularization lesion size and leakage were significantly reduced after treatment with topical eNano-Ro5. Conclusions Topical treatment with eNano-Ro5 is an effective and viable platform to deliver a small-molecule RUNX1 inhibitor. This route of administration offers advantages that could improve the management and outcomes of these sight-threatening conditions. Topical noninvasive delivery of RUNX1 inhibitor could be beneficial for many patients with pathologic ocular neovascularization.
Collapse
Affiliation(s)
- Santiago Delgado-Tirado
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Lucia Gonzalez-Buendia
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Puerta de Hierro-Majadahonda University Hospital, Madrid, and Department of Ophthalmology, Castilla La Mancha University, Albacete, Spain
| | - Miranda An
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Dhanesh Amarnani
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Daniela Isaacs-Bernal
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Hannah Whitmore
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Said Arevalo-Alquichire
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Energy, Materials and Environment Group, Faculty of Engineering, Universidad de La Sabana, Chia, Colombia
| | - David Leyton-Cifuentes
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Jose M. Ruiz-Moreno
- Department of Ophthalmology, Puerta de Hierro-Majadahonda University Hospital, Madrid, and Department of Ophthalmology, Castilla La Mancha University, Albacete, Spain
- Instituto de Microcirugía Ocular (IMO), Madrid, and VISSUM, Alicante, Spain
| | - Joseph F. Arboleda-Velasquez
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Universidad EIA, Envigado, Antioquia, Colombia
- Joseph F. Arboleda-Velasquez, MD, PhD, Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114.
| | - Leo A. Kim
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Correspondence: Leo A. Kim, MD, PhD, Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114.
| |
Collapse
|
28
|
An insight on lipid nanoparticles for therapeutic proteins delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Salman A, Kantor A, McClements ME, Marfany G, Trigueros S, MacLaren RE. Non-Viral Delivery of CRISPR/Cas Cargo to the Retina Using Nanoparticles: Current Possibilities, Challenges, and Limitations. Pharmaceutics 2022; 14:1842. [PMID: 36145593 PMCID: PMC9503525 DOI: 10.3390/pharmaceutics14091842] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
The discovery of the CRISPR/Cas system and its development into a powerful genome engineering tool have revolutionized the field of molecular biology and generated excitement for its potential to treat a wide range of human diseases. As a gene therapy target, the retina offers many advantages over other tissues because of its surgical accessibility and relative immunity privilege due to its blood-retinal barrier. These features explain the large advances made in ocular gene therapy over the past decade, including the first in vivo clinical trial using CRISPR gene-editing reagents. Although viral vector-mediated therapeutic approaches have been successful, they have several shortcomings, including packaging constraints, pre-existing anti-capsid immunity and vector-induced immunogenicity, therapeutic potency and persistence, and potential genotoxicity. The use of nanomaterials in the delivery of therapeutic agents has revolutionized the way genetic materials are delivered to cells, tissues, and organs, and presents an appealing alternative to bypass the limitations of viral delivery systems. In this review, we explore the potential use of non-viral vectors as tools for gene therapy, exploring the latest advancements in nanotechnology in medicine and focusing on the nanoparticle-mediated delivery of CRIPSR genetic cargo to the retina.
Collapse
Affiliation(s)
- Ahmed Salman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Ariel Kantor
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | | | - Gemma Marfany
- Department of Genetics Microbiology and Statistics, University of Barcelona, 08007 Barcelona, Spain
- CIBERER, University of Barcelona, 08007 Barcelona, Spain
| | - Sonia Trigueros
- Department of Genetics Microbiology and Statistics, University of Barcelona, 08007 Barcelona, Spain
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Robert E. MacLaren
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
30
|
Zhao X, Seah I, Xue K, Wong W, Tan QSW, Ma X, Lin Q, Lim JYC, Liu Z, Parikh BH, Mehta KN, Lai JW, Yang B, Tran KC, Barathi VA, Cheong KH, Hunziker W, Su X, Loh XJ. Antiangiogenic Nanomicelles for the Topical Delivery of Aflibercept to Treat Retinal Neovascular Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108360. [PMID: 34726299 DOI: 10.1002/adma.202108360] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The traditional intravitreal injection delivery of antivascular endothelial growth factor (anti-VEGF) to the posterior segment of the eye for treatment of retinal diseases is invasive and associated with sight-threatening complications. To avoid such complications, there has been significant interest in developing polymers for topical drug delivery to the retina. This study reports a nanomicelle drug delivery system made of a copolymer EPC (nEPCs), which is capable of delivering aflibercept to the posterior segment topically through corneal-scleral routes. EPC is composed of poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and polycaprolactone (PCL) segments. In this study, aflibercept-loaded nEPCs (nEPCs + A) are capable of penetrating the cornea in ex vivo porcine eye models and deliver a clinically significant amount of aflibercept to the retina in laser-induced choroidal neovascularization (CNV) murine models, causing CNV regression. nEPCs + A also demonstrate biocompatibility in vitro and in vivo. Interestingly, this study also suggests that nEPCs have intrinsic antiangiogenic properties. The ability to deliver anti-VEGF drugs and the intrinsic antiangiogenic properties of nEPCs may result in synergistic effects, which can be harnessed for effective therapeutics. nEPCs may be a promising topical anti-VEGF delivery platform for the treatment of retinal diseases.
Collapse
Affiliation(s)
- Xinxin Zhao
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138 673, Singapore
| | - Ivan Seah
- Department of Ophthalmology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119 228, Singapore
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138 634, Singapore
| | - Wendy Wong
- Department of Ophthalmology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119 228, Singapore
| | - Queenie Shu Woon Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138 673, Singapore
| | - Xiaoxiao Ma
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138 673, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138 634, Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138 634, Singapore
| | - Zengping Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138 673, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119 228, Singapore
| | - Bhav Harshad Parikh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138 673, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119 228, Singapore
| | - Karishma N Mehta
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138 673, Singapore
- Singapore Institute of Technology (SIT), SIT@Dover, 10 Dover Drive, Singapore, 138 683, Singapore
| | - Joel Weijia Lai
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore, 487 372, Singapore
| | - Binxia Yang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138 673, Singapore
| | - Kim Chi Tran
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119 228, Singapore
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Level 6 Discovery Tower, Singapore, 169856, Singapore
- Academic Clinical Program in Ophthalmology, Duke-NUS Medical School, 8 College Road, Singapore, 169 857, Singapore
| | - Kang Hao Cheong
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore, 487 372, Singapore
- SUTD-Massachusetts Institute of Technology International Design Centre, 8 Somapah Road, Singapore, 487 372, Singapore
| | - Walter Hunziker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138 673, Singapore
| | - Xinyi Su
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138 673, Singapore
- Department of Ophthalmology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119 228, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119 228, Singapore
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Level 6 Discovery Tower, Singapore, 169856, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138 634, Singapore
| |
Collapse
|
31
|
DiPasquale SA, Wuchte LD, Mosley RJ, Demarest RM, Voyles ML, Byrne ME. One Week Sustained In Vivo Therapeutic Release and Safety of Novel Extended-Wear Silicone Hydrogel Contact Lenses. Adv Healthc Mater 2022; 11:e2101263. [PMID: 34519442 DOI: 10.1002/adhm.202101263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/10/2021] [Indexed: 12/31/2022]
Abstract
Since the seminal work of Wichterle in 1965 describing the first soft contact lenses and their potential for ocular drug delivery, the field has yet to realize his vision. Maintaining all lens commercial properties combined with a mechanism for controlled drug release of therapeutically relevant concentrations for duration of wear is a major challenge. Here, successful in vivo week-long sustained release of a small molecular weight therapeutic in rabbits from extended-wear silicone hydrogel contact lenses meeting all commercial specifications by utilizing a novel macromolecular memory strategy is reported for the first time. Lens-treated eyes show a continuous, therapeutically relevant bromfenac tear concentration of 256.4 ± 23.1 µg mL-1 for 8 days. Bromday (bromfenac ophthalmic solution, 0.09%, Bausch+Lomb) topical drops exhibit a quick peak concentration of 269.3 ± 85.7 µg mL-1 and 100 min duration. Bioavailability (AUC0-8days ) and mean residence time of lenses are 26 and 155 times higher than drops, respectively. Lenses are safe, well tolerated, and no corneal histological differences are observed. This work highlights the enormous potential of drug releasing lenses as a platform strategy, and offers a new dropless clinical strategy for post-cataract, uveitis, post-LASIK, and corneal abrasion treatment.
Collapse
Affiliation(s)
- Stephen A. DiPasquale
- OcuMedic, Inc. 107 Gilbreth Parkway Mullica Hill NJ 08062 USA
- Biomimetic & Biohybrid Materials Biomedical Devices and Drug Delivery Laboratories Department of Biomedical Engineering Rowan University Glassboro NJ 08028 USA
| | - Liana D. Wuchte
- Biomimetic & Biohybrid Materials Biomedical Devices and Drug Delivery Laboratories Department of Biomedical Engineering Rowan University Glassboro NJ 08028 USA
| | - Robert J. Mosley
- Biomimetic & Biohybrid Materials Biomedical Devices and Drug Delivery Laboratories Department of Biomedical Engineering Rowan University Glassboro NJ 08028 USA
| | - Renee M. Demarest
- School of Osteopathic Medicine Rowan University Stratford NJ 08084 USA
| | | | - Mark E. Byrne
- OcuMedic, Inc. 107 Gilbreth Parkway Mullica Hill NJ 08062 USA
- Biomimetic & Biohybrid Materials Biomedical Devices and Drug Delivery Laboratories Department of Biomedical Engineering Rowan University Glassboro NJ 08028 USA
- Department of Chemical Engineering Rowan University Glassboro NJ 08028 USA
| |
Collapse
|
32
|
Loftsson T, Stefánsson E. Aqueous eye drops containing drug/cyclodextrin nanoparticles deliver therapeutic drug concentrations to both anterior and posterior segment. Acta Ophthalmol 2022; 100:7-25. [PMID: 33876553 DOI: 10.1111/aos.14861] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Using topical application to deliver therapeutic concentrations of drugs to the posterior segment of the eye remains very challenging. As a result, posterior segment diseases are usually treated by intravitreal injection or implant. While topical treatments are commonly used for anterior segment conditions, they sometimes require frequent applications. Eye drop formulations based on γ-cyclodextrin (γCD)-based nanoparticle aggregates were developed, which in animal models and clinical studies deliver therapeutic concentrations of drugs (dorzolamide and dexamethasone) to both anterior and posterior segments of the eye. An early study in humans showed dorzolamide/γCD eye drops could achieve comparable intraocular pressure decreases to commercial dorzolamide eye drops, but with less frequent application. Pilot studies with dexamethasone/γCD eye drops suggested that they could be effective in a range of conditions, including diabetic macular oedema, cystoid macular oedema and vitritis secondary to uveitis, postcataract surgery inflammation and postoperative treatment in trabeculectomy. Phase II studies with similar dexamethasone/γCD nanoparticle eye drops in diabetic macular oedema and postcataract surgery inflammation have recently been completed. This technology has the potential to be used with other classes of drug molecules and to replace or complement invasive treatments, providing safer, non-invasive therapies, particularly for posterior segment conditions, that can be self-administered as eye drops by patients.
Collapse
|
33
|
Löscher M, Seiz C, Hurst J, Schnichels S. Topical Drug Delivery to the Posterior Segment of the Eye. Pharmaceutics 2022; 14:pharmaceutics14010134. [PMID: 35057030 PMCID: PMC8779621 DOI: 10.3390/pharmaceutics14010134] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Topical drug delivery to the posterior segment of the eye is a very complex challenge. However, topical delivery is highly desired, to achieve an easy-to-use treatment option for retinal diseases. In this review, we focus on the drug characteristics that are relevant to succeed in this challenge. An overview on the ocular barriers that need to be overcome and some relevant animal models to study ocular pharmacokinetics are given. Furthermore, a summary of substances that were able to reach the posterior segment after eye drop application is provided, as well as an outline of investigated delivery systems to improve ocular drug delivery. Some promising results of substances delivered to the retina suggest that topical treatment of retinal diseases might be possible in the future, which warrants further research.
Collapse
|
34
|
How liposomes pave the way for ocular drug delivery after topical administration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Abstract
INTRODUCTION Retinal diseases are one of the main reasons for vision loss where all available drug treatments are based on invasive drug administration such as intravitreal injections. Despite huge efforts and some promising results in animal models, almost all delivery technologies tested have failed in human trials. There are however examples of clinically effective topical delivery systems such as fast dissolving aqueous eye drop suspensions. AREAS COVERED Six obstacles to topical drug delivery to the eye have been identified and discussed in some details. These obstacles consist of static membrane barriers to drug permeation into the eye, dynamic barriers such as the lacrimal drainage and physiochemical barriers such as low thermodynamic activity. It is explained how and why these obstacles hamper drug permeation and how different technologies, both those that are applied in marketed drug products and those that are under investigation, have addressed these obstacles. EXPERT OPINION The reason that most topical drug delivery systems have failed to deliver therapeutic drug concentrations to the retina is that they do not address physiochemical barriers such as the thermodynamic activity of the permeating drug molecules. Topical drug delivery to the retina has only been successful when the static, dynamic, and physiochemical barriers are addressed simultaneously.
Collapse
Affiliation(s)
- Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
36
|
Xu H, Tang B, Huang W, Luo S, Zhang T, Yuan J, Zheng Q, Zan X. Deliver protein across bio-barriers via hexa-histidine metal assemblies for therapy: a case in corneal neovascularization model. Mater Today Bio 2021; 12:100143. [PMID: 34765961 PMCID: PMC8569714 DOI: 10.1016/j.mtbio.2021.100143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 01/26/2023] Open
Abstract
Because of their high specificity and low side effects, protein drugs possess a substantial global market. However, the low bioavailability of protein is still a major obstacle to their expanded applications, which is expected to be answered with proper protein formulations. Taking corneal neovascularization (CNV) as an example, we demonstrated a co-assembled system of hexa-histidine and Ava (Avastin) with metal ions (HmA@Ava) could cross the cornea, the most important bio-barrier during the treatment of most diseases of the anterior segment in clinics. We found that the nanosized HmA@Ava efficiently encapsulated Ava with impressive loading capacity without destroying the bioactivity of Ava and assisted Ava penetration through the corneal barriers to effectively inhibit CNV development in an alkali burn rat model with sustained and pH-dependent Ava release. Our results suggested that the co-assembled strategy of protein and HmA is a proper formulation to protein drugs, with promising penetration ability to deliver protein across bio-barriers, which could open a path for topical administration of protein drugs for treatment of various ocular diseases and hold enormous potential for delivery of therapeutic proteins not only for ocular diseases but also for other diseases that require protein treatment. HmA@Ava can bring protein drug, Ava, across over the primary bio-barrier of the anterior segment and efficiently treat CNV. HmA@Ava was nanoparticles, with impressive loading capacity without destroying bioactivity of Ava and strong pH-dependent release. HmA can open a path for the treatment of eye diseases and hold huge potential to protein drugs to other diseases.
Collapse
Affiliation(s)
- H Xu
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China.,School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - B Tang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - W Huang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China.,Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, 317000, PR China
| | - S Luo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - T Zhang
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - J Yuan
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Q Zheng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China.,School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - X Zan
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China.,School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China.,Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
37
|
Brown GT, Karth PA, Hunter AA. Novel Postoperative Dropless Protocol for Micro-Incision Vitrectomy Surgery. Ophthalmic Surg Lasers Imaging Retina 2021; 52:587-591. [PMID: 34766851 DOI: 10.3928/23258160-20211014-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE To evaluate the outcomes of a novel postoperative dropless protocol for 25-gauge and 27-gauge micro-incision vitrectomy surgery (MIVS). PATIENTS AND METHODS The institutional review board approved a single-center, retrospective study. A total of 493 surgeries were identified, and 451 cases from 369 patients met eligibility criteria. Instead of pre- or postoperative drops, patients were given a novel postoperative dropless protocol consisting of subconjunctival injections of a 1:1 cefazolin:dexamethasone mix at each sclerotomy and intravitreally, and injection of posterior sub-Tenon's Kenalog. Primary outcome measure was cases of postoperative endophthalmitis. RESULTS There was one presumed case of endophthalmitis. Anterior chamber paracentesis sample was negative for culture and Gram stain. For all patients, mean logMAR best-corrected visual acuity improved from 0.65 (±0.69) to 0.57 (±0.61) postoperatively (P = 0.004). Mean intraocular pressure increased from 14.5 (±4.3) to 15.5 (±4.8) postoperatively (P < 0.001). Mean follow-up was 96 days. CONCLUSION This novel postoperative dropless protocol could potentially be a convenient alternative to topical eye drops for patients undergoing MIVS, but further study is required to establish its safety. [Ophthalmic Surg Lasers Imaging Retina. 2021;52:587-592.].
Collapse
|
38
|
Kattar A, Concheiro A, Alvarez-Lorenzo C. Diabetic eye: associated diseases, drugs in clinic, and role of self-assembled carriers in topical treatment. Expert Opin Drug Deliv 2021; 18:1589-1607. [PMID: 34253138 DOI: 10.1080/17425247.2021.1953466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Diabetes is a pandemic disease that causes relevant ocular pathologies. Diabetic retinopathy, macular edema, cataracts, glaucoma, or keratopathy strongly impact the quality of life of the patients. In addition to glycemic control, intense research is devoted to finding more efficient ocular drugs and improved delivery systems that can overcome eye barriers. Areas covered: The aim of this review is to revisit first the role of diabetes in the development of chronic eye diseases. Then, commercially available drugs and new candidates in clinical trials are tackled together with the pros and cons of their administration routes. Subsequent sections deal with self-assembled drug carriers suitable for eye instillation combining patient-friendly administration with high ocular bioavailability. Performance of topically administered polymeric micelles, liposomes, and niosomes for the management of diabetic eye diseases is analyzed in the light of ex vivo and in vivo results and outcomes of clinical trials. Expert opinion: Self-assembled carriers are being shown useful for efficient delivery of not only a variety of small drugs but also macromolecules (e.g. antibodies) and genes. Successful design of drug carriers may offer alternatives to intraocular injections and improve the treatment of both anterior and posterior segments diabetic eye diseases.
Collapse
Affiliation(s)
- Axel Kattar
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
39
|
Alves ADCS, Bruinsmann FA, Guterres SS, Pohlmann AR. Organic Nanocarriers for Bevacizumab Delivery: An Overview of Development, Characterization and Applications. Molecules 2021; 26:4127. [PMID: 34299401 PMCID: PMC8305806 DOI: 10.3390/molecules26144127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023] Open
Abstract
Bevacizumab (BCZ) is a recombinant humanized monoclonal antibody against the vascular endothelial growth factor, which is involved in the angiogenesis process. Pathologic angiogenesis is observed in several diseases including ophthalmic disorders and cancer. The multiple administrations of BCZ can cause adverse effects. In this way, the development of controlled release systems for BCZ delivery can promote the modification of drug pharmacokinetics and, consequently, decrease the dose, toxicity, and cost due to improved efficacy. This review highlights BCZ formulated in organic nanoparticles providing an overview of the physicochemical characterization and in vitro and in vivo biological evaluations. Moreover, the main advantages and limitations of the different approaches are discussed. Despite difficulties in working with antibodies, those nanocarriers provided advantages in BCZ protection against degradation guaranteeing bioactivity maintenance.
Collapse
Affiliation(s)
- Aline de Cristo Soares Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (F.A.B.); (S.S.G.)
| | | | | | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (F.A.B.); (S.S.G.)
| |
Collapse
|
40
|
Wang L, Zhou MB, Zhang H. The Emerging Role of Topical Ocular Drugs to Target the Posterior Eye. Ophthalmol Ther 2021; 10:465-494. [PMID: 34218424 PMCID: PMC8319259 DOI: 10.1007/s40123-021-00365-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of chronic fundus diseases is increasing with the aging of the general population. The treatment of these intraocular diseases relies on invasive drug delivery because of the globular structure and multiple barriers of the eye. Frequent intraocular injections bring heavy burdens to the medical care system and patients. The use of topical drugs to treat retinal diseases has always been an attractive solution. The fast development of new materials and technologies brings the possibility to develop innovative topical formulations. This article reviews anatomical and physiological barriers of the eye which affect the bioavailability of topical drugs. In addition, we summarize innovative topical formulations which enhance the permeability of drugs through the ocular surface and/or extend the drug retention time in the eye. This article also reviews the differences of eyes between different laboratory animals to address the translational challenges of preclinical models. The fast development of in vitro eye models may provide more tools to increase the clinical translationality of topical formulations for intraocular diseases. Clinical successes of topical formulations rely on continuous and collaborative efforts between different disciplines.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hui Zhang
- Yuanpu Eye Biopharmaceutical Co. Ltd., Chengdu, China.
- , No. 14 Jiuxing Avenue, Gaoxin District, Chengdu, China.
| |
Collapse
|
41
|
Silva M, Peng T, Zhao X, Li S, Farhan M, Zheng W. Recent trends in drug-delivery systems for the treatment of diabetic retinopathy and associated fibrosis. Adv Drug Deliv Rev 2021; 173:439-460. [PMID: 33857553 DOI: 10.1016/j.addr.2021.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy is a frequent microvascular complication of diabetes and a major cause of visual impairment. In advanced stages, the abnormal neovascularization can lead to fibrosis and subsequent tractional retinal detachment and blindness. The low bioavailability of the drugs at the target site imposed by the anatomic and physiologic barriers within the eye, requires long term treatments with frequent injections that often compromise patient's compliance and increase the risk of developing more complications. In recent years, much effort has been put towards the development of new drug delivery platforms aiming to enhance their permeation, to prolong their retention time at the target site and to provide a sustained release with reduced toxicity and improved efficacy. This review provides an overview of the etiology and pathophysiology of diabetic retinopathy and current treatments. It addresses the specific challenges associated to the different ocular delivery routes and provides a critical review of the most recent developments made in the drug delivery field.
Collapse
Affiliation(s)
- Marta Silva
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Tangming Peng
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Xia Zhao
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Shuai Li
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Mohd Farhan
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Wenhua Zheng
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau.
| |
Collapse
|
42
|
Xu C, Lu J, Zhou L, Liang J, Fang L, Cao F. Multifunctional nanocomposite eye drops of cyclodextrin complex@layered double hydroxides for relay drug delivery to the posterior segment of the eye. Carbohydr Polym 2021; 260:117800. [PMID: 33712148 DOI: 10.1016/j.carbpol.2021.117800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/21/2021] [Accepted: 02/06/2021] [Indexed: 12/26/2022]
Abstract
Topical drug delivery system to the posterior segment of the eye is facing many challenges, such as rapid drug elimination, low permeability, and low concentration at the targeted sites. To overcome these challenges, Multifunctional nanocomposite eye drops of dexamethasone-carboxymethyl-β-cyclodextrin@layered double hydroxides-glycylsarcosine (DEX-CM-β-CD@LDH-GS) were developed for relay drug delivery. Herein, our studies demonstrated that DEX-CM-β-CD@LDH-GS could penetrate through human conjunctival epithelial cells with an intact structure and exhibited integrity in the sclera of rabbits' eyes with in vivo fluorescence resonance energy transfer imaging. Consequently, tissue distribution indicated that DEX-CM-β-CD@LDH-GS nanocomposite eye drops could maintain the effective therapeutic concentration of DEX in choroid-retina within 3 h. As a relay drug delivery system, drug-CD@LDH nanocomposites offer an efficient strategy for drug delivery from ocular surface to the posterior segment.
Collapse
Affiliation(s)
- Chen Xu
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China; WuXi Clinical Development Services Co., Ltd, 666 Gaoxin Road, Wuhan, 430075, China
| | - Jinhui Lu
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Li Zhou
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Jie Liang
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Feng Cao
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China.
| |
Collapse
|
43
|
Navarro-Partida J, Castro-Castaneda CR, Santa Cruz-Pavlovich FJ, Aceves-Franco LA, Guy TO, Santos A. Lipid-Based Nanocarriers as Topical Drug Delivery Systems for Intraocular Diseases. Pharmaceutics 2021; 13:pharmaceutics13050678. [PMID: 34065059 PMCID: PMC8151015 DOI: 10.3390/pharmaceutics13050678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Effective drug delivery to intraocular tissues remains a great challenge due to complex anatomical and physiological barriers that selectively limit the entry of drugs into the eye. To overcome these challenges, frequent topical application and regular intravitreal injections are currently used to achieve the desired drug concentrations into the eye. However, the repetitive installation or recurrent injections may result in several side effects. Recent advancements in the field of nanoparticle-based drug delivery have demonstrated promising results for topical ophthalmic nanotherapies in the treatment of intraocular diseases. Studies have revealed that nanocarriers enhance the intraocular half-life and bioavailability of several therapies including proteins, peptides and genetic material. Amongst the array of nanoparticles available nowadays, lipid-based nanosystems have shown an increased efficiency and feasibility in topical formulations, making them an important target for constant and thorough research in both preclinical and clinical practice. In this review, we will cover the promising lipid-based nanocarriers used in topical ophthalmic formulations for intraocular drug delivery.
Collapse
Affiliation(s)
- Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
| | - Carlos Rodrigo Castro-Castaneda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Luis Abraham Aceves-Franco
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
| | - Tomer Ori Guy
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
- Correspondence: ; Tel.: +52-(33)-36-69-30-00 (ext. 2540)
| |
Collapse
|
44
|
Sharma P, Mittal S. Nanotechnology: revolutionizing the delivery of drugs to treat age-related macular degeneration. Expert Opin Drug Deliv 2021; 18:1131-1149. [PMID: 33691548 DOI: 10.1080/17425247.2021.1888925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Age-related macular degeneration (AMD) is a progressive retinal disease that degrades the eye's ability to grasp visual acuity. The antivascular endothelial growth factor (VEGF) therapies have made significant strides in improving the quality of life, and there is a continued opportunity to improve delivery, outcomes, and patient convenience and compliance. The treatments available could gain better clinical outcome from novel therapeutics through nanotechnology application.Areas covered: This review summarizes AMD biology and the pathophysiology of the disease along with the successes and limitations of available therapies. It further discusses the promising nanotechnology modalities that could become the cornerstone of future AMD research for improving delivery and reducing frequency of administration thus, enabling development of novel therapeutics.Expert opinion: The robust translation from preclinical work to clinical outcome for AMD remains an unmet need. Continuing to investigate in deeper understanding of biology and advancing high-quality targets into the clinic in combination with the application of advanced nanotechnology to design patient-centric offerings for both dry and wet AMD is needed. Because of the lack of regulatory precedence, and challenging manufacturing and supply chain need, the future of nano-enabled technologies is challenging but presents exciting treatment options for AMD.
Collapse
Affiliation(s)
| | - Sachin Mittal
- Pharmaceutical Sciences, Merck & Co., Inc, Kenilworth, NJ, USA
| |
Collapse
|
45
|
Kumar Dubey S, Pradhan R, Hejmady S, Singhvi G, Choudhury H, Gorain B, Kesharwani P. Emerging innovations in nano-enabled therapy against age-related macular degeneration: A paradigm shift. Int J Pharm 2021; 600:120499. [PMID: 33753164 DOI: 10.1016/j.ijpharm.2021.120499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/03/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD), a degenerative eye disease, is the major cause of irreversible loss of vision among individuals aged 50 and older. Both genetic and environmental factors are responsible for the progressive damage to central vision. It is a multifactorial retinal disease with features such as drusen, hypopigmentation and/or hyperpigmentation of the retinal pigment epithelium, and even choroidal neovascularization in certain patients. AMD is of two major forms: exudative (wet) and atrophic (dry) with changes affecting the macula leading to impaired vision. Although the retina remains an accessible portion for delivering drugs, there are no current options to cure or treat AMD. The existing expensive therapeutics are unable to treat the underlying pathology but display several side effects. However, recent innovations in nanotherapeutics provide an optimal alternative of drug delivery to treat the neovascular condition. These new-age technologies in the nanometer scale would enhance bioactivity and improve the bioavailability of drugs at the site of action to treat AMD. The nanomedicine also provides sustained release of the drug with prolonged retention after penetrating across the ocular tissues. In this review, the insights into the cellular and molecular mechanisms associated with the pathophysiology of AMD are provided. It also serves to review the current progress in nanoparticle-based drug delivery systems that offer feasible treatments in AMD.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India; Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Siddhanth Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia; Center for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi 110062, India.
| |
Collapse
|
46
|
Safety and Tolerability of Topical Ophthalmic Triamcinolone Acetonide-Loaded Liposomes Formulation and Evaluation of Its Biologic Activity in Patients with Diabetic Macular Edema. Pharmaceutics 2021; 13:pharmaceutics13030322. [PMID: 33801366 PMCID: PMC7998140 DOI: 10.3390/pharmaceutics13030322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/01/2023] Open
Abstract
Intravitreal injections (IVTs) of corticosteroids as triamcinolone acetonide (TA) are frequently used for the treatment of many vitreous and retinal disorders. However, IVTs are related to severe ocular complications. Lately, a topical ophthalmic TA-loaded liposomes formulation (TALF) was designed to transport TA into the posterior segment of the eye when instilled on the ocular surface. To evaluate the safety, tolerability, and biological activity of TALF, an animal study and a phase I clinical assay were performed. Moreover, four patients with diabetic macular edema (DME) were treated with TALF in order to explore the biological activity of the formulation. No inflammation, lens opacity, swelling, or increase in intraocular pressure were recorded after the instillation of TALF in any of the animal or clinical studies. Mainly, mild and transient adverse events such as dry eye and burning were reported. TALF significantly improves visual acuity and diminishes central foveal thickness in patients with DME. The current data demonstrate the safety, tolerability, and biological activity of TALF. It seems that TALF can be used topically to treat vitreous and retinal diseases that respond to TA such as DME, avoiding the use of corticosteroid IVTs and their associated hazards.
Collapse
|
47
|
Lyu Q, Peng L, Hong X, Fan T, Li J, Cui Y, Zhang H, Zhao J. Smart nano-micro platforms for ophthalmological applications: The state-of-the-art and future perspectives. Biomaterials 2021; 270:120682. [PMID: 33529961 DOI: 10.1016/j.biomaterials.2021.120682] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Smart nano-micro platforms have been extensively applied for diverse biomedical applications, mostly focusing on cancer therapy. In comparison with conventional nanotechnology, the smart nano-micro matrix can exhibit specific response to exogenous or endogenous triggers, and thus can achieve multiple functions e.g. site-specific drug delivery, bio-imaging and detection of bio-molecules. These intriguing techniques have expanded into ophthalmology in recent years, yet few works have been summarized in this field. In this work, we provide the state-of-the-art of diverse nano-micro platforms based on both the conventional materials (e.g. natural or synthetic polymers, lipid nanomaterials, metal and metal oxide nanoparticles) and emerging nanomaterials (e.g. up-conversion nanoparticles, quantum dots and carbon materials) in ophthalmology, with some smart nano/micro platformers highlighted. The common ocular diseases studied in the field of nano-micro systems are firstly introduced, and their therapeutic method and the related drawback in clinic treatment are presented. The recent progress of different materials for diverse ocular applications is then demonstrated, with the representative nano- and micro-systems highlighted in detail. At last, an in-depth discussion on the clinical translation challenges faced in this field and the future direction are provided. This review would allow the researchers to design more smart nanomedicines in a more rational manner for specific ophthalmology applications.
Collapse
Affiliation(s)
- Qinghua Lyu
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ling Peng
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Jingying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, 518000, PR China
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jun Zhao
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China.
| |
Collapse
|
48
|
Mustfa SA, Maurizi E, McGrath J, Chiappini C. Nanomedicine Approaches to Negotiate Local Biobarriers for Topical Drug Delivery. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Salman Ahmad Mustfa
- Centre for Craniofacial and Regenerative Biology King's College London London SE1 9RT UK
| | - Eleonora Maurizi
- Dipartimento di Medicina e Chirurgia Università di Parma Parma 43121 Italy
| | - John McGrath
- St John's Institute of Dermatology King's College London London SE1 9RT UK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology King's College London London SE1 9RT UK
- London Centre for Nanotechnology King's College London London WC2R 2LS UK
| |
Collapse
|
49
|
Nanodiagnostics and Nanotherapeutics for age-related macular degeneration. J Control Release 2021; 329:1262-1282. [DOI: 10.1016/j.jconrel.2020.10.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022]
|
50
|
Jemni-Damer N, Guedan-Duran A, Fuentes-Andion M, Serrano-Bengoechea N, Alfageme-Lopez N, Armada-Maresca F, Guinea GV, Pérez-Rigueiro J, Rojo F, Gonzalez-Nieto D, Kaplan DL, Panetsos F. Biotechnology and Biomaterial-Based Therapeutic Strategies for Age-Related Macular Degeneration. Part I: Biomaterials-Based Drug Delivery Devices. Front Bioeng Biotechnol 2020; 8:549089. [PMID: 33224926 PMCID: PMC7670958 DOI: 10.3389/fbioe.2020.549089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
Age-related Macular Degeneration (AMD) is an up-to-date untreatable chronic neurodegenerative eye disease of multifactorial origin, and the main causes of blindness in over 65 years old people. It is characterized by a slow progression and the presence of a multitude of factors, highlighting those related to diet, genetic heritage and environmental conditions, present throughout each of the stages of the illness. Current therapeutic approaches, mainly consisting of intraocular drug delivery, are only used for symptoms relief and/or to decelerate the progression of the disease. Furthermore, they are overly simplistic and ignore the complexity of the disease and the enormous differences in the symptomatology between patients. Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, the development of biomaterials-based approaches for a personalized and controlled delivery of therapeutic drugs and biomolecules represents the main challenge for the defeat of this neurodegenerative disease. Here we present a critical review of the available and under development AMD therapeutic approaches, from a biomaterials and biotechnological point of view. We highlight benefits and limitations and we forecast forthcoming alternatives based on novel biomaterials and biotechnology methods. In the first part we expose the physiological and clinical aspects of the disease, focusing on the multiple factors that give origin to the disorder and highlighting the contribution of these factors to the triggering of each step of the disease. Then we analyze available and under development biomaterials-based drug-delivery devices (DDD), taking into account the anatomical and functional characteristics of the healthy and ill retinal tissue.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Atocha Guedan-Duran
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - María Fuentes-Andion
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Nora Serrano-Bengoechea
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Silk Biomed SL, Madrid, Spain
| | - Nuria Alfageme-Lopez
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Silk Biomed SL, Madrid, Spain
| | | | - Gustavo V Guinea
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Pérez-Rigueiro
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco Rojo
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Fivos Panetsos
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Silk Biomed SL, Madrid, Spain
| |
Collapse
|