1
|
Wang Y, Jia Y, Li C, Cui H, Zhang R, Hong H, Li Q, Wang D, Zhi C. Progress in Developing Polymer Electrolytes for Advanced Zn Batteries. SMALL METHODS 2025:e2500031. [PMID: 40195887 DOI: 10.1002/smtd.202500031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/12/2025] [Indexed: 04/09/2025]
Abstract
Aqueous Zn batteries (ZBs) are promising candidates for large-scale energy storage, considering their intrinsically safe features, competitive cost, and environmental friendliness. However, the fascinating metallic Zn anode is subjected to severe issues, such as dendrite growth, hydrogen evolution, and corrosion. Additionally, traditional aqueous electrolytes' narrow electrochemical windows and temperature ranges further hinder the practical application of ZBs. Solid-state electrolytes, including solid polymer electrolytes and hydrogel electrolytes, offer distinct paths to mitigate these issues and simultaneously endow the ZBs with customizable functions such as flexibility, self-healing, anti-freezing, and regulated Zn deposition, etc, due to their tuneable structures. This review summarizes the latest progress in developing polymer electrolytes for ZBs, focusing on modifying the ionic conductivity, interfacial compatibility, Zn anode stability, electrochemical stability windows, and improving the environmental adaptability under harsh conditions. Although some achievements are obtained, many critical challenges still exist, and it is hoped to offer guidance for future research, accelerating the development and application of polymer electrolytes.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yeyang Jia
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Chuan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qing Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Donghong Wang
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), NT, KSAR, Shatin, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
2
|
Liang T, Zhang X, Huang Y, Lu Y, Jia H, Yuan Y, Meng L, Zhou Y, Zhou L, Guan P, Wan T, Ferry M, Chu D. Cutting-Edge Progress in Aqueous Zn-S Batteries: Innovations in Cathodes, Electrolytes, and Mediators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405810. [PMID: 39363800 PMCID: PMC11840471 DOI: 10.1002/smll.202405810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Rechargeable aqueous zinc-sulfur batteries (AZSBs) are emerging as prominent candidates for next-generation energy storage devices owing to their affordability, non-toxicity, environmental friendliness, non-flammability, and use of earth-abundant electrodes and aqueous electrolytes. However, AZSBs currently face challenges in achieving satisfied electrochemical performance due to slow kinetic reactions and limited stability. Therefore, further research and improvement efforts are crucial for advancing AZSBs technology. In this comprehensive review, it is delved into the primary mechanisms governing AZSBs, assess recent advancements in the field, and analyse pivotal modifications made to electrodes and electrolytes to enhance AZSBs performance. This includes the development of novel host materials for sulfur (S) cathodes, which are capable of supporting higher S loading capacities and the refinement of electrolyte compositions to improve ionic conductivity and stability. Moreover, the potential applications of AZSBs across various energy platforms and evaluate their market viability based on recent scholarly contributions is explored. By doing so, this review provides a visionary outlook on future research directions for AZSBs, driving continuous advancements in stable AZSBs technology and deepening the understanding of their charge-discharge dynamics. The insights presented in this review signify a significant step toward a sustainable energy future powered by renewable sources.
Collapse
Affiliation(s)
- Tianyue Liang
- School of Materials Science and EngineeringUniversity of New South WalesSydney2052Australia
| | - Xinren Zhang
- School of Materials Science and EngineeringUniversity of New South WalesSydney2052Australia
| | - Yixuan Huang
- School of Materials Science and EngineeringUniversity of New South WalesSydney2052Australia
| | - Yile Lu
- School of Materials Science and EngineeringUniversity of New South WalesSydney2052Australia
| | - Haowei Jia
- School of Materials Science and EngineeringUniversity of New South WalesSydney2052Australia
| | - Yu Yuan
- School of Materials Science and EngineeringUniversity of New South WalesSydney2052Australia
| | - Linghui Meng
- School of Materials Science and EngineeringUniversity of New South WalesSydney2052Australia
| | - Yingze Zhou
- School of Materials Science and EngineeringUniversity of New South WalesSydney2052Australia
| | - Lu Zhou
- School of Materials Science and EngineeringUniversity of New South WalesSydney2052Australia
| | - Peiyuan Guan
- School of Materials Science and EngineeringUniversity of New South WalesSydney2052Australia
| | - Tao Wan
- School of Materials Science and EngineeringUniversity of New South WalesSydney2052Australia
| | - Michael Ferry
- School of Materials Science and EngineeringUniversity of New South WalesSydney2052Australia
| | - Dewei Chu
- School of Materials Science and EngineeringUniversity of New South WalesSydney2052Australia
| |
Collapse
|
3
|
Asha AS, Jamal M, Gravelle S, Mayes ML, Shen C. Exploring the Impact of Minor Water Content on Polymer Electrolytes with Molecular Dynamics. J Phys Chem B 2025; 129:1061-1069. [PMID: 39801079 DOI: 10.1021/acs.jpcb.4c04984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Solid-state polymer electrolytes (SPEs) are increasingly favored over liquid electrolytes for emerging energy storage devices due to their safety features, enhanced stability, and multifunctionality. Minor solvents (such as water) are often introduced unintentionally or intentionally into SPEs. Although it can significantly affect SPEs' electrochemical and mechanical properties, the fundamental role of such solvent content has rarely been studied. Here, we investigate the effects of minor water content on two representative SPEs through molecular dynamics simulations. Focusing on SPEs composed of different base polymers, namely, poly(ethylene oxide) (PEO) and poly(lactic acid) (PLA), and the same salt, lithium perchlorate (LiClO4), our simulations reveal that slight hydration facilitates an increase in ionic conductivity while preserving the mechanical integrity of the SPEs. Notably, these water contents appear to affect ionic conductivity more effectively in certain systems than others, which is attributed to the unique interactions among ions, water, and the polymer matrix. Moreover, small amounts of water can maintain the stiffness of SPEs rather than reducing it. Such results suggest a facile approach to developing SPEs with balanced ionic conductivity and mechanical properties, suitable for a range of energy storage applications.
Collapse
Affiliation(s)
- Aysha Siddika Asha
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, United States
| | - Mubeen Jamal
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, United States
| | - Simon Gravelle
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Maricris L Mayes
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, United States
| | - Caiwei Shen
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, United States
| |
Collapse
|
4
|
Bartkowski P, Pawliszak Ł, Lusawa A, Sypniewska S, Ciemiorek M, Park YL. Flexible Electrical Energy Storage Structure with Variable Stiffness for Soft Robotics and Wearable Electronics. Soft Robot 2024. [PMID: 39718943 DOI: 10.1089/soro.2024.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Based on the analysis of the structures of robots and electronics developed so far, it should be noted that a majority of them need a reservoir for electrical energy storage. Unfortunately, most off-the-shelf devices commercially available nowadays are based on rigid parts that heavily limit the possibilities of incorporating such products into soft robots and wearable electronics. To address these issues, a new type of flexible structure for electrical energy storage, which consists of small battery cells connected by liquid metal paths, was proposed. It can achieve a low value of Young's modulus (about 0.13 MPa) while maintaining electrochemical stability for large stretches (max. capacity reduction-2%). We proposed an individual layer structure as well as a sandwich structure with a granular core, which by way of granular jamming phenomena can change the stiffness (almost 300%). This article describes the concept and working principle of the proposed flexible electrical energy storage structure, followed by the mechanical and electrical characterization, electrochemical impedance spectroscopy, and galvanostatic battery cell cycling. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to characterize the electrodes. The article also includes numerical simulations and potential applications of the studied structure.
Collapse
Affiliation(s)
- Piotr Bartkowski
- Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Łukasz Pawliszak
- Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Agata Lusawa
- Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Sabina Sypniewska
- Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Marta Ciemiorek
- Faculty of Materials Science Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Yong-Lae Park
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
5
|
Bigham A, Zarepour A, Khosravi A, Iravani S, Zarrabi A. 3D and 4D printing of MXene-based composites: from fundamentals to emerging applications. MATERIALS HORIZONS 2024; 11:6257-6288. [PMID: 39279736 DOI: 10.1039/d4mh01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The advent of three-dimensional (3D) and four-dimensional (4D) printing technologies has significantly improved the fabrication of advanced materials, with MXene-based composites emerging as a particularly promising class due to their exceptional electrical, mechanical, and chemical properties. This review explores the fundamentals of MXenes and their composites, examining their unique characteristics and the underlying principles of their synthesis and processing. We highlight the transformative potential of 3D and 4D printing techniques in tailoring MXene-based materials for a wide array of applications. In the field of tissue regeneration, MXene composites offer enhanced biocompatibility and mechanical strength, making them ideal for scaffolds and implants. For drug delivery, the high surface area and tunable surface chemistry of MXenes enable precise control over drug release profiles. In energy storage, MXene-based electrodes exhibit superior conductivity and capacity, paving the way for next-generation batteries and supercapacitors. Additionally, the sensitivity and selectivity of MXene composites make them excellent candidates for various (bio)sensing applications, from environmental monitoring to biomedical diagnostics. By integrating the dynamic capabilities of 4D printing, which introduces time-dependent shape transformations, MXene-based composites can further adapt to complex and evolving functional requirements. This review provides a comprehensive overview of the current state of research, identifies key challenges, and discusses future directions for the development and application of 3D and 4D printed MXene-based composites. Through this exploration, we aim to underscore the significant impact of these advanced materials and technologies on diverse scientific and industrial fields.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkey
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
6
|
Zhou M, Han D, Cui X, Wang J, Chen X, Wang J, Sun S, Yan W. Recent Progress on Advanced Flexible Lithium Battery Materials and Fabrication Process. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1856. [PMID: 39591096 PMCID: PMC11597871 DOI: 10.3390/nano14221856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Flexible energy storage devices have attracted wide attention as a key technology restricting the vigorous development of wearable electronic products. However, the practical application of flexible batteries faces great challenges, including the lack of good mechanical toughness of battery component materials and excellent adhesion between components, resulting in battery performance degradation or failure when subjected to different types of deformation. It is imperative to develop flexible batteries that can withstand deformation under different conditions and maintain stable battery performance. This paper reviews the latest research progress of flexible lithium batteries, from the research and development of new flexible battery materials, advanced preparation processes, and typical flexible structure design. First, the types of key component materials and corresponding modification technologies for flexible batteries are emphasized, mainly including carbon-based materials with flexibility, lithium anode materials, and solid-state electrolyte materials. In addition, the application of typical flexible structural designs (buckling, spiral, and origami) in flexible batteries is clarified, such as 3D printing and electrospinning, as well as advanced fabrication techniques commonly used in flexible materials and battery components. Finally, the limitations and coping strategies in the practical application of flexible lithium batteries are discussed, which provides new ideas for future research.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (M.Z.); (D.H.)
| | - Daohong Han
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (M.Z.); (D.H.)
| | - Xiangming Cui
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (M.Z.); (D.H.)
| | - Jingzhao Wang
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (M.Z.); (D.H.)
| | - Xin Chen
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (M.Z.); (D.H.)
| | - Jianan Wang
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (M.Z.); (D.H.)
| | - Shiyi Sun
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (M.Z.); (D.H.)
- School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wei Yan
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (M.Z.); (D.H.)
| |
Collapse
|
7
|
Song CY, Huang CJ, Xu HM, Zhang ZJ, Shuai TY, Zhan QN, Li GR. High-Performance Bifunctional Electrocatalysts for Flexible and Rechargeable Zn-Air Batteries: Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402761. [PMID: 38953299 DOI: 10.1002/smll.202402761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Flexible rechargeable Zn-air batteries (FZABs) exhibit high energy density, ultra-thin, lightweight, green, and safe features, and are considered as one of the ideal power sources for flexible wearable electronics. However, the slow and high overpotential oxygen reaction at the air cathode has become one of the key factors restricting the development of FZABs. The improvement of activity and stability of bifunctional catalysts has become a top priority. At the same time, FZABs should maintain the battery performance under different bending and twisting conditions, and the design of the overall structure of FZABs is also important. Based on the understanding of the three typical configurations and working principles of FZABs, this work highlights two common strategies for applying bifunctional catalysts to FZABs: 1) powder-based flexible air cathode and 2) flexible self-supported air cathode. It summarizes the recent advances in bifunctional oxygen electrocatalysts and explores the various types of catalyst structures as well as the related mechanistic understanding. Based on the latest catalyst research advances, this paper introduces and discusses various structure modulation strategies and expects to guide the synthesis and preparation of efficient bifunctional catalysts. Finally, the current status and challenges of bifunctional catalyst research in FZABs are summarized.
Collapse
Affiliation(s)
- Chen-Yu Song
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Saifi S, Xiao X, Cheng S, Guo H, Zhang J, Müller-Buschbaum P, Zhou G, Xu X, Cheng HM. An ultraflexible energy harvesting-storage system for wearable applications. Nat Commun 2024; 15:6546. [PMID: 39095398 PMCID: PMC11297324 DOI: 10.1038/s41467-024-50894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The swift progress in wearable technology has accentuated the need for flexible power systems. Such systems are anticipated to exhibit high efficiency, robust durability, consistent power output, and the potential for effortless integration. Integrating ultraflexible energy harvesters and energy storage devices to form an autonomous, efficient, and mechanically compliant power system remains a significant challenge. In this work, we report a 90 µm-thick energy harvesting and storage system (FEHSS) consisting of high-performance organic photovoltaics and zinc-ion batteries within an ultraflexible configuration. With a power conversion efficiency surpassing 16%, power output exceeding 10 mW cm-2, and an energy density beyond 5.82 mWh cm-2, the FEHSS can be tailored to meet the power demands of wearable sensors and gadgets. Without cumbersome and rigid components, FEHSS shows immense potential as a versatile power source to advance wearable electronics and contribute toward a sustainable future.
Collapse
Affiliation(s)
- Sakeena Saifi
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Xiao Xiao
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Simin Cheng
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Haotian Guo
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Jinsheng Zhang
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Guangmin Zhou
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Xiaomin Xu
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China.
| | - Hui-Ming Cheng
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
9
|
Ren H, Zhang X, Liu Q, Tang W, Liang J, Wu W. Fully-Printed Flexible Aqueous Rechargeable Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312207. [PMID: 38299717 DOI: 10.1002/smll.202312207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 02/02/2024]
Abstract
The flexible aqueous rechargeable sodium-ion batteries (ARSIBs) are a promising portable energy storage system that can meet the flexibility and safety requirements of wearable electronic devices. However, it faces huge challenges in mechanical stability and facile manufacturing processes. Herein, the first fully-printed flexible ARSIBs with appealing mechanical performance by screen-printing technique is prepared, which utilizes Na3V2(PO4)2F3/C (NVPF/C) as the cathode and 2% nitrogenous carbon-loaded Na3MnTi(PO4)3/C (NMTP/C/NC) as the anode. In particular, the organic co-solvent ethylene glycol (EG) is cleverly added to 17 m (mol kg-1) NaClO4 electrolyte to prepare a 17 m NaClO4-EG mixed electrolyte. This mixed electrolyte can withstand low temperatures of -20 °C in practical applications. Encouragingly, the fully-printed flexible ARSIBs (NMTP/C/NC//NVPF/C) exhibit a discharge capacity of 40.1 mAh g-1, an energy density of 40.1 Wh kg-1, and outstanding cycle performance. Moreover, these batteries with various shapes can be used as an energy wristband for an electronic watch in the bending states. The fully-printed flexible ARSIBs in this work are expected to shed light on the development of energy for wearable electronics.
Collapse
Affiliation(s)
- Hehe Ren
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Xinyu Zhang
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Qun Liu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Weinan Tang
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jing Liang
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
10
|
Kim K, Loh RM, Martinez R, Chan CK, Hwa Y. Failure Modes of Flexible LiCoO 2 Cathodes Incorporating Polyvinylidene Fluoride Binders with Different Molecular Weights. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5926-5936. [PMID: 38261735 DOI: 10.1021/acsami.3c17310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Understanding the mechanical failure modes of lithium-ion battery [Li-ion batteries (LIBs)] electrodes is exceptionally important for enabling high specific energy and flexible LIB technologies. In this work, the failure modes of lithium cobalt oxide (LCO) cathodes under repeated bending and the role of the polymer binder in improving the mechanical durability of the LCO electrodes for use in flexible LIBs are investigated. Mechanical and electrochemical evaluations of LCO electrodes (areal capacity of ≥2.5 mA h cm-2) employing poly(vinylidene fluoride) (PVDF) binder were carried out, followed by extensive optical and electron microscopies. We find that the molecular weight (MW) of the PVDF significantly influenced the surface and bulk microstructure of the LCO electrodes, particularly the distribution of carbon additive and binder, which plays a crucial role in affecting the mechanical and electrochemical properties of the electrodes. Multiple mechanical failure modes (e.g., surface scratches and microcracks) observed in the LCO electrodes subjected to repeated bending originated from the use of low MW PVDF; these failure modes were successfully mitigated by using a high MW PVDF. Remarkably, the optimized flexible LCO electrode incorporating high MW PVDF showed comparable discharge capacity retention during galvanostatic cycling after repeated bending (7000 cycles at 50 mm bending diameter) to electrodes not subjected to the repeated bending. This study highlights the importance of carrying out a comprehensive investigation of the failure mechanisms in flexible electrodes, which identified the pivotal role of the PVDF MW in the electrode microstructure and its effects on the electrode resilience to failure during repeated bending.
Collapse
Affiliation(s)
- Kyungbae Kim
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Robert M Loh
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Roberto Martinez
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Candace K Chan
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Yoon Hwa
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
11
|
Zhao Z, Sun Y, Pan Y, Liu J, Zhou J, Ma M, Wu X, Shen X, Zhou J, Zhou P. A new Mn-based layered cathode with enlarged interlayer spacing for potassium ion batteries. J Colloid Interface Sci 2023; 652:231-239. [PMID: 37595440 DOI: 10.1016/j.jcis.2023.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
Layered Mn-based cathode (KxMnO2) has attracted wide attention for potassium ion batteries (PIBs) because of its high specific capacity and energy density. However, the structure and capacity of KxMnO2 cathode are constantly degraded during the cycling due to the strong Jahn-Teller effect of Mn3+ and huge ionic radius of K+. In this work, lithium ion and interlayer water were introduced into Mn layer and K layer in order to suppress the Jahn-Teller effect and expand interlayer spacing, respectively, thus obtaining new types of K0.4Mn1-xLixO2·0.33H2O cathode materials. The interlayer spacing of the K0.4MnO2 increased from 6.34 to 6.93 Å after the interlayer water insertion. X-ray photoelectron spectroscopy studies demonstrated that proper lithium doping can effectively control the ratio of Mn3+/Mn4+ and inhibit the Jahn-Teller effect. In-situ X-ray diffraction exhibited that lithium doping can inhibit the irreversible phase transition and improve the structural stability of materials during cycling. As a result, the optimal K0.4Mn0.9Li0.1O2·0.33H2O not only delivered a higher capacity retention of 84.04 % compared to the value of 28.09 % for K0.4MnO2·0.33H2O, but also maintained a greatly enhanced rate capability. This study provides a new opportunity for designing layered manganese-based cathode materials with high performance for PIBs.
Collapse
Affiliation(s)
- Zhongjun Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 0255000, PR China
| | - Yiran Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 0255000, PR China
| | - Yihao Pan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 0255000, PR China
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 0255000, PR China
| | - Jingkai Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 0255000, PR China
| | - Mei Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 0255000, PR China
| | - Xiaozhong Wu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 0255000, PR China
| | - Xiangyan Shen
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 0255000, PR China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 0255000, PR China
| | - Pengfei Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 0255000, PR China.
| |
Collapse
|
12
|
Yan L, Wang L, Liu Q, Tian H, Tan W, Xia Z, Wei D, Zhao K, Huang QA, Xi L, Zhang J. Band engineering enhances the electrochemical properties by constructing TiO 2 NRs-MoS 2 NSFs flexible electrode. J Colloid Interface Sci 2023; 650:892-900. [PMID: 37450978 DOI: 10.1016/j.jcis.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Research and development of flexible electrodes with high performance are crucial to largely determine the performance of flexible lithium-ion batteries (FLIBs) to a large extent. In this work, a flexible anode (TiO2 NRs-MoS2 NSFs/CC) is rationally designed and successfully constructed, in which TiO2 nanorods arrays (NRs) vertically grown on CC as a supporting backbone for MoS2 nanosheets flowers (NSFs) to form a TiO2 NRs-MoS2 NSFs heterostructure. The backbone can not only serve as a mechanical support MoS2 and improve its electronic conductivity, but also limit the dissolution of polysulfides issue during cycling. The density functional theory (DFT) analysis manifests that the obvious interaction between O and S at the interface for the TiO2 NRs-MoS2 NSFs heterostructure changes the electronic structure and reduces the band gap of TiO2 NRs-MoS2 NSFs. The small band gap and high electron state at the Fermi level are both beneficial to the transport of electrons, enhancing the kinetics, and giving the long cycling stability at high density and excellent rate capacity. Furthermore, the assembled TiO2 NRs-MoS2 NSFs/CC//NCM622 full cell delivers superior rate capacity and good cycling stability. Meanwhile, the soft-packed cell shows good mechanical flexibility, which can be lighted up successfully and keep brightness when folding with different angles. This result illustrates that it is a highly potential strategy for constructing flexible electrodes with the controlled electronic structure through band engineering to not only improve the electrochemical performance, but also possibly meet the requirements of high-performance FLIBs.
Collapse
Affiliation(s)
- Li Yan
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Linlin Wang
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China.
| | - Qi Liu
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Haoyu Tian
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Wenqi Tan
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Zijie Xia
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Denghu Wei
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Kangning Zhao
- Laboratory of Advanced Separations (LAS) École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Qiu-An Huang
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Lili Xi
- Materials Genome Institute, Shanghai University, Shanghai 200444, PR China.
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| |
Collapse
|
13
|
Wang Y, Zhu J, Chen A, Guo X, Cui H, Chen Z, Hou Y, Huang Z, Wang D, Liang G, Cao SC, Zhi C. Spider Silk-Inspired Binder Design for Flexible Lithium-Ion Battery with High Durability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303165. [PMID: 37493625 DOI: 10.1002/adma.202303165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Indexed: 07/27/2023]
Abstract
The development of flexible lithium-ion batteries (LIBs) imposes demands on energy density and high mechanical durability simultaneously. Due to the limited deformability of electrodes, as well as the flat and smooth surface of the metal current collectors, stable/durable/reliable contact between electrode materials and the current collectors remains a challenge, in particular, for electrodes with high loading mass and heavily deformed batteries. Binders play an essential role in binding particles of electrode materials and adhering them to current collectors. Herein, inspired by spider silk, a binder for flexible LIBs is developed, which equips a cross-linked supramolecular poly(urethane-urea) to the polyacrylic acid. The binder imparts super high elastic restorability originating from the meticulously engineered hydrogen-bonding segments as well as extraordinary adhesion. The developed binder provides excellent flexibility and intact electrode morphologies without disintegration even when the electrode is largely deformed, enabling a stable cycling and voltage output even when the batteries are put under tough dynamic deformation tests. The flexible LIBs exhibit a high energy density of 420 Wh L-1 , which is remarkably higher than reported numbers. The unique binder design is greatly promising and offers a valuable material solution for LIBs with high-loading mass and flexible designs.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jiaxiong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xun Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ze Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yue Hou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhaodong Huang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong, SAR, 999077, China
| | - Donghong Wang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui, 243032, China
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Shan Cecilia Cao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong, SAR, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
14
|
Wintzheimer S, Luthardt L, Cao KLA, Imaz I, Maspoch D, Ogi T, Bück A, Debecker DP, Faustini M, Mandel K. Multifunctional, Hybrid Materials Design via Spray-Drying: Much more than Just Drying. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306648. [PMID: 37840431 DOI: 10.1002/adma.202306648] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Spray-drying is a popular and well-known "drying tool" for engineers. This perspective highlights that, beyond this application, spray-drying is a very interesting and powerful tool for materials chemists to enable the design of multifunctional and hybrid materials. Upon spray-drying, the confined space of a liquid droplet is narrowed down, and its ingredients are forced together upon "falling dry." As detailed in this article, this enables the following material formation strategies either individually or even in combination: nanoparticles and/or molecules can be assembled; precipitation reactions as well as chemical syntheses can be performed; and templated materials can be designed. Beyond this, fragile moieties can be processed, or "precursor materials" be prepared. Post-treatment of spray-dried objects eventually enables the next level in the design of complex materials. Using spray-drying to design (particulate) materials comes with many advantages-but also with many challenges-all of which are outlined here. It is believed that multifunctional, hybrid materials, made via spray-drying, enable very unique property combinations that are particularly highly promising in myriad applications-of which catalysis, diagnostics, purification, storage, and information are highlighted.
Collapse
Affiliation(s)
- Susanne Wintzheimer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Leoni Luthardt
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Andreas Bück
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Damien P Debecker
- Université catholique de Louvain (UCLouvain), Institute of Condensed Matter and Nanosciences (IMCN), Place Louis Pasteur, 1, 348, Louvain-la-Neuve, Belgium
| | - Marco Faustini
- Sorbonne Université, Collège de France, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Paris, F-75005, France
- Institut Universitaire de France (IUF), Paris, 75231, France
| | - Karl Mandel
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|
15
|
Han DY, Son HB, Han SH, Song CK, Jung J, Lee S, Choi SS, Song WJ, Park S. Hierarchical 3D Electrode Design with High Mass Loading Enabling High-Energy-Density Flexible Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305416. [PMID: 37528714 DOI: 10.1002/smll.202305416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Flexible lithium-ion batteries (LIBs) have attracted significant attention owing to their ever-increasing use in flexible and wearable electronic devices. However, the practical application of flexible LIBs in devices has been plagued by the challenge of simultaneously achieving high energy density and high flexibility. Herein, a hierarchical 3D electrode (H3DE) is introduced with high mass loading that can construct highly flexible LIBs with ultrahigh energy density. The H3DE features a bicontinuous structure and the active materials along with conductive agents are uniformly distributed on the 3D framework regardless of the active material type. The bicontinuous electrode/electrolyte integration enables a rapid ion/electron transport, thereby improving the redox kinetics and lowering the internal cell resistance. Moreover, the H3DE exhibits exceptional structural integrity and flexibility during repeated mechanical deformations. Benefiting from the remarkable physicochemical properties, pouch-type flexible LIBs using H3DE demonstrate stable cycling under various bending states, achieving a record-high energy density (438.6 Wh kg-1 and 20.4 mWh cm-2 ), and areal capacity (5.6 mAh cm-2 ), outperforming all previously reported flexible LIBs. This study provides a feasible solution for the preparation of high-energy-density flexible LIBs for various energy storage devices.
Collapse
Affiliation(s)
- Dong-Yeob Han
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hye Bin Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sang Hyun Han
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chi Keung Song
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jaeho Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sangyeop Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Su Seok Choi
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Woo-Jin Song
- Department of Organic Materials Engineering, Department of Chemical Engineering and Applied Chemistry, Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soojin Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
16
|
Park J, Sasaki Y, Ishii Y, Murayama S, Ohshiro K, Nishiura K, Ikura R, Yamaguchi H, Harada A, Matsuba G, Washizu H, Minami T, Takashima Y. Leaf-Inspired Host-Guest Complexation-Dictating Supramolecular Gas Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39777-39785. [PMID: 37565809 DOI: 10.1021/acsami.3c04395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
We report unique conductive leaf-inspired (in particular, stomata-inspired) supramolecular gas sensors in which acetylated cyclodextrin derivatives rule the electric output. The gas sensors consist of polymers bearing acetylated cyclodextrin, adamantane, and carbon black. Host-guest complexes between acetylated cyclodextrin and adamantane corresponding to the closed stomata realize a flexible polymeric matrix. Effective recombination of the cross-links contributes to the robustness. As gas sensors, the supramolecular materials detect ammonia as well as various other gases at 1 ppm in 10 min. The free acetylated cyclodextrin corresponding to open stomata recognized the guest gases to alter the electric resistivity. Interestingly, the conductive device failed to detect ammonia gases at all without acetylated cyclodextrin. The molecular recognition was studied by molecular dynamics simulations. The gas molecules existed stably in the cavity of free acetylated cyclodextrin. These findings show the potential for developing wearable gas sensors.
Collapse
Affiliation(s)
- Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yoshiki Ishii
- Graduate School of Information Science, University of Hyogo, 7-1-28 minatojima-minamimachi, Chuo, Kobe, Hyogo 650-0047, Japan
| | - Shunsuke Murayama
- Graduate School of Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kengo Nishiura
- Graduate School of Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Ryohei Ikura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Harada
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Go Matsuba
- Graduate School of Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hitoshi Washizu
- Graduate School of Information Science, University of Hyogo, 7-1-28 minatojima-minamimachi, Chuo, Kobe, Hyogo 650-0047, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Teymoory P, Zhao J, Shen C. How Practical Are Fiber Supercapacitors for Wearable Energy Storage Applications? MICROMACHINES 2023; 14:1249. [PMID: 37374834 DOI: 10.3390/mi14061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/11/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Future wearable electronics and smart textiles face a major challenge in the development of energy storage devices that are high-performing while still being flexible, lightweight, and safe. Fiber supercapacitors are one of the most promising energy storage technologies for such applications due to their excellent electrochemical characteristics and mechanical flexibility. Over the past decade, researchers have put in tremendous effort and made significant progress on fiber supercapacitors. It is now the time to assess the outcomes to ensure that this kind of energy storage device will be practical for future wearable electronics and smart textiles. While the materials, fabrication methods, and energy storage performance of fiber supercapacitors have been summarized and evaluated in many previous publications, this review paper focuses on two practical questions: Are the reported devices providing sufficient energy and power densities to wearable electronics? Are the reported devices flexible and durable enough to be integrated into smart textiles? To answer the first question, we not only review the electrochemical performance of the reported fiber supercapacitors but also compare them to the power needs of a variety of commercial electronics. To answer the second question, we review the general approaches to assess the flexibility of wearable textiles and suggest standard methods to evaluate the mechanical flexibility and stability of fiber supercapacitors for future studies. Lastly, this article summarizes the challenges for the practical application of fiber supercapacitors and proposes possible solutions.
Collapse
Affiliation(s)
- Parya Teymoory
- Mechanical Engineering Department, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Jingzhou Zhao
- Mechanical Engineering Department, Western New England University, Springfield, MA 01119, USA
| | - Caiwei Shen
- Mechanical Engineering Department, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| |
Collapse
|
18
|
Ling S, Li X, Zhou T, Yuan R, Sun S, He H, Zhang C. Densifiable Ink Extrusion for Roll-To-Roll Fiber Lithium-Ion Batteries with Ultra-High Linear and Volumetric Energy Densities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211201. [PMID: 36683471 DOI: 10.1002/adma.202211201] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Conventional bulky and rigid planar architecting power systems are difficult to satisfy the growing demand for wearable applications. 1D fiber batteries bearing appealing features of miniaturization, adaptability, and weavability represent a promising solution, yet challenges remain pertaining to energy density and scalability. Herein, an ingenious densifiable functional ink is invented to fabricate scalable, flexible, and high-mass-loading fiber lithium-ion batteries (LIBs) by adopting a fast ink-extrusion technology. In the formulated ink, pyrrole-modified reduced graphene oxide is elaborately introduced and exerts multiple influences; it not only assembles carbon nanotubes and poly(vinylidene fluoride-co-hexafluoropropylene) to compose a sturdy, conductive, and agglomeration-free 3D network that realizes an ultra-high content (75 wt%) of the active materials and endows the electrode excellent flexibility but also serves as a capillary densification inducer, encouraging an extremely large linear mass loading (1.01 mg cm-1 per fiber) and packing density (782.1 mg cm-3 ). As a result, the assembled fiber LIBs deliver impressive linear and volumetric energy densities with superb mechanical compliance, demonstrating the best performance among all the reported extruded fiber batteries. This work highlights a highly effective and facile approach to fabricate high-performance fiber energy storage devices for future practical wearable applications.
Collapse
Affiliation(s)
- Shangwen Ling
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaolong Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, P. R. China
| | - Tiantian Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruoxin Yuan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, P. R. China
| | - Shuxian Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, P. R. China
| | - Hanna He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, P. R. China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
19
|
Sun S, Zhao M, Wang Q, Xue S, Huang Q, Yu N, Wu Y. Flexible All-Solid-State Direct Methanol Fuel Cells with High Specific Power Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205835. [PMID: 36634982 DOI: 10.1002/smll.202205835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/17/2022] [Indexed: 06/17/2023]
Abstract
It is vital to create flexible batteries as power sources to suit the needs of flexible electronic devices because they are widely employed in wearable and portable electronics. The direct methanol fuel cell (DMFC) is a desirable alternative portable energy source since it is a clean, safe, and high energy density cell. The traditional DMFC in mechanical assembly and its unbending property, however, prevent it from being employed in flexible electrical devices. In this study, the flexible membrane electrode assembly (MEA) with superior electrical conductivity and nanoscale TiC-modified carbon cloth (TiC/CC) is used as supporting layer. Additionally, solid methanol fuels used in the manufacturing of flexible all-solid-state DMFC have the advantages of being tiny, light, and having high energy density. Furthermore, the DMFC's placement and bending angle have little effect on its performance, suggesting that DMFC is appropriate for flexible portable energy. The flexible all-solid-state DMFC's power density can reach 14.06 mW cm-2 , and after 50 bends at 60°, its voltage loss can be disregarded. The flexible all-solid DMFC has an energy density that is 777.78 Wh Kg-1 higher than flexible lithium-ion batteries, which is advantageous for the commercialization of flexible electronic products.
Collapse
Affiliation(s)
- Shanshan Sun
- Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Minglin Zhao
- Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Qingwei Wang
- Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Shujie Xue
- Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Qinghong Huang
- Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Nengfei Yu
- Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Yuping Wu
- Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| |
Collapse
|
20
|
Xiao X, Zheng Z, Zhong X, Gao R, Piao Z, Jiao M, Zhou G. Rational Design of Flexible Zn-Based Batteries for Wearable Electronic Devices. ACS NANO 2023; 17:1764-1802. [PMID: 36716429 DOI: 10.1021/acsnano.2c09509] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The advent of 5G and the Internet of Things has spawned a demand for wearable electronic devices. However, the lack of a suitable flexible energy storage system has become the "Achilles' Heel" of wearable electronic devices. Additional problems during the transformation of the battery structure from conventional to flexible also present a severe challenge to the battery design. Flexible Zn-based batteries, including Zn-ion batteries and Zn-air batteries, have long been considered promising candidates due to their high safety, eco-efficiency, substantial reserve, and low cost. In the past decade, researchers have come up with elaborate designs for each portion of flexible Zn-based batteries to improve the ionic conductivities, mechanical properties, environment adaptabilities, and scalable productions. It would be helpful to summarize the reported strategies and compare their pros and cons to facilitate further research toward the commercialization of flexible Zn-based batteries. In this review, the current progress in developing flexible Zn-based batteries is comprehensively reviewed, including their electrolytes, cathodes, and anodes, and discussed in terms of their synthesis, characterization, and performance validation. By clarifying the challenges in flexible Zn-based battery design, we summarize the methodology from previous investigations and propose challenges for future development. In the end, a research paradigm of Zn-based batteries is summarized to fit the burgeoning requirement of wearable electronic devices in an iterative process, which will benefit the future development of Zn-based batteries.
Collapse
Affiliation(s)
- Xiao Xiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Zhiyang Zheng
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Xiongwei Zhong
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Runhua Gao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Zhihong Piao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Miaolun Jiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
21
|
Recent progress in the fabrication of nanostructured zinc-based ternary metal oxides for high-performance lithium-ion batteries. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-022-01832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Chen W, Xing Z, Wei Y, Zhang X, Zhang Q. High thermal safety and conductivity gel polymer electrolyte composed of ionic liquid [EMIM][BF4] and PVDF-HFP for EDLCs. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Fan X, Zhong C, Liu J, Ding J, Deng Y, Han X, Zhang L, Hu W, Wilkinson DP, Zhang J. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chem Rev 2022; 122:17155-17239. [PMID: 36239919 DOI: 10.1021/acs.chemrev.2c00196] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ever-increasing demand for flexible and portable electronics has stimulated research and development in building advanced electrochemical energy devices which are lightweight, ultrathin, small in size, bendable, foldable, knittable, wearable, and/or stretchable. In such flexible and portable devices, semi-solid/solid electrolytes besides anodes and cathodes are the necessary components determining the energy/power performances. By serving as the ion transport channels, such semi-solid/solid electrolytes may be beneficial to resolving the issues of leakage, electrode corrosion, and metal electrode dendrite growth. In this paper, the fundamentals of semi-solid/solid electrolytes (e.g., chemical composition, ionic conductivity, electrochemical window, mechanical strength, thermal stability, and other attractive features), the electrode-electrolyte interfacial properties, and their relationships with the performance of various energy devices (e.g., supercapacitors, secondary ion batteries, metal-sulfur batteries, and metal-air batteries) are comprehensively reviewed in terms of materials synthesis and/or characterization, functional mechanisms, and device assembling for performance validation. The most recent advancements in improving the performance of electrochemical energy devices are summarized with focuses on analyzing the existing technical challenges (e.g., solid electrolyte interphase formation, metal electrode dendrite growth, polysulfide shuttle issue, electrolyte instability in half-open battery structure) and the strategies for overcoming these challenges through modification of semi-solid/solid electrolyte materials. Several possible directions for future research and development are proposed for going beyond existing technological bottlenecks and achieving desirable flexible and portable electrochemical energy devices to fulfill their practical applications. It is expected that this review may provide the readers with a comprehensive cross-technology understanding of the semi-solid/solid electrolytes for facilitating their current and future researches on the flexible and portable electrochemical energy devices.
Collapse
Affiliation(s)
- Xiayue Fan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Jia Ding
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Lei Zhang
- Energy, Mining & Environment, National Research Council of Canada, Vancouver, British ColumbiaV6T 1W5, Canada
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| | - David P Wilkinson
- Department of Chemical and Biochemical Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1W5, Canada
| | - Jiujun Zhang
- Energy, Mining & Environment, National Research Council of Canada, Vancouver, British ColumbiaV6T 1W5, Canada
- Department of Chemical and Biochemical Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1W5, Canada
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, China
| |
Collapse
|
24
|
Meng Q, Zhu J, Kang C, Xiao X, Ma Y, Huo H, Zuo P, Du C, Lou S, Yin G. Kirigami-Inspired Flexible Lithium-Ion Batteries via Transformation of Concentrated Stress into Segmented Strain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204745. [PMID: 36148862 DOI: 10.1002/smll.202204745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Emerging directions in the growing wearable electronics market have spurred the development of flexible energy storage systems that require deformability while maintaining electrochemical performance. However, the traditional fabrication approaches of lithium-ion batteries (LIBs) are challenging to withstand long-cycle bending alternating loads due to the stress concentration caused by the nonuniformity of the actual deformation. Herein, inspired by kirigami, a segmented deformation design of full-cell scale thin-type flexible lithium-ion batteries (FLIBs) with large-scale manufacturing characteristics via the current collector's mechanical blanking process is reported. This strategy allows the battery's elliptical deformation of the actual state to be transformed into the circular strain of the ideal configuration, thereby dispersing the stress concentration on the top of the battery. According to the results, the designed battery maintains >95% capacity after >20 000 harsh in situ dynamic tests. In addition, finite element analysis further reveals the mechanism that the segmented deformation strategy bears the mechanical stress. This work can enlighten the rational design and customization of electrode patterns for high compatibility with various devices, thereby providing potential opportunities for the application of FLIBs.
Collapse
Affiliation(s)
- Qi Meng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, Heilongjiang, 150001, China
| | - Jiaming Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, Heilongjiang, 150001, China
| | - Cong Kang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, Heilongjiang, 150001, China
| | - Xiangjun Xiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, Heilongjiang, 150001, China
| | - Yulin Ma
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, Heilongjiang, 150001, China
| | - Hua Huo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, Heilongjiang, 150001, China
| | - Pengjian Zuo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, Heilongjiang, 150001, China
- Chongqing Research Institute of Harbin Institute of Technology (HIT), Chongqing, 401120, China
| | - Chunyu Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, Heilongjiang, 150001, China
| | - Shuaifeng Lou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, Heilongjiang, 150001, China
- Chongqing Research Institute of Harbin Institute of Technology (HIT), Chongqing, 401120, China
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, Heilongjiang, 150001, China
| |
Collapse
|
25
|
Meng Q, Lou S, Shen B, Wan X, Xiao X, Ma Y, Huo H, Yin G. Reevaluating Flexible Lithium-Ion Batteries from the Insights of Mechanics and Electrochemistry. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Li F, Gu X, Wu S, Dong S, Wang J, Dai P, Li L, Liu D, Wu M. Interface Engineering Enabled High-Performance Layered P3-Type K0.5MnO2 Cathode for Low-Cost Potassium-Ion Batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Flexible and robust silicon/carbon nanotube anodes exhibiting high areal capacities. J Colloid Interface Sci 2022; 625:871-878. [DOI: 10.1016/j.jcis.2022.06.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022]
|
28
|
Li C, Yuan C, Zhu J, Ni X, Li K, Wang L, Qi Y, Ju A. Fabrication of silicon nanoparticles/porous carbon@porous carbon nanofibers core-shell structured composites as high-performance anodes for lithium-ion batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Wang X, Ruan X, Du CF, Yu H. Developments in Surface/Interface Engineering of Ni-Rich Layered Cathode Materials. CHEM REC 2022; 22:e202200119. [PMID: 35733083 DOI: 10.1002/tcr.202200119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Indexed: 11/12/2022]
Abstract
Ni-rich layered cathodes with high energy densities reveal an enormous potential for lithium-ion batteries (LIBs), however, their poor stability and reliability have inhibited their application. To ensure their stability over extensive cycles at high voltage, surface/interface modifications are necessary to minimize the adverse reactions at the cathode-electrolyte interface (CEI), which is a critical factor impeding electrode performance. Therefore, this review provides a comprehensive discussion on the surface engineering of Ni-rich cathode materials for enhancing their lithium storage property. Based on the structural characteristics of the Ni-rich cathode, the major failure mechanisms of these structures during synthesis and operation are summarized. Then the existing surface modification techniques are discussed and compared. Recent breakthroughs in various surface coatings and modification strategies are categorized and their unique functionalities in structural protection and performance-enhancing are elaborated. Finally, the challenges and outlook on the Ni-rich cathode materials are also proposed.
Collapse
Affiliation(s)
- Xiaomei Wang
- State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University Xi'an, Shaanxi, 710072, P. R. China
| | - Xiaopeng Ruan
- State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University Xi'an, Shaanxi, 710072, P. R. China
| | - Cheng-Feng Du
- Northwestern Polytechnical University, Chongqing Technology innovation Center, Chongqing, 400000, P. R. China
| | - Hong Yu
- State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
30
|
Zhang S, Luo J, Du M, Hui H, Sun Z. Safety and cycling stability enhancement of cellulose paper-based lithium-ion battery separator by aramid nanofibers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Shi Y, Wang Z, Wen L, Pei S, Chen K, Li H, Cheng H, Li F. Ultrastable Interfacial Contacts Enabling Unimpeded Charge Transfer and Ion Diffusion in Flexible Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105419. [PMID: 35106952 PMCID: PMC8981437 DOI: 10.1002/advs.202105419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Indexed: 05/24/2023]
Abstract
Deteriorating interfacial contact under mechanical deformation induces large cracks and high charge transfer resistance, resulting in a severe capacity fading of flexible lithium-ion batteries (LIBs). Herein, an oxygen plasma treatment on a polymer separator combined with high-speed centrifugal spraying to construct ultrastable interfacial contacts is reported. With the treatment, abundant hydrophilic oxygen-containing functional groups are produced and ensure strong chemical adhesion between the separator and the active materials. With single walled carbon nanotubes (SWCNTs) sprayed onto the active materials, a dense thin film is formed as the current collector. Meanwhile, the centrifugal force caused by high-speed rotation together with van der Waals forces under fast evaporation produces a much closer interface between the current collector and the active materials. As a result of this ultrastable interfacial interaction, the integrated electrode shows no structural failure after 5000 bending cycles with the charge-transfer resistance as low as 35.8% and a Li-ion diffusion coefficient nearly 19 times of the untreated electrode. Flexible LIBs assembled with these integrated electrodes show excellent structural and electrochemical stability, and can work steadily under various deformed states and repeated bending. This work provides a new technique toward rational design of electrode configuration for flexible LIBs.
Collapse
Affiliation(s)
- Ying Shi
- School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyang110016China
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| | - Zhenxing Wang
- Ji Hua LaboratoryFoshanGuangdong528000China
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| | - Lei Wen
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| | - Songfeng Pei
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| | - Ke Chen
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
- School of Physical Science and TechnologyShanghai Tech UniversityShanghai201210China
| | - Hucheng Li
- School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyang110016China
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| | - Hui‐Ming Cheng
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
- Institute of Technology for Carbon NeutralityShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Feng Li
- School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyang110016China
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| |
Collapse
|
32
|
Bi Z, Zhang Y, Li X, Liang Y, Ma W, Zhou Z, Zhu M. Porous fibers of carbon decorated T-Nb2O5 nanocrystal anchored on three-dimensional rGO composites combined with rGO nanosheets as an anode for high-performance flexible sodium-ion capacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Synthesis of V2O5/Single-Walled Carbon Nanotubes Integrated into Nanostructured Composites as Cathode Materials in High Performance Lithium-Ion Batteries. ENERGIES 2022. [DOI: 10.3390/en15020552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vanadium pentoxide (V2O5)-anchored single-walled carbon nanotube (SWCNT) composites have been developed through a simple sol–gel process, followed by hydrothermal treatment. The resulting material is suitable for use in flexible ultra-high capacity electrode applications for lithium-ion batteries. The unique combination of V2O5 with 0.2 wt.% of SWCNT offers a highly conductive three-dimensional network. This ultimately alleviates the low lithium-ion intercalation seen in V2O5 itself and facilitates vanadium redox reactions. The integration of SWCNTs into the layered structure of V2O5 leads to a high specific capacity of 390 mAhg−1 at 0.1 C between 1.8 to 3.8 V, which is close to the theoretical capacity of V2O5 (443 mAhg−1). In recent research, most of the V2O5 with carbonaceous materials shows higher specific capacity but limited cyclability and poor rate capability. In this work, good cyclability with only 0.3% per cycle degradation during 200 cycles and enhanced rate capability of 178 mAhg−1 at 10 C have been achieved. The excellent electrochemical kinetics during lithiation/delithiation is attributed to the chemical interaction of SWCNTs entrapped between layers of the V2O5 nanostructured network. Proper dispersion of SWCNTs into the V2O5 structure, and its resulting effects, have been validated by SEM, TEM, XPS, XRD, and electrical resistivity measurements. This innovative hybrid material offers a new direction for the large-scale production of high-performance cathode materials for advanced flexible and structural battery applications.
Collapse
|
34
|
LI J, MIAO X, WANG S, CHEN S, HAN B, XU G, WANG K, AN B, JU D, ZHOU W. Study on Fabrications and Storage Capacity of Coal Tar Pitch Based V<sub>2</sub>O<sub>3</sub>@C Composite Materials. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jianke LI
- University of Science and Technology Liaoning
| | | | | | | | - Beibei HAN
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
| | - Guiying XU
- University of Science and Technology Liaoning
| | - Kun WANG
- University of Science and Technology Liaoning
| | - Baigang AN
- University of Science and Technology Liaoning
| | - Dongying JU
- Advanced Science Research Laboratory, Saitama Institute of Technology
| | - Weimin ZHOU
- University of Science and Technology Liaoning
| |
Collapse
|
35
|
Xue L, Chen F, Zhang Z, Gao Y, Chen D. Fast charge transfer kinetics enabled by carbon‐coated, heterostructured SnO2/SnSx arrays for robust, flexible lithium‐ion batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202101327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lichun Xue
- Jinan University Department of Chemistry CHINA
| | | | | | - Yang Gao
- Hunan University college of materials science and engineering CHINA
| | - Dengjie Chen
- Jinan University Department of Chemistry No. 601, Huangpu Avenue West 510632 Guangzhou CHINA
| |
Collapse
|
36
|
Li N, Chen H, Yang S, Yang H, Jiao S, Song W. Bidirectional Planar Flexible Snake-Origami Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101372. [PMID: 34449128 PMCID: PMC8529459 DOI: 10.1002/advs.202101372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/04/2021] [Indexed: 05/05/2023]
Abstract
With the rapid development of commercial flexible/wearable devices, flexible batteries have attracted great attention as optimal power sources. However, a combination of high energy density and excellent arbitrary deformation ability is still a critical challenge to satisfy practical applications. Inspired by rigid and soft features of chemical molecular structures, novel bidirectional flexible snake-origami lithium-ion batteries (LIBs) with both high energy density and favorable flexibility are designed and fabricated. The flexible snake-origami battery consists of rigid and soft segments, where the former is designed as the energy unit and the latter served as the deformation unit. With the unique features from such design, the as-fabricated battery with calculating all the components exhibits a record-setting energy density of 357 Wh L-1 (133 Wh kg-1 ), compared with the cell-scale flexible LIBs achieved from both academic and industry. Additionally, a design principle is established to verify the validity of utilizing rigid-soft-coupled structure for enduring various deformations, and the intrinsic relationship between battery structure, energy density, and flexibility can be confirmed. The results suggest that the design principle and performance of bidirectional flexible snake-origami batteries will provide a new reliable strategy for achieving high energy flexible batteries for wearable devices.
Collapse
Affiliation(s)
- Na Li
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐Functional Composite Materials and StructuresBeijing Institute of TechnologyBeijing100081P. R. China
| | - Haosen Chen
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐Functional Composite Materials and StructuresBeijing Institute of TechnologyBeijing100081P. R. China
| | - Shuangquan Yang
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐Functional Composite Materials and StructuresBeijing Institute of TechnologyBeijing100081P. R. China
| | - Heng Yang
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐Functional Composite Materials and StructuresBeijing Institute of TechnologyBeijing100081P. R. China
| | - Shuqiang Jiao
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
- State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Wei‐Li Song
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐Functional Composite Materials and StructuresBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
37
|
Wang J, Li X, Yang J, Sun W, Ban Q, Gai L, Gong Y, Xu Z, Liu L. Flame-Retardant, Highly Conductive, and Low-Temperature-Resistant Organic Gel Electrolyte for High-Performance All-Solid Supercapacitors. CHEMSUSCHEM 2021; 14:2056-2066. [PMID: 33751843 DOI: 10.1002/cssc.202100141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Traditional liquid electrolytes are volatile, flammable, and easy to leak, which makes the energy storage device easy to burn and explode in the case of overcharge and short circuit. Here, by utilizing the active P-H bond of a flame retardant (DOPO) to graft onto the polymer chain, flame-retardant organic gel electrolytes were fabricated to address these issues. The gel electrolyte had good ionic conductivity of 4 mS cm-1 at 20 °C and good flame retardant ability. By changing the molar ratio of the monomers and the salt concentrations, the mechanical strength of the gel electrolyte could be adjusted (maximum stress≈28 KPa, maximum strain≈305 %). The transport mechanism of lithium ions in the gel polymer electrolyte was proposed. The gel electrolyte-assembled supercapacitor (SC) possessed better electrochemical properties than that of SC assembled by liquid electrolyte. Importantly, the gel-based SC remained basically unchanged under multiple bending cycles. Additionally, the gel electrolyte had good low-temperature tolerance (0.1 mS cm-1 at -40 °C). The gel electrolyte-assembled SC could work normally in the temperature range of -20 to 60 °C. The multiple advantages of gel electrolyte expand the applications in ionic conductor and energy storage devices.
Collapse
Affiliation(s)
- Jijun Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China
| | - Xuelin Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China
| | - Jianbo Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China
| | - Weigang Sun
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China
| | - Qing Ban
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China
| | - Ligang Gai
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China
| | - Yingying Gong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China
| | - Zhen Xu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China
| | - Libin Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China
| |
Collapse
|
38
|
Dinda PP, Meena S. A V 3C 2MXene/graphene heterostructure as a sustainable electrode material for metal ion batteries. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:175001. [PMID: 33530068 DOI: 10.1088/1361-648x/abe267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Individually, MXene and graphene based frameworks have been recognized as promising 2D electrode materials for metal ion batteries. Herein, we have engineered a heterostructure of V3C2MXene and graphene using computational design. A comprehensive investigation of designed heterostructure has been reported in this work. Simulated heterostructure has been evaluated for various functionalities such as high performance of thermal stability, metal ion intercalation, diffusion energy using density functional theory method. Interestingly, simulation examinations and obtained calculations demonstrate the high storage capacity of Li and Ca (598.63 mAh g-1), and Na (555.87 mAh g-1) with the designed V3C2/graphene model. Promising diffusion energy barriers for Li (0.11 eV), Na (0.17 eV) and Ca (0.15 eV) ions are also investigated and have explained systematically in the present work. Moreover, we have achieved high capacity and fast charge/discharge rates of V3C2/graphene heterostructure indicating its promising electrode potential efficiency for ion batteries especially for Na ion battery. Thus, our investigation demonstrate the advantages of newly designed V3C2MXene and graphene heterostructure for advance metal ion batteries.
Collapse
Affiliation(s)
- Partha Pratim Dinda
- School of VLSI and Embedded Systems, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India
| | - Shweta Meena
- Department of Electronics and Communication Engineering, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India
| |
Collapse
|
39
|
Huang R, Lin J, Zhou J, Fan E, Zhang X, Chen R, Wu F, Li L. Hierarchical Triple-Shelled MnCo 2 O 4 Hollow Microspheres as High-Performance Anode Materials for Potassium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007597. [PMID: 33619897 DOI: 10.1002/smll.202007597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/12/2021] [Indexed: 05/06/2023]
Abstract
Metal oxide anode materials generally possess high theoretical capacities. However, their further development in potassium-ion batteries (KIBs) is limited by self-aggregation and large volume fluctuations during charge/discharge processes. Herein, hierarchical MnCo2 O4 hollow microspheres (ts-MCO HSs) with three porous shells that consist of aggregated primary nanoparticles are fabricated as anode materials of KIBs. The porous shells are in favor of reducing the diffusion path of K-ions and electrons, and thus the rate performance can be enhanced. The unique triple-shelled hollow structure is believed to provide sufficient contact between electrolyte and metal oxides, possess additional active storage sites for K-ions, and buffer the volume change during K-ions insertion/extraction. A high specific capacity of 243 mA h g-1 at 100 mA g-1 in the 2nd cycle and a highly improved rate performance of 153 mA h g-1 at 1 A g-1 are delivered when cycled between 0.01 and 3.0 V. In addition, the transformation of substances during charging/discharging processes are intuitively demonstrated by the in situ X-ray diffraction strategy for the first time, which further proves that the unique structure of ts-MCO HSs with three porous shells can significantly enhance the potassium ions storage performance.
Collapse
Affiliation(s)
- Ruling Huang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiao Lin
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiahui Zhou
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ersha Fan
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xixue Zhang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
- Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy Testing, Guangzhou, Guangdong, 511447, China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
- Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy Testing, Guangzhou, Guangdong, 511447, China
| |
Collapse
|
40
|
Solid electrolyte membranes prepared from poly(arylene ether sulfone)-g-poly(ethylene glycol) with various functional end groups for lithium-ion battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Xie C, Shan H, Song X, Chen L, Wang J, Shi JW, Hu J, Zhang J, Li X. Flexible S@C-CNTs cathodes with robust mechanical strength via blade-coating for lithium-sulfur batteries. J Colloid Interface Sci 2021; 592:448-454. [PMID: 33714763 DOI: 10.1016/j.jcis.2021.02.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 10/22/2022]
Abstract
Lithium sulfur batteries (LSBs) with high energy density hold some promising applications in the wearable and flexible devices. However, it has been still challenging to develop a simple and feasible approach to prepare flexible LSB cathodes with both robust mechanical strength. Herein, flexible S@C-CNTs cathodes with controllable thicknesses are successfully fabricated via a facile blade-coating method. Due to the strong cohesion among CNTs bundles and the well-designed structure, the flexible S@C-CNTs cathodes are demonstrated to be with a combination of impressive mechanical strength and enhanced electrochemical performance. For the flexible S@C-CNTs cathodes with the sulfur mass loading of 4 mg cm-2, the areal capacity is close to 3.0 mA h cm-2, and the breaking stress is up to 5.59 MPa with 7.77% strain. Meanwhile, the pouch cell exhibits excellent cyclic stability at both flat/bent conditions. All demonstrate that the flexible S@C-CNTs cathodes may satisfy the demands of practical application. Moreover, this methodology is suitable for designing other flexible battery electrodes, such as flexible Si@C-CNTs anodes for lithium ion batteries, flexible P@C-CNTs anodes for sodium/potassium ion batteries, etc.
Collapse
Affiliation(s)
- Chong Xie
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi 710048, China
| | - Hui Shan
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi 710048, China
| | - Xuexia Song
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi 710048, China
| | - Liping Chen
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi 710048, China
| | - Jingjing Wang
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi 710048, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Junhua Hu
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Jiujun Zhang
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai 200444, China.
| | - Xifei Li
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi 710048, China.
| |
Collapse
|
42
|
Han JH, Shin KH, Lee YJ. Scalable Binder-Free Freestanding Electrodes Based on a Cellulose Acetate-Assisted Carbon Nanotube Fibrous Network for Practical Flexible Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6375-6384. [PMID: 33508939 DOI: 10.1021/acsami.0c22664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a freestanding cellulose acetate-carbon nanotube (CA-CNT) film electrode is presented to achieve highly flexible, high-energy lithium-ion batteries (LIBs). CA serves as a dispersing agent of CNTs and a binder-free network former. A straightforward washing can remove CA in the electrode almost completely, while the fibrous CNT network within the electrode is sustained. Furthermore, the facile fabrication enables the large-scale production of the film electrode because the CA-CNT film is processed by a conventional casting method and not by the area-limited vacuum filtration. The superior electrochemical performance and high flexibility of the full cell assembled with CA-CNT-based electrodes are maintained even at a high active material loading, which has been proven difficult to accomplish in the conventional configuration LIBs. In addition, by simply stacking six sheets of the freestanding film electrode, a capacity as high as 5.4 mA h cm-2 is achieved. The assembled pouch battery operates stably under extreme deformation. We demonstrate that the rational design of the electrode could extend the flexibility to a higher energy than that achieved with the conventional configuration. We believe that the low production cost, high flexibility, and superior electrochemical performance of the proposed freestanding film electrode can expedite the implementation of wearable gears in daily life.
Collapse
Affiliation(s)
- Ji Hyun Han
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyu Hang Shin
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yun Jung Lee
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
43
|
Islam J, Chowdhury FI, Uddin J, Amin R, Uddin J. Review on carbonaceous materials and metal composites in deformable electrodes for flexible lithium-ion batteries. RSC Adv 2021; 11:5958-5992. [PMID: 35423128 PMCID: PMC8694876 DOI: 10.1039/d0ra10229f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/15/2021] [Indexed: 11/21/2022] Open
Abstract
With the rapid propagation of flexible electronic devices, flexible lithium-ion batteries (FLIBs) are emerging as the most promising energy supplier among all of the energy storage devices owing to their high energy and power densities with good cycling stability. As a key component of FLIBs, to date, researchers have tried to develop newly designed high-performance electrochemically and mechanically stable pliable electrodes. To synthesize better quality flexible electrodes, based on high conductivity and mechanical strength of carbonaceous materials and metals, several research studies have been conducted. Despite both materials-based electrodes demonstrating excellent electrochemical and mechanical performances in the laboratory experimental process, they cannot meet the expected demands of stable flexible electrodes with high energy density. After all, various significant issues associated with them need to be overcome, for instance, poor electrochemical performance, the rapid decay of the electrode architecture during deformation, and complicated as well as costly production processes thus limiting their expansive applications. Herein, the recent progression in the exploration of carbonaceous materials and metals based flexible electrode materials are summarized and discussed, with special focus on determining their relative electrochemical performance and structural stability based on recent advancement. Major factors for the future advancement of FLIBs in this field are also discussed.
Collapse
Affiliation(s)
- Jahidul Islam
- Department of Chemistry, University of Chittagong Chittagong 4331 Bangladesh
| | - Faisal I Chowdhury
- Department of Chemistry, University of Chittagong Chittagong 4331 Bangladesh
| | - Join Uddin
- Department of Physics, University of Chittagong Chittagong 4331 Bangladesh
| | - Rifat Amin
- Department of Physics, University of Chittagong Chittagong 4331 Bangladesh
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University Maryland USA
| |
Collapse
|
44
|
Han JS, Hwang GC, Yu H, Lim DH, Cho JS, Kuenzel M, Kim JK, Ahn JH. Preparation of fully flexible lithium metal batteries with free-standing β-Na0.33V2O5 cathodes and LAGP hybrid solid electrolytes. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Peng X, Wen C, Zhang Q, Min H, Xiang Y, Hu X, Zhang X. Effects of Annealing on Electrochemical Properties of Solvothermally Synthesized Cu 2SnS 3 Anode Nanomaterials. NANOSCALE RESEARCH LETTERS 2021; 16:17. [PMID: 33507420 PMCID: PMC7843899 DOI: 10.1186/s11671-021-03482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Cu2SnS3, as a modified material for high-capacity tin-based anodes, has great potential for lithium-ion battery applications. The solvothermal method is simple, convenient, cost-effective, and easy to scale up, and has thus been widely used for the preparation of nanocrystals. In this work, Cu2SnS3 nanoparticles were prepared by the solvothermal method. The effects of high-temperature annealing on the morphology, crystal structure, and electrochemical performance of a Cu2SnS3 nano-anode were studied. The experimental results indicate that high-temperature annealing improves the electrochemical performance of Cu2SnS3, resulting in higher initial coulombic efficiency and improved cycling and rate characteristics compared with those of the as-prepared sample.
Collapse
Affiliation(s)
- Xiaoli Peng
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Ave, West High-Tech Zone, Chengdu, 611731 Sichuan China
| | - Chong Wen
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Ave, West High-Tech Zone, Chengdu, 611731 Sichuan China
| | - Qian Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Ave, West High-Tech Zone, Chengdu, 611731 Sichuan China
| | - Hang Min
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Ave, West High-Tech Zone, Chengdu, 611731 Sichuan China
| | - Yong Xiang
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Ave, West High-Tech Zone, Chengdu, 611731 Sichuan China
| | - Xiaoran Hu
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Ave, West High-Tech Zone, Chengdu, 611731 Sichuan China
| | - Xiaokun Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Ave, West High-Tech Zone, Chengdu, 611731 Sichuan China
| |
Collapse
|
46
|
Shang K, Gao J, Yin X, Ding Y, Wen Z. An Overview of Flexible Electrode Materials/Substrates for Flexible Electrochemical Energy Storage/Conversion Devices. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kezheng Shang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiyuan Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ximeng Yin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Yichun Ding
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- College of Chemistry Fuzhou University Fuzhou 350002 China
| |
Collapse
|
47
|
Meng N, Lian F, Cui G. Macromolecular Design of Lithium Conductive Polymer as Electrolyte for Solid-State Lithium Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005762. [PMID: 33346405 DOI: 10.1002/smll.202005762] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/02/2020] [Indexed: 05/22/2023]
Abstract
In the development of solid-state lithium batteries, solid polymer electrolyte (SPE) has drawn extensive concerns for its thermal and chemical stability, low density, and good processability. Especially SPE efficiently suppresses the formation of lithium dendrite and promotes battery safety. However, most of SPE is derived from the matrix with simple functional group, which suffers from low ionic conductivity, reduced mechanical properties after conductivity modification, bad electrochemical stability, and low lithium-ion transference number. Appling macromolecular design with multiple functional groups to polymer matrix is accepted as a strategy to solve the problems of SPE fundamentally. In this review, macromolecular design based on lithium conducting groups is summarized including copolymerization, network construction, and grafting. Meanwhile, the construction of single-ion conductor polymer is also focused herein. Moreover, synergistic effects between the designed matrix, lithium salt, and fillers are reviewed with the objective to further improve the performance of SPE. At last, future studies on macromolecular design are proposed in the development of SPE for solid-state batteries with high energy density and durability.
Collapse
Affiliation(s)
- Nan Meng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fang Lian
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
48
|
Yang J, Chen J, Wang Z, Wang Z, Zhang Q, He B, Zhang T, Gong W, Chen M, Qi M, Coquet P, Shum P, Wei L. High‐Capacity Iron‐Based Anodes for Aqueous Secondary Nickel−Iron Batteries: Recent Progress and Prospects. ChemElectroChem 2020. [DOI: 10.1002/celc.202001251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiao Yang
- School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
- CINTRA CNRS/NTU/THALES UMI 3288 Research Techno Plaza 50 Nanyang Drive Singapore 637553 Singapore
| | - Jingwei Chen
- School of Material Science Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Zhixun Wang
- School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Zhe Wang
- School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Qichong Zhang
- School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
- CINTRA CNRS/NTU/THALES UMI 3288 Research Techno Plaza 50 Nanyang Drive Singapore 637553 Singapore
| | - Bing He
- School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Ting Zhang
- Institute of Engineering Thermophysics Chinese Academy of Sciences Beijing 100190 China
| | - Wenbin Gong
- Division of Advanced Nanomaterials Suzhou Institute of Nano-tech and Nano-bionics Chinese Academy of Sciences Suzhou 215123 China
| | - Mengxiao Chen
- School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Miao Qi
- School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Philippe Coquet
- School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
- CINTRA CNRS/NTU/THALES UMI 3288 Research Techno Plaza 50 Nanyang Drive Singapore 637553 Singapore
- Institut d'Electronique de Microélectronique et de Nanotechnologie (IEMN) CNRS UMR 8520-Université de Lille Villeneuve d'Ascq 59650 France
| | - Ping Shum
- School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
- CINTRA CNRS/NTU/THALES UMI 3288 Research Techno Plaza 50 Nanyang Drive Singapore 637553 Singapore
| | - Lei Wei
- School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
- CINTRA CNRS/NTU/THALES UMI 3288 Research Techno Plaza 50 Nanyang Drive Singapore 637553 Singapore
| |
Collapse
|
49
|
Adekoya D, Qian S, Gu X, Wen W, Li D, Ma J, Zhang S. DFT-Guided Design and Fabrication of Carbon-Nitride-Based Materials for Energy Storage Devices: A Review. NANO-MICRO LETTERS 2020; 13:13. [PMID: 34138201 PMCID: PMC8187489 DOI: 10.1007/s40820-020-00522-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/16/2020] [Indexed: 05/19/2023]
Abstract
Carbon nitrides (including CN, C2N, C3N, C3N4, C4N, and C5N) are a unique family of nitrogen-rich carbon materials with multiple beneficial properties in crystalline structures, morphologies, and electronic configurations. In this review, we provide a comprehensive review on these materials properties, theoretical advantages, the synthesis and modification strategies of different carbon nitride-based materials (CNBMs) and their application in existing and emerging rechargeable battery systems, such as lithium-ion batteries, sodium and potassium-ion batteries, lithium sulfur batteries, lithium oxygen batteries, lithium metal batteries, zinc-ion batteries, and solid-state batteries. The central theme of this review is to apply the theoretical and computational design to guide the experimental synthesis of CNBMs for energy storage, i.e., facilitate the application of first-principle studies and density functional theory for electrode material design, synthesis, and characterization of different CNBMs for the aforementioned rechargeable batteries. At last, we conclude with the challenges, and prospects of CNBMs, and propose future perspectives and strategies for further advancement of CNBMs for rechargeable batteries.
Collapse
Affiliation(s)
- David Adekoya
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Shangshu Qian
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Xingxing Gu
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - William Wen
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Dongsheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, People's Republic of China
| | - Jianmin Ma
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, People's Republic of China
| | - Shanqing Zhang
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
50
|
Li J, Long Y, Yang F, Wang X. Respiration-driven triboelectric nanogenerators for biomedical applications. ECOMAT 2020; 2:e12045. [PMID: 34172981 PMCID: PMC7436384 DOI: 10.1002/eom2.12045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/30/2020] [Accepted: 07/18/2020] [Indexed: 05/05/2023]
Abstract
As a fundamental and ubiquitous body motion, respiration offers a large amount of biomechanical energy with an average power up to the Watt level through movements of multiple muscles. The energy from respiration featured with excellent stability, accessibility and continuality inspires the design and engineering of biomechanical energy harvesting devices, such as triboelectric nanogenerators (TENGs), to realize human-powered electronics. This review article is thus dedicated to the emerging respiration-driven TENG technology, covering fundamentals, applications, and perspectives. Specifically, the human breathing mechanics are first introduced serving as the base for the developments of TENG devices with different configurations. Biomedical applications including electrical energy generation, healthcare monitoring, air filtration, gas sensing, electrostimulation, and powering implantable medical devices are then analyzed focusing on the design-application relationships. At last, current developments are summarized and critical challenges for driving these intriguing developments toward practical applications are discussed together with promising solutions.
Collapse
Affiliation(s)
- Jun Li
- Department of Materials Science and EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yin Long
- Department of Materials Science and EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Fan Yang
- Department of Materials Science and EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Xudong Wang
- Department of Materials Science and EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|