1
|
Jelić JZ, Bukumira M, Denčevski A, Senkić A, Žužić L, Radatović B, Vujičić N, Pajić T, Rabasović MD, Krmpot AJ. Application of the Knife-Edge Technique on Transition Metal Dichalcogenide Monolayers for Resolution Assessment of Nonlinear Microscopy Modalities. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:671-680. [PMID: 38993166 DOI: 10.1093/mam/ozae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
We report application of the knife-edge technique at the sharp edges of WS2 and MoS2 monolayer flakes for lateral and axial resolution assessment in all three modalities of nonlinear laser scanning microscopy: two-photon excited fluorescence (TPEF), second- and third-harmonic generation (SHG, THG) imaging. This technique provides a high signal-to-noise ratio, no photobleaching effect and shows good agreement with standard resolution measurement techniques. Furthermore, we assessed both the lateral resolution in TPEF imaging modality and the axial resolution in SHG and THG imaging modality directly via the full-width at half maximum parameter of the corresponding Gaussian distribution. We comprehensively analyzed the factors influencing the resolution, such as the numerical aperture, the excitation wavelength and the refractive index of the embedding medium for the different imaging modalities. Glycerin was identified as the optimal embedding medium for achieving resolutions closest to the theoretical limit. The proposed use of WS2 and MoS2 monolayer flakes emerged as promising tools for characterization of nonlinear imaging systems.
Collapse
Affiliation(s)
- Jovana Z Jelić
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, Belgrade 11080, Serbia
| | - Marta Bukumira
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, Belgrade 11080, Serbia
| | - Aleksa Denčevski
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, Belgrade 11080, Serbia
| | - Ana Senkić
- Centre for Advanced Laser Techniques, Institute of Physics Zagreb, Bijenička cesta 46, Zagreb 10000, Croatia
| | - Livio Žužić
- Department of Physics, University of Zagreb, Bijenička cesta 32, Zagreb 10000, Croatia
| | - Borna Radatović
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Ines de la Cruz 3, Madrid 28049, Spain
| | - Nataša Vujičić
- Centre for Advanced Laser Techniques, Institute of Physics Zagreb, Bijenička cesta 46, Zagreb 10000, Croatia
| | - Tanja Pajić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, 11158, Serbia
| | - Mihailo D Rabasović
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, Belgrade 11080, Serbia
| | - Aleksandar J Krmpot
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, Belgrade 11080, Serbia
| |
Collapse
|
2
|
Blanc H, Kaddour G, David NB, Supatto W, Livet J, Beaurepaire E, Mahou P. Chromatically Corrected Multicolor Multiphoton Microscopy. ACS PHOTONICS 2023; 10:4104-4111. [PMID: 38145164 PMCID: PMC10739991 DOI: 10.1021/acsphotonics.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Indexed: 12/26/2023]
Abstract
Simultaneous imaging of multiple labels in tissues is key to studying complex biological processes. Although strategies for color multiphoton excitation have been established, chromatic aberration remains a major problem when multiple excitation wavelengths are used in a scanning microscope. Chromatic aberration introduces a spatial shift between the foci of beams of different wavelengths that varies across the field of view, severely degrading the performance of color imaging. In this work, we propose an adaptive correction strategy that solves this problem in two-beam microscopy techniques. Axial chromatic aberration is corrected by a refractive phase mask that introduces pure defocus into one beam, while lateral chromatic aberration is corrected by a piezoelectric mirror that dynamically compensates for lateral shifts during scanning. We show that this light-efficient approach allows seamless chromatic correction over the entire field of view of different multiphoton objectives without compromising spatial and temporal resolution and that the effective area for beam-mixing processes can be increased by more than 1 order of magnitude. We illustrate this approach with simultaneous three-color, two-photon imaging of developing zebrafish embryos and fixed Brainbow mouse brain slices over large areas. These results establish a robust and efficient method for chromatically corrected multiphoton imaging.
Collapse
Affiliation(s)
- Hugo Blanc
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Gabriel Kaddour
- Sorbonne
Université, INSERM, CNRS, Institut
de la Vision, 75012 Paris, France
| | - Nicolas B. David
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Willy Supatto
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Jean Livet
- Sorbonne
Université, INSERM, CNRS, Institut
de la Vision, 75012 Paris, France
| | - Emmanuel Beaurepaire
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Pierre Mahou
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
3
|
Raoux C, Chessel A, Mahou P, Latour G, Schanne-Klein MC. Unveiling the lamellar structure of the human cornea over its full thickness using polarization-resolved SHG microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:190. [PMID: 37528091 PMCID: PMC10394036 DOI: 10.1038/s41377-023-01224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023]
Abstract
A key property of the human cornea is to maintain its curvature and consequently its refraction capability despite daily changes in intraocular pressure. This is closely related to the multiscale structure of the corneal stroma, which consists of 1-3 µm-thick stacked lamellae made of thin collagen fibrils. Nevertheless, the distribution, size, and orientation of these lamellae along the depth of the cornea are poorly characterized up to now. In this study, we use second harmonic generation (SHG) microscopy to visualize the collagen distribution over the full depth of 10 intact and unstained human corneas (500-600 µm thick). We take advantage of the small coherence length in epi-detection to axially resolve the lamellae while maintaining the corneal physiological curvature. Moreover, as raw epi-detected SHG images are spatially homogenous because of the sub-wavelength size of stromal collagen fibrils, we use a polarimetric approach to measure the collagen orientation in every voxel. After a careful validation of this approach, we show that the collagen lamellae (i) are mostly oriented along the inferior-superior axis in the anterior stroma and along the nasal-temporal axis in the posterior stroma, with a gradual shift in between and (ii) exhibit more disorder in the anterior stroma. These results represent the first quantitative characterization of the lamellar structure of the human cornea continuously along its entire thickness with micrometric resolution. It also shows the unique potential of P-SHG microscopy for imaging of collagen distribution in thick dense tissues.
Collapse
Affiliation(s)
- Clothilde Raoux
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Anatole Chessel
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Gaël Latour
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
- Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Marie-Claire Schanne-Klein
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France.
| |
Collapse
|
4
|
Ferrer Ortas J, Mahou P, Escot S, Stringari C, David NB, Bally-Cuif L, Dray N, Négrerie M, Supatto W, Beaurepaire E. Label-free imaging of red blood cells and oxygenation with color third-order sum-frequency generation microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:29. [PMID: 36702815 PMCID: PMC9879988 DOI: 10.1038/s41377-022-01064-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Mapping red blood cells (RBCs) flow and oxygenation is of key importance for analyzing brain and tissue physiology. Current microscopy methods are limited either in sensitivity or in spatio-temporal resolution. In this work, we introduce a novel approach based on label-free third-order sum-frequency generation (TSFG) and third-harmonic generation (THG) contrasts. First, we propose a novel experimental scheme for color TSFG microscopy, which provides simultaneous measurements at several wavelengths encompassing the Soret absorption band of hemoglobin. We show that there is a strong three-photon (3P) resonance related to the Soret band of hemoglobin in THG and TSFG signals from zebrafish and human RBCs, and that this resonance is sensitive to RBC oxygenation state. We demonstrate that our color TSFG implementation enables specific detection of flowing RBCs in zebrafish embryos and is sensitive to RBC oxygenation dynamics with single-cell resolution and microsecond pixel times. Moreover, it can be implemented on a 3P microscope and provides label-free RBC-specific contrast at depths exceeding 600 µm in live adult zebrafish brain. Our results establish a new multiphoton contrast extending the palette of deep-tissue microscopy.
Collapse
Affiliation(s)
- Júlia Ferrer Ortas
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France
| | - Sophie Escot
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France
| | - Nicolas B David
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, team supported by Ligue Nationale contre le Cancer, Institut Pasteur, CNRS, 75015, Paris, France
| | - Nicolas Dray
- Zebrafish Neurogenetics Unit, team supported by Ligue Nationale contre le Cancer, Institut Pasteur, CNRS, 75015, Paris, France
| | - Michel Négrerie
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France
| | - Willy Supatto
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France.
| |
Collapse
|
5
|
Schmeltz M, Robinet L, Heu-Thao S, Sintès JM, Teulon C, Ducourthial G, Mahou P, Schanne-Klein MC, Latour G. Noninvasive quantitative assessment of collagen degradation in parchments by polarization-resolved SHG microscopy. SCIENCE ADVANCES 2021; 7:7/29/eabg1090. [PMID: 34272247 PMCID: PMC8284887 DOI: 10.1126/sciadv.abg1090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Nondestructive and noninvasive investigation techniques are highly sought-after to establish the degradation state of historical parchments, which is up to now assessed by thermal techniques that are invasive and destructive. We show that advanced nonlinear optical (NLO) microscopy enables quantitative in situ mapping of parchment degradation at the micrometer scale. We introduce two parameters that are sensitive to different degradation stages: the ratio of two-photon excited fluorescence to second harmonic generation (SHG) signals probes severe degradation, while the anisotropy parameter extracted from polarization-resolved SHG measurements is sensitive to early degradation. This approach is first validated by comparing NLO quantitative parameters to thermal measurements on artificially altered contemporary parchments. We then analyze invaluable parchments from the Middle Ages and show that we can map their conservation state and assess the impact of a restoration process. NLO quantitative microscopy should therefore help to identify parchments most at risk and optimize restoration methods.
Collapse
Affiliation(s)
- Margaux Schmeltz
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Laurianne Robinet
- Centre de Recherche sur la Conservation (CRC), Muséum national d'Histoire naturelle, Ministère de la Culture, CNRS, Paris, France
| | - Sylvie Heu-Thao
- Centre de Recherche sur la Conservation (CRC), Muséum national d'Histoire naturelle, Ministère de la Culture, CNRS, Paris, France
| | - Jean-Marc Sintès
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire Teulon
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Guillaume Ducourthial
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Pierre Mahou
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Marie-Claire Schanne-Klein
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Gaël Latour
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France.
- Université Paris-Saclay, Saint-Aubin, France
| |
Collapse
|
6
|
Tan D, Kirbus B, Eng LM, Ruck M. Nanostructured Borate Halides for Optical Second Harmonic Generation at Surfaces. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Deming Tan
- Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Benjamin Kirbus
- Institute of Applied Physics Technische Universität Dresden 01062 Dresden Germany
| | - Lukas M. Eng
- Institute of Applied Physics Technische Universität Dresden 01062 Dresden Germany
- ct.qmat Complexity and Topology in Quantum Matter Cluster of Excellence EXC 2147 Dresden/Würzburg Germany
| | - Michael Ruck
- Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
- ct.qmat Complexity and Topology in Quantum Matter Cluster of Excellence EXC 2147 Dresden/Würzburg Germany
- Max Planck Institute for Chemical Physics of Solids Nöthnitzer Str. 40 01187 Dresden Germany
| |
Collapse
|
7
|
Tan D, Kirbus B, Rüsing M, Pietsch T, Ruck M, Eng LM. Resource-Efficient Low-Temperature Synthesis of Microcrystalline Pb 2 B 5 O 9 X (X = Cl, Br) for Surfaces Studies by Optical Second Harmonic Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000857. [PMID: 32402141 DOI: 10.1002/smll.202000857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Optically nonlinear Pb2 B5 O9 X (X = Cl, Br) borate halides are an important group of materials for second harmonic generation (SHG). Additionally, they also possess excellent photocatalytic activity and stability in the process of dechlorination of chlorophenols, which are typical persistent organic pollutants. It would be of great interest to conduct in situ (photo-) catalysis investigations during the whole photocatalytic process by SHG when considering them as photocatalytic materials. In order to get superior photocatalytic efficiency and maximum surface information, small particles are highly desired. Here, a low-cost and fast synthesis route that allows growing microcrystalline optically nonlinear Pb2 B5 O9 X borate halides at large quantities is introduced. When applying the ionothermal growth process at temperatures between 130 and 170 °C, microcrystallites with an average size of about 1 µm precipitate with an orthorhombic hilgardite-like borate halide structure. Thorough examinations using powder X-ray diffraction and scanning electron microscopy, the Pb2 B5 O9 X microcrystals are indicated to be chemically pure and single-phased. Besides, the Pb2 B5 O9 X borate halides' SHG efficiencies are confirmed using confocal SHG microscopy. The low-temperature synthesis route thus makes these borate halides a highly desirable material for surface studies such as monitoring chemical reactions with picosecond time resolution and in situ (photo-) catalysis investigations.
Collapse
Affiliation(s)
- Deming Tan
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Benjamin Kirbus
- Institute of Applied Physics, Technische Universität Dresden, Dresden, 01062, Germany
| | - Michael Rüsing
- Institute of Applied Physics, Technische Universität Dresden, Dresden, 01062, Germany
| | - Tobias Pietsch
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Michael Ruck
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, Dresden, 01187, Germany
- ct.qmat-Complexity and Topology in Quantum Matter, Cluster of Excellence EXC 2147, Dresden, 01069, Germany
| | - Lukas M Eng
- Institute of Applied Physics, Technische Universität Dresden, Dresden, 01062, Germany
- ct.qmat-Complexity and Topology in Quantum Matter, Cluster of Excellence EXC 2147, Dresden, 01069, Germany
| |
Collapse
|
8
|
Malkinson G, Mahou P, Chaudan É, Gacoin T, Sonay AY, Pantazis P, Beaurepaire E, Supatto W. Fast In Vivo Imaging of SHG Nanoprobes with Multiphoton Light-Sheet Microscopy. ACS PHOTONICS 2020; 7:1036-1049. [PMID: 33335947 PMCID: PMC7735018 DOI: 10.1021/acsphotonics.9b01749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 05/05/2023]
Abstract
Two-photon light-sheet microscopy (2P-SPIM) provides a unique combination of advantages for fast and deep fluorescence imaging in live tissues. Detecting coherent signals such as second-harmonic generation (SHG) in 2P-SPIM in addition to fluorescence would open further imaging opportunities. However, light-sheet microscopy involves an orthogonal configuration of illumination and detection that questions the ability to detect coherent signals. Indeed, coherent scattering from micron-sized structures occurs predominantly along the illumination beam. By contrast, point-like sources such as SHG nanocrystals can efficiently scatter light in multiple directions and be detected using the orthogonal geometry of a light-sheet microscope. This study investigates the suitability of SHG light-sheet microscopy (SHG-SPIM) for fast imaging of SHG nanoprobes. Parameters that govern the detection efficiency of KTiOPO4 and BaTiO3 nanocrystals using SHG-SPIM are investigated theoretically and experimentally. The effects of incident polarization, detection numerical aperture, nanocrystal rotational motion, and second-order susceptibility tensor symmetries on the detectability of SHG nanoprobes in this specific geometry are clarified. Guidelines for optimizing SHG-SPIM imaging are established, enabling fast in vivo light-sheet imaging combining SHG and two-photon excited fluorescence. Finally, microangiography was achieved in live zebrafish embryos by SHG imaging at up to 180 frames per second and single-particle tracking of SHG nanoprobes in the blood flow.
Collapse
Affiliation(s)
- Guy Malkinson
- Laboratory
for Optics and Biosciences, Ecole Polytechnique,
CNRS, INSERM, Université Paris-Saclay, 91128 Palaiseau
Cedex, France
| | - Pierre Mahou
- Laboratory
for Optics and Biosciences, Ecole Polytechnique,
CNRS, INSERM, Université Paris-Saclay, 91128 Palaiseau
Cedex, France
| | - Élodie Chaudan
- Laboratory
of Condensed Matter Physics, Ecole Polytechnique,
CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France
| | - Thierry Gacoin
- Laboratory
of Condensed Matter Physics, Ecole Polytechnique,
CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France
| | - Ali Y. Sonay
- Department
of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Periklis Pantazis
- Department
of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
- Department
of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Emmanuel Beaurepaire
- Laboratory
for Optics and Biosciences, Ecole Polytechnique,
CNRS, INSERM, Université Paris-Saclay, 91128 Palaiseau
Cedex, France
- E-mail:
| | - Willy Supatto
- Laboratory
for Optics and Biosciences, Ecole Polytechnique,
CNRS, INSERM, Université Paris-Saclay, 91128 Palaiseau
Cedex, France
- E-mail:
| |
Collapse
|
9
|
Schmeltz M, Teulon C, Latour G, Ghoubay D, Borderie V, Aimé C, Schanne-Klein MC. Implementation of artifact-free circular dichroism SHG imaging of collagen. OPTICS EXPRESS 2019; 27:22685-22699. [PMID: 31510554 DOI: 10.1364/oe.27.022685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Second harmonic generation (SHG) enables in situ imaging of fibrillar collagen architecture in connective tissues. Recently, Circular Dichroism SHG (CD-SHG) microscopy has been implemented to take advantage of collagen chirality to improve 3D visualization. It measures the normalized difference in the SHG signal obtained upon excitation by left versus right circular polarizations. However, CD-SHG signal is not well characterized yet, and quite different CD-SHG values are reported in the literature. Here, we identify two major artifacts that may occur in CD-SHG experiments and we demonstrate that thorough optimization and calibration of the experimental setup are required for CD-SHG imaging. Notably it requires a careful calibration of the incident circular polarizations and a perfect mechanical stabilization of the microscope stage. Finally, we successfully record CD-SHG images in human cornea sections and confirm that this technique efficiently reveals collagen fibrils oriented out of the focal plane.
Collapse
|
10
|
Abdeladim L, Matho KS, Clavreul S, Mahou P, Sintes JM, Solinas X, Arganda-Carreras I, Turney SG, Lichtman JW, Chessel A, Bemelmans AP, Loulier K, Supatto W, Livet J, Beaurepaire E. Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy. Nat Commun 2019; 10:1662. [PMID: 30971684 PMCID: PMC6458155 DOI: 10.1038/s41467-019-09552-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/12/2019] [Indexed: 11/20/2022] Open
Abstract
Large-scale microscopy approaches are transforming brain imaging, but currently lack efficient multicolor contrast modalities. We introduce chromatic multiphoton serial (ChroMS) microscopy, a method integrating one-shot multicolor multiphoton excitation through wavelength mixing and serial block-face image acquisition. This approach provides organ-scale micrometric imaging of spectrally distinct fluorescent proteins and label-free nonlinear signals with constant micrometer-scale resolution and sub-micron channel registration over the entire imaged volume. We demonstrate tridimensional (3D) multicolor imaging over several cubic millimeters as well as brain-wide serial 2D multichannel imaging. We illustrate the strengths of this method through color-based 3D analysis of astrocyte morphology and contacts in the mouse cerebral cortex, tracing of individual pyramidal neurons within densely Brainbow-labeled tissue, and multiplexed whole-brain mapping of axonal projections labeled with spectrally distinct tracers. ChroMS will be an asset for multiscale and system-level studies in neuroscience and beyond.
Collapse
Affiliation(s)
- Lamiae Abdeladim
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Katherine S Matho
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris, 75012, France
- Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA
| | - Solène Clavreul
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris, 75012, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Jean-Marc Sintes
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Xavier Solinas
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Ignacio Arganda-Carreras
- Department of Computer Science and Artificial Intelligence, University of the Basque Country, San Sebastian, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
- Donostia International Physics Center (DIPC), San Sebastian, 20018, Spain
| | - Stephen G Turney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Jeff W Lichtman
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Anatole Chessel
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Alexis-Pierre Bemelmans
- Neurodegenerative Diseases Laboratory, Molecular Imaging Research Center, Institut de Biologie François Jacob, CEA, CNRS, Université Paris-Sud, Fontenay-aux-Roses, 92265, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris, 75012, France
| | - Willy Supatto
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris, 75012, France.
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France.
| |
Collapse
|
11
|
Escobet-Montalbán A, Gasparoli FM, Nylk J, Liu P, Yang Z, Dholakia K. Three-photon light-sheet fluorescence microscopy. OPTICS LETTERS 2018; 43:5484-5487. [PMID: 30383037 DOI: 10.1364/ol.43.005484] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present the first demonstration of three-photon excitation light-sheet fluorescence microscopy. Light-sheet fluorescence microscopy in single- and two-photon modes has emerged as a powerful wide-field, low-photodamage technique for fast volumetric imaging of biological samples. We extend this imaging modality to the three-photon regime, enhancing its penetration depth. Our present study uses a conventional femtosecond pulsed laser at 1000 nm wavelength for the imaging of 450 μm diameter cellular spheroids. In addition, we show, experimentally and through numerical simulations, the potential advantages in three-photon light-sheet microscopy of using propagation-invariant Bessel beams in preference to Gaussian beams.
Collapse
|