1
|
Weng L, Ma M, Yin C, Fei ZX, Yang KK, Ross CA, Shi LY. Synthesis and Self-Assembly of Silicon-Containing Azobenzene Liquid Crystalline Block Copolymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lin Weng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mingchao Ma
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chenxiao Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Xiong Fei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ke-Ke Yang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Caroline A. Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ling-Ying Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Wei W, Xiong H. Liquid-Crystalline Polymers: Molecular Engineering, Hierarchical Structures, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11514-11520. [PMID: 36103648 DOI: 10.1021/acs.langmuir.2c01768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid-crystalline polymers (LCPs) are a unique class of soft materials that combine liquid crystal and polymer characteristics. This perspective highlights recent advances of LCPs on the aspects of molecular engineering, hierarchical structures, and emerging applications. The strategy of sequence control in polymer synthesis has been introduced to tailor the primary structures of LCPs as well as their phases and orders. By incorporating mesogenic motifs rich in shape, order, and interaction into LCPs, novel bulk and interfacial structures on hierarchical scales are anticipated. The intrinsic features and fascinating properties of LCPs enable them to find potential applications in emerging areas including integrated circuits, lasing, environment, and energy, implying compelling opportunities for LCPs in fundamental science and transformative technologies.
Collapse
|
3
|
Yang W, Liu D, Luo L, Li P, Liu Y, Shen Z, Lei T, Yang H, Fan XH, Zhou QF. Sub-5 nm homeotropically aligned columnar structures of hybrids constructed by porphyrin and oligo(dimethylsiloxane). Chem Commun (Camb) 2021; 58:108-111. [PMID: 34875677 DOI: 10.1039/d1cc05886j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of tetraphenylporphyrin-based thermotropic liquid crystals containing oligo(dimethylsiloxane) were synthesized. These disc-coil hybrids form ordered nanostructures with periodic sizes on the sub-5 nm scale, including oblique columnar, lamellar, and hexagonal columnar phases. Films with sub-5 nm line patterns and homeotropically aligned columnar structures can be obtained by substrate-induced self-assembly.
Collapse
Affiliation(s)
- Weilu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Dong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Peiyun Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Huai Yang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Qi-Feng Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Qin N, Qian ZG, Zhou C, Xia XX, Tao TH. 3D electron-beam writing at sub-15 nm resolution using spider silk as a resist. Nat Commun 2021; 12:5133. [PMID: 34446721 PMCID: PMC8390743 DOI: 10.1038/s41467-021-25470-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Electron beam lithography (EBL) is renowned to provide fabrication resolution in the deep nanometer scale. One major limitation of current EBL techniques is their incapability of arbitrary 3d nanofabrication. Resolution, structure integrity and functionalization are among the most important factors. Here we report all-aqueous-based, high-fidelity manufacturing of functional, arbitrary 3d nanostructures at a resolution of sub-15 nm using our developed voltage-regulated 3d EBL. Creating arbitrary 3d structures of high resolution and high strength at nanoscale is enabled by genetically engineering recombinant spider silk proteins as the resist. The ability to quantitatively define structural transitions with energetic electrons at different depths within the 3d protein matrix enables polymorphic spider silk proteins to be shaped approaching the molecular level. Furthermore, genetic or mesoscopic modification of spider silk proteins provides the opportunity to embed and stabilize physiochemical and/or biological functions within as-fabricated 3d nanostructures. Our approach empowers the rapid and flexible fabrication of heterogeneously functionalized and hierarchically structured 3d nanocomponents and nanodevices, offering opportunities in biomimetics, therapeutic devices and nanoscale robotics.
Collapse
Affiliation(s)
- Nan Qin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chengzhe Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China.
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Sakaino H, Lamers BAG, Meskers SCJ, Meijer EW, Vantomme G. Photo‐controlled alignment and helical organization in main‐chain liquid crystalline alternating polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hirotoshi Sakaino
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
- Electronic & Imaging Materials Research Laboratories Toray Industries, Inc. Otsu Japan
| | - Brigitte A. G. Lamers
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
| | - Stefan C. J. Meskers
- Institute for Complex Molecular Systems and Molecular Materials and Nanosystems Eindhoven University of Technology Eindhoven The Netherlands
| | - E. W. Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
6
|
Macroscopic Regulation of Hierarchical Nanostructures in Liquid-crystalline Block Copolymers towards Functional Materials. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2531-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Yang W, Zhang W, Luo L, Lyu X, Xiao A, Shen Z, Fan XH. Ordered structures and sub-5 nm line patterns from rod-coil hybrids containing oligo(dimethylsiloxane). Chem Commun (Camb) 2020; 56:10341-10344. [PMID: 32760981 DOI: 10.1039/d0cc04377j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sub-5 nm ordered nanostructures including lamellar, double gyroid, and columnar phases are formed by a series of oligo(dimethylsiloxane) (ODMS)-based rod-coil liquid crystals with accurate molecular weights. Films with well-oriented line patterns can be obtained by substrate-induced directed self-assembly, which may be further used as lithographic templates.
Collapse
Affiliation(s)
- Weilu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Xiao AQ, Lyu XL, Pan HB, Tang ZH, Zhang W, Shen ZH, Fan XH. Homeotropic Alignment and Selective Adsorption of Nanoporous Polymer Film Polymerized from Hydrogen-bonded Liquid Crystal. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2431-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Shi LY, Lan J, Lee S, Cheng LC, Yager KG, Ross CA. Vertical Lamellae Formed by Two-Step Annealing of a Rod-Coil Liquid Crystalline Block Copolymer Thin Film. ACS NANO 2020; 14:4289-4297. [PMID: 32182037 PMCID: PMC7309319 DOI: 10.1021/acsnano.9b09702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/17/2020] [Indexed: 05/05/2023]
Abstract
Silicon-containing block copolymer thin films with high interaction parameter and etch contrast are ideal candidates to generate robust nanotemplates for advanced nanofabrication, but they typically form in-plane oriented microdomains as a result of the dissimilar surface energies of the blocks. Here, we describe a two-step annealing method to produce vertically aligned lamellar structures in thin film of a silicon-containing rod-coil thermotropic liquid crystalline block copolymer. The rod-coil block copolymer with the volume fraction of the Si-containing block of 0.22 presents an asymmetrical lamellar structure in which the rod block forms a hexatic columnar nematic liquid crystalline phase. A solvent vapor annealing step first produces well-ordered in-plane cylinders of the Si-containing block, then a subsequent thermal annealing promotes the phase transition from in-plane cylinders to vertical lamellae. The pathways of the order-order transition were examined by microscopy and in situ using grazing incidence small-angle X-ray scattering and wide-angle X-ray scattering.
Collapse
Affiliation(s)
- Ling-Ying Shi
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ji Lan
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Sangho Lee
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Li-Chen Cheng
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kevin G. Yager
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Caroline A. Ross
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Hirota K, Hara S, Wada H, Shimojima A, Kuroda K. Fabrication of Uniaxially Aligned Silica Nanogrooves with Sub-5 nm Periodicity on Centimeter-Scale Si Substrate Using Poly(dimethylsiloxane) Stamps. ACS NANO 2019; 13:2795-2803. [PMID: 30626184 DOI: 10.1021/acsnano.8b07714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The large-area fabrication of aligned nanopatterns with sub-5 nm feature size is crucial for developing nanodevices. Highly ordered nanostructures fabricated through molecular self-assembly exhibit substantial potential for sub-5 nm patterning techniques. Previously, we had reported the fabrication of silica nanogrooves with sub-5 nm periodicity on a Si substrate by using the outermost surfaces of cylindrical surfactant micelles as a template. However, uniaxial alignment of nanogrooves on the entire substrate surface has not yet been achieved. In this study, uniaxially aligned silica nanogrooves were prepared on the entire surface of a Si substrate (2 cm × 2 cm) by utilizing a poly(dimethylsiloxane) (PDMS) stamp with a striped pattern. The PDMS stamp was placed on the surface of a surfactant thin film precoated on the substrate, although the stamp was not in direct contact with the substrate as in the case of the soft nanoimprint technique. The substrate was then exposed to water vapor, during which cylindrical micelles were aligned in the direction of the guide. Subsequently, by exposing the substrate to an NH3-water vapor mixture, the outermost surfaces of the aligned micelles facing the substrate were replicated with soluble silicate species. The formation of uniaxially aligned nanogrooves on the entire surface of the centimeter-scale substrate was verified by scanning electron microscopy observations and grazing-incidence small-angle X-ray scattering analysis. Thus, herein we provide a simple large-area fabrication method for uniaxially aligned nanopatterns with ultrafine pitch.
Collapse
Affiliation(s)
| | | | | | | | - Kazuyuki Kuroda
- Kagami Memorial Research Institute for Materials Science and Technology , Waseda University , 2-8-26 Nishiwaseda , Shinjuku-ku, Tokyo 169-0051 , Japan
| |
Collapse
|
11
|
Shi LY, Lee S, Cheng LC, Huang H, Liao F, Ran R, Yager KG, Ross CA. Thin Film Self-Assembly of a Silicon-Containing Rod–Coil Liquid Crystalline Block Copolymer. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b01938] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ling-Ying Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sangho Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Li-Chen Cheng
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hejin Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Fen Liao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rong Ran
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Kevin G. Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Caroline A. Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Liao F, Shi LY, Cheng LC, Lee S, Ran R, Yager KG, Ross CA. Self-assembly of a silicon-containing side-chain liquid crystalline block copolymer in bulk and in thin films: kinetic pathway of a cylinder to sphere transition. NANOSCALE 2018; 11:285-293. [PMID: 30534671 DOI: 10.1039/c8nr07685e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The self-assembly of a high-χ silicon-containing side-chain liquid crystalline block copolymer (LC BCP) in bulk and in thin films is reported, and the structural transition process from the hexagonally packed cylinder (HEX) to the body-centered cubic structure (BCC) in thin films was examined by both reciprocal and real space experimental methods. The block copolymer, poly(dimethylsiloxane-b-11-(4'-cyanobiphenyl-4-yloxy)undecylmethacrylate) (PDMS-b-P(4CNB11C)MA) with a molecular weight of 19.5 kg mol-1 and a volume fraction of PDMS 27% self-assembled in bulk into a hierarchical nanostructure of sub-20 nm HEX cylinders of PDMS with the P(4CNB11C)MA block exhibiting a smectic LC phase with a 1.61 nm period. The structure remained HEX as the P(4CNB11C)MA block transformed to an isotropic phase at ∼120 °C. In the thin films, the PDMS cylindrical microdomains were oriented in layers parallel to the substrate surface. The LC block formed a smectic LC phase which transformed to an isotropic phase at ∼120 °C, and the microphase-separated nanostructure transformed from HEX to BCC spheres at ∼160 °C. The hierarchical structure as well as the dynamic structural transition of the thin films were characterized using in situ grazing-incidence small-angle X-ray scattering and grazing-incidence wide-angle X-ray scattering. The transient morphologies from the HEX to BCC structure in thin films were captured by scanning electron microscopy and atomic force microscopy, and the transition pathway was described.
Collapse
Affiliation(s)
- Fen Liao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Seki T. A Wide Array of Photoinduced Motions in Molecular and Macromolecular Assemblies at Interfaces. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180076] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Takahiro Seki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
15
|
Liu L, Onck PR. Topographical changes in photo-responsive liquid crystal films: a computational analysis. SOFT MATTER 2018; 14:2411-2428. [PMID: 29512661 DOI: 10.1039/c7sm02474f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Switchable materials in response to external stimuli serve as building blocks to construct microscale functionalized actuators and sensors. Azobenzene-modified liquid crystal (LC) polymeric networks, that combine liquid crystalline orientational order and elasticity, reversibly undergo conformational changes powered by light. We present a computational framework to describe photo-induced topographical transformations of azobenzene-modified LC glassy polymer coatings. A nonlinear light penetration model is combined with an opto-mechanical constitutive relation to simulate various ordered and corrugated topographical textures resulting from aligned or randomly distributed LC molecule orientations. Our results shed light on the fundamental physical mechanisms of light-triggered surface undulations and can be used as guidelines to optimize surface modulation and roughness in emerging fields that involve haptics interfacing, friction control and wetting manipulation.
Collapse
Affiliation(s)
- Ling Liu
- Micromechanics of Materials, Zernike Institute for Advanced Materials, 9747 AG, Groningen, The Netherlands.
| | - Patrick R Onck
- Micromechanics of Materials, Zernike Institute for Advanced Materials, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
16
|
Huang S, Pang L, Chen Y, Zhou L, Fang S, Yu H. Hydrogen Bond Induces Hierarchical Self-Assembly in Liquid-Crystalline Block Copolymers. Macromol Rapid Commun 2018; 39:e1700783. [DOI: 10.1002/marc.201700783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/09/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Shuai Huang
- Department of Material Science and Engineering; College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Peking University; Beijing 100871 China
| | - Linlin Pang
- State Laboratory of Surface and Interface; Zhengzhou University of Light Industry; Zhengzhou 450002 China
| | - Yuxuan Chen
- Department of Material Science and Engineering; College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Peking University; Beijing 100871 China
| | - Liming Zhou
- State Laboratory of Surface and Interface; Zhengzhou University of Light Industry; Zhengzhou 450002 China
| | - Shaoming Fang
- State Laboratory of Surface and Interface; Zhengzhou University of Light Industry; Zhengzhou 450002 China
| | - Haifeng Yu
- Department of Material Science and Engineering; College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education; Peking University; Beijing 100871 China
| |
Collapse
|
17
|
Lugger J, Mulder DJ, Sijbesma R, Schenning A. Nanoporous Polymers Based on Liquid Crystals. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E104. [PMID: 29324669 PMCID: PMC5793602 DOI: 10.3390/ma11010104] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
In the present review, we discuss recent advances in the field of nanoporous networks based on polymerisable liquid crystals. The field has matured in the last decade, yielding polymers having 1D, 2D, and 3D channels with pore sizes on the nanometer scale. Next to the current progress, some of the future challenges are presented, with the integration of nanoporous membranes in functional devices considered as the biggest challenge.
Collapse
Affiliation(s)
- Jody Lugger
- Laboratory of Supramolecular Polymer Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Dirk Jan Mulder
- Laboratory of Stimuli-Responsive Functional Materials and Devices, Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Dutch Polymer Institute, P.O. Box 902, 5600 AZ Eindhoven, The Netherlands.
| | - Rint Sijbesma
- Laboratory of Supramolecular Polymer Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Albert Schenning
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Laboratory of Stimuli-Responsive Functional Materials and Devices, Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
18
|
Nickmans K, Schenning APHJ. Directed Self-Assembly of Liquid-Crystalline Molecular Building Blocks for Sub-5 nm Nanopatterning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1703713. [PMID: 29052916 DOI: 10.1002/adma.201703713] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/26/2017] [Indexed: 06/07/2023]
Abstract
The thin-film directed self-assembly of molecular building blocks into oriented nanostructure arrays enables next-generation lithography at the sub-5 nm scale. Currently, the fabrication of inorganic arrays from molecular building blocks is restricted by the limited long-range order and orientation of the materials, as well as suitable methodologies for creating lithographic templates at sub-5 nm dimensions. In recent years, higher-order liquid crystals have emerged as functional thin films for organic electronics, nanoporous membranes, and templated synthesis, which provide opportunities for their use as lithographic templates. By choosing examples from these fields, recent progress toward the design of molecular building blocks is highlighted, with an emphasis on liquid crystals, to access sub-5 nm features, their directed self-assembly into oriented thin films, and, importantly, the fabrication of inorganic arrays. Finally, future challenges regarding sub-5 nm patterning with liquid crystals are discussed.
Collapse
Affiliation(s)
- Koen Nickmans
- Laboratory of Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Albert P H J Schenning
- Laboratory of Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| |
Collapse
|