1
|
Kang H, Daaoub AHS, Sangtarash S, Jang J, Lee K, Sadeghi H, Yoon HJ. Engineering Charge Transport by Tunneling in Supramolecular Assemblies through Precise Control of Metal-Ligand Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501303. [PMID: 40405677 DOI: 10.1002/smll.202501303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/01/2025] [Indexed: 05/24/2025]
Abstract
Coordination-driven supramolecular assemblies are promising for nanometer-sized electronic devices due to the potential to manipulate metal-ligand interactions and thereby control charge transport via tunneling through these assemblies. Cross-plane charge tunneling is investigated in assemblies of metalloporphyrins and pillar molecules, specifically palladium(II) and zinc(II) octaethylporphyrin (PdOEP and ZnOEP) monolayers and bilayers with bidentate (DABCO) and monodentate (ABCO) pillar ligands on highly oriented pyrolytic graphite (HOPG). Junction measurements and quantum-chemical calculations reveal that metal-ligand interactions significantly influence charge transport via tunneling and thermoelectric effects. Weak interactions in PdOEP assemblies create isolated molecular orbitals on interior pillar ligands, compressing the HOMO-LUMO gap and enhancing tunneling currents with unusual, inverted attenuation behavior and high thermopower. Conversely, strong interactions in ZnOEP assemblies induce localized orbitals on the porphyrin, leading to conventional tunneling decay behavior and low thermopower. The study highlights the potential of metal-ligand interactions as a strategy to engineer molecular orbital distribution, enhancing quantum transport efficiency in molecular-scale devices.
Collapse
Affiliation(s)
- Hungu Kang
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Abdalghani H S Daaoub
- Device Modelling Group, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Sara Sangtarash
- Device Modelling Group, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Jiung Jang
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Kangsik Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Hatef Sadeghi
- Device Modelling Group, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
2
|
Bera J, Kabdulov M, Wakayama Y, Huhn T, Hayakawa R. Multilevel Resonant Tunneling through Purely Organic Radical Molecules in a Si-Based Double-Tunnel Junction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23018-23024. [PMID: 40189863 DOI: 10.1021/acsami.5c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The use of purely organic radicals is promising, especially for future applications in molecular spintronics. However, the techniques used to form their molecular junctions, including break-junction and scanning tunneling microscopy techniques, are unsuitable for the integration of molecular devices in a large-scale setting. In this study, a Si-based double-tunnel junction with purely organic radicals, where adamantyl nitronyl nitroxide p-terphenyl (NN-TP) molecules are embedded as quantum dots in the oxide layer of a metal-oxide-semiconductor (MOS) structure, was demonstrated. Notably, this MOS structure functions as a tunnel junction, which has a high affinity for the current Si technology. In this study, multilevel resonant tunneling through the discrete energy levels of the NN-TP molecules at 7 K was achieved; moreover, the tunneling current was observed at 100 K. Furthermore, our device exhibited resonant tunneling through a singly occupied molecular orbital, indicating the survival of an unpaired electron in the radical molecules. Thus, our findings hold promise for incorporating the attractive functions of organic radicals into Si-based solid-state devices, thereby enabling the large-scale integration of molecular devices.
Collapse
Affiliation(s)
- Jayanta Bera
- Quantum Device Engineering Group, Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Mikhail Kabdulov
- Department of Chemistry, University of Konstanz, Konstanz 78457, Germany
| | - Yutaka Wakayama
- Quantum Device Engineering Group, Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Thomas Huhn
- Department of Chemistry, University of Konstanz, Konstanz 78457, Germany
| | - Ryoma Hayakawa
- Quantum Device Engineering Group, Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
3
|
He P, Jang J, Kang H, Yoon HJ. Thermoelectricity in Molecular Tunnel Junctions. Chem Rev 2025. [PMID: 39908450 DOI: 10.1021/acs.chemrev.4c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The growing interest in thermoelectric energy conversion technologies has recently extended to the molecular scale, with molecular tunnel junctions emerging as promising platforms for energy harvesting from heat in a quantum-tunneling regime. This Review explores the advances in thermoelectricity within molecular junctions, highlighting the unique ability of these junctions to exploit charge tunneling and controlled molecular structure to enhance thermoelectric performance. Molecular thermoelectrics, which bridge nanoscale material design and thermoelectric applications, utilize tunneling mechanisms, such as coherent tunneling and hopping processes, including coherent and incoherent pathways, to facilitate energy conversion. Complementing these mechanisms is an array of high-precision fabrication techniques for molecular junctions, from single-molecule break junctions to large-area liquid metal-based systems, each tailored to optimize heat and charge transfer properties. With novel design strategies such as the incorporation of electron-dense ligands, customizable anchor groups, and advanced junction architectures, molecular tunnel junctions hold promise for addressing challenging targets in thermoelectricity. This Review focuses on theoretical models, experimental methodologies, and design principles aimed at understanding the thermoelectric function in molecular junctions and enhancing the performance.
Collapse
Affiliation(s)
- Peng He
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiung Jang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hungu Kang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
4
|
Jang J, Yoon HJ. Long-Range Charge Transport in Molecular Wires. J Am Chem Soc 2024; 146:32206-32221. [PMID: 39540553 DOI: 10.1021/jacs.4c11431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Long-range charge transport (LRCT) in molecular wires is crucial for the advancement of molecular electronics but remains insufficiently understood due to complex transport mechanisms and their dependencies on molecular structure. While short-range charge transport is typically dominated by off-resonant tunneling, which decays exponentially with molecular length, recent studies have highlighted certain molecular structures that facilitate LRCT with minimal attenuation over several nanometers. This Perspective reviews the latest progress in understanding LRCT, focusing on chemical designs and mechanisms that enable this phenomenon. Key strategies include π-conjugation, redox-active centers, and stabilization of radical intermediates, which support LRCT through mechanisms such as coherent resonant tunneling or incoherent hopping. We discuss how the effects of molecular structure, length, and temperature influence charge transport, and highlight emerging techniques like the Seebeck effect for distinguishing between transport mechanisms. By clarifying the principles behind LRCT and outlining future challenges, this work aims to guide the design of molecular systems capable of sustaining efficient long-distance charge transport, thereby paving the way for practical applications in molecular electronics and beyond.
Collapse
Affiliation(s)
- Jiung Jang
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| |
Collapse
|
5
|
Miyashita T, He S, Jaimes P, Kaledin AL, Fumanal M, Lian T, Lee Tang M. Oligoyne bridges enable strong through-bond coupling and efficient triplet transfer from CdSe QD trap excitons for photon upconversion. J Chem Phys 2024; 161:094707. [PMID: 39234973 DOI: 10.1063/5.0223478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Polyyne bridges have attracted extensive interest as molecular wires due to their shallow distance dependence during charge transfer. Here, we investigate whether triplet energy transfer from cadmium selenide (CdSe) quantum dots (QDs) to anthracene acceptors benefits from the high conductance associated with polyyne bridges, especially from the potential cumulene character in their excited states. Introducing π-electron rich oligoyne bridges between the surface-bound anthracene-based transmitter ligands, we explore the triplet energy transfer rate between the CdSe QDs and anthracene core. Our femtosecond transient absorption results reveal that a rate constant damping coefficient of β is 0.118 ± 0.011 Å-1, attributed to a through-bond coupling mechanism facilitated by conjugation among the anthracene core, the oligoyne bridges, and the COO⊖ anchoring group. In addition, oligoyne bridges lower the T1 energy level of the anthracene-based transmitters, enabling efficient triplet energy transfer from trapped excitons in CdSe QDs. Density-functional theory calculations suggest a slight cumulene character in these oligoyne bridges during triplet energy transfer, with diminished bond length alternation. This work demonstrates the potential of oligoyne bridges in mediating long-distance energy transfer.
Collapse
Affiliation(s)
- Tsumugi Miyashita
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sheng He
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Paulina Jaimes
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Alexey L Kaledin
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
- The Cherry L. Emerson Center for Scientific Computation, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, USA
| | - Maria Fumanal
- Departament de Ciència de Materials i Química Física and IQTCUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Ming Lee Tang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
6
|
Colin-Molina A, Nematiaram T, Cheung AMH, Troisi A, Frisbie CD. The Conductance Isotope Effect in Oligophenylene Imine Molecular Wires Depends on the Number and Spacing of 13C-Labeled Phenylene Rings. ACS NANO 2024; 18:7444-7454. [PMID: 38411123 DOI: 10.1021/acsnano.3c11327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
We report a strong and structurally sensitive 13C intramolecular conductance isotope effect (CIE) for oligophenyleneimine (OPI) molecular wires connected to Au electrodes. Wires were built from Au surfaces beginning with the formation of 4-aminothiophenol self-assembled monolayers (SAMs) followed by subsequent condensation reactions with 13C-labeled terephthalaldehyde and phenylenediamine; in these monomers the phenylene rings were either completely 13C-labeled or the naturally abundant 12C isotopologues. Alternatively, perdeuterated versions of terephthalaldehyde and phenylenediamine were employed to make 2H(D)-labeled OPI wires. For 13C-isotopologues of short OPI wires (<4 nm) in length where the charge transport mechanism is tunneling, there was no measurable effect, i.e., 13C CIE ≈ 1, where CIE is defined as the ratio of labeled and unlabeled wire resistances, i.e., CIE = Rheavy/Rlight. However, for long OPI wires >4 nm, in which the transport mechanism is polaron hopping, a strong 13C CIE = 4-5 was observed. A much weaker inverse CIE < 1 was evident for the longest D-labeled wires. Importantly, the magnitude of the 13C CIE was sensitive to the number and spacing of 13C-labeled rings, i.e., the CIE was structurally sensitive. The structural sensitivity is intriguing because it may be employed to understand polaron hopping mechanisms and charge localization/delocalization in molecular wires. A preliminary theoretical analysis explored several possible explanations for the CIE, but so far a fully satisfactory explanation has not been identified. Nevertheless, the latest results unambiguously demonstrate structural sensitivity of the heavy atom CIE, offering directions for further utilization of this interesting effect.
Collapse
Affiliation(s)
- Abraham Colin-Molina
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tahereh Nematiaram
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G11XL, United Kingdom
| | - Andy Man Hong Cheung
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, Liverpool L697ZD, United Kingdom
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Li Y, Xie J, Sun L, Zeng J, Zhou L, Hao Z, Pan L, Ye J, Wang P, Li Y, Xu J, Shi Y, Wang X, He D. Monolayer Organic Crystals for Ultrahigh Performance Molecular Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305100. [PMID: 38145961 PMCID: PMC10933607 DOI: 10.1002/advs.202305100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Molecular diodes are of considerable interest for the increasing technical demands of device miniaturization. However, the molecular diode performance remains contact-limited, which represents a major challenge for the advancement of rectification ratio and conductance. Here, it is demonstrated that high-quality ultrathin organic semiconductors can be grown on several classes of metal substrates via solution-shearing epitaxy, with a well-controlled number of layers and monolayer single crystal over 1 mm. The crystals are atomically smooth and pinhole-free, providing a native interface for high-performance monolayer molecular diodes. As a result, the monolayer molecular diodes show record-high rectification ratio up to 5 × 108 , ideality factor close to unity, aggressive unit conductance over 103 S cm-2 , ultrahigh breakdown electric field, excellent electrical stability, and well-defined contact interface. Large-area monolayer molecular diode arrays with 100% yield and excellent uniformity in the diode metrics are further fabricated. These results suggest that monolayer molecular crystals have great potential to build reliable, high-performance molecular diodes and deeply understand their intrinsic electronic behavior.
Collapse
Affiliation(s)
- Yating Li
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Jiacheng Xie
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Li Sun
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Junpeng Zeng
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Liqi Zhou
- National Laboratory of Solid‐State MicrostructuresJiangsu Key Laboratory of Artificial Functional MaterialsCollege of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| | - Ziqian Hao
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Lijia Pan
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Jiandong Ye
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Peng Wang
- Department of PhysicsUniversity of WarwickCoventryCV4 7ALUnited Kingdom
| | - Yun Li
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Jian‐Bin Xu
- Department of Electronic Engineering and Materials Science and Technology Research CenterThe Chinese University of Hong KongHong Kong999077China
| | - Yi Shi
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Xinran Wang
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
- School of Integrated CircuitsNanjing UniversitySuzhou215163China
| | - Daowei He
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| |
Collapse
|
8
|
Jang J, Jo JW, Ohto T, Yoon HJ. Seebeck Effect in Molecular Wires Facilitating Long-Range Transport. J Am Chem Soc 2024; 146:4922-4929. [PMID: 38324711 DOI: 10.1021/jacs.3c14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The study of molecular wires facilitating long-range charge transport is of fundamental interest for the development of various technologies in (bio)organic and molecular electronics. Defining the nature of long-range charge transport is challenging as electrical characterization does not offer the ability to distinguish a tunneling mechanism from the other. Here, we show that investigation of the Seebeck effect provides the ability. We examine the length dependence of the Seebeck coefficient in electrografted bis-terpyridine Ru(II) complex films. The Seebeck coefficient ranges from 307 to 1027 μV/K, with an increasing rate of 95.7 μV/(K nm) as the film thickness increases to 10 nm. Quantum-chemical calculations unveil that the nearly overlapped molecular-orbital energy level of the Ru complex with the Fermi level accounts for the giant thermopower. Landauer-Büttiker probe simulations indicate that the significant length dependence evinces the Seebeck effect dominated by coherent near-resonant tunneling rather than thermal hopping. This study enhances our comprehension of long-range charge transport, paving the way for efficient electronic and thermoelectric materials.
Collapse
Affiliation(s)
- Jiung Jang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jeong Woo Jo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Tatsuhiko Ohto
- Department of Materials Design Innovation Engineering, Nagoya University, Furo-cho, Chikusa-ku, Aichi 464-8603, Japan
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
9
|
Marongiu M, Ha T, Gil-Guerrero S, Garg K, Mandado M, Melle-Franco M, Diez-Perez I, Mateo-Alonso A. Molecular Graphene Nanoribbon Junctions. J Am Chem Soc 2024; 146:3963-3973. [PMID: 38305745 PMCID: PMC10870704 DOI: 10.1021/jacs.3c11340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
One of the challenges for the realization of molecular electronics is the design of nanoscale molecular wires displaying long-range charge transport. Graphene nanoribbons are an attractive platform for the development of molecular wires with long-range conductance owing to their unique electrical properties. Despite their potential, the charge transport properties of single nanoribbons remain underexplored. Herein, we report a synthetic approach to prepare N-doped pyrene-pyrazinoquinoxaline molecular graphene nanoribbons terminated with diamino anchoring groups at each end. These terminal groups allow for the formation of stable molecular graphene nanoribbon junctions between two metal electrodes that were investigated by scanning tunneling microscope-based break-junction measurements. The experimental and computational results provide evidence of long-range tunneling charge transport in these systems characterized by a shallow conductance length dependence and electron tunneling through >6 nm molecular backbone.
Collapse
Affiliation(s)
- Mauro Marongiu
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Tracy Ha
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Sara Gil-Guerrero
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kavita Garg
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Marcos Mandado
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Manuel Melle-Franco
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ismael Diez-Perez
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
10
|
Abstract
ConspectusThe significance of the new synthetic approach is that it can overcome the limitations of conventional methods and produce previously inaccessible polymer structures and materials. The solid-phase synthesis developed by Merrifield in 1964 is widely employed for the synthesis of biological molecules, such as peptides, nucleic acids, and oligosaccharides. Although the variety of iterative reactions available is theoretically implemented for most organic synthesis protocols, they are usually required to have high efficiency against sluggish reaction kinetics at the solid-liquid interface and process with protection and deprotection steps. Generally, unsatisfied reaction dynamics at the solid-liquid interface cannot statistically permit accurate and uniform polymer synthesis of sophisticated structures and functions within an acceptable time scale. To address this challenge, we propose the concept of solid-phase electrosynthesis, which simultaneously enables rapidly surface-initiated uniform electrosynthesis and unidirectional assembly of metallopolymers via kinetically accelerated and statistically allowed iterative growth. In particular, on a self-assembled monolayer (SAM) of the metal complex with electroactive unit A, the iterative monomer with two electroactive units A and B can be alternatively activated by oxidative and reductive potentials for A-A and B-B covalent couplings with the SAM, respectively. This enables topochemical one-by-one additions of the iterative monomers to end-on-oriented self-assembled molecules through alternative redox reactions. Each iterative step is purified by washing. Repeating the same iterative reaction enables further reaction of the unreactive sites on the SAMs and repairs the morphology defects, thereby ensuring the statistically allowed uniform synthesis and fabrication of polymer monolayers. The resulting monolayers exhibit subnanometer-uniform morphology over centimeter-sized areas with crystalline states and show thicknesses similar to theoretical molecular lengths. This demonstrates the unidirectional formation of polymer assemblies, providing a pathway for obtaining highly ordered formation of noncrystalline polymers. The length-controlled electrosynthesis of metallopolymers can be generalized for many types of organic ligands and metal species, enabling quantitative design of the composition and sequence-controlled metallopolymers with the precise relationships of structures and properties. Solid-phase electrosynthesis offers a unique approach to synthesize polymer structures and monolayers with enhanced functionality and superior physical properties, including physical density, modulus, and conductance. Through the utilization of precise and efficient iterative growth, this predictable electrosynthesis, coupled with optical and electrical monitoring, not only expands the scope of current synthetic chemistry but also paves a potential way for the automated generation of optoelectric molecular monolayers with large-area dimensional consistency and enhanced physical performance.
Collapse
Affiliation(s)
- Mao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yongfang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
11
|
Li Y, Shan X, Li S, Wang J, Li Z, Wang Z, Li X, Hong W, Li M, Ma Y. Nanoarchitectonics on Electrosynthesis and Assembly of Conjugated Metallopolymers. Angew Chem Int Ed Engl 2023; 62:e202311778. [PMID: 37933712 DOI: 10.1002/anie.202311778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
In contrast to edge-on and face-on orientations, end-on uniaxial conjugated polymers have the theoretical possibility of providing a macroscopic crystalline film. However, their fabrication is insurmountable due to sluggishly thermodynamic equilibrium states. Herein, we report the programmatic pathway to fabricate nanoarchitectonics on end-on uniaxial conjugated metallopolymers by surface-initiated simultaneous electrosynthesis and assembly. Self-assembled monolayer (SAM) with bottom-up oriented electroactive molecules as a temple allows orientation, stacking, and reactive addition of monomers triggered by switching alternative redox reactions as well as crystallization of small molecules. Repeating the same reaction can repair the unreactive site on the SAM and dynamically and statistically ensure maximum iterative coverage with ideal linear coefficients between optical or electrical responses and iterative times. The resulting nanoarchitectonics on uniaxially assembled end-on polymers over centimeter-sized areas have a subnanometer-uniform morphology and exhibit ultrahigh modulus as well as an inorganic indium tin oxides and the highest conductance among conjugated molecular monolayers. Their memristive devices provide quantitative electrical and optical responses as a function of molecular length, bias, and iterative junctions. Precise processing of nanoarchitectonics as an electrically assisted assembly or printing technique can present sophisticated optoelectric functions and dimensional batch-to-batch consistency for micro-sized organic materials and electronics.
Collapse
Affiliation(s)
- Yongfang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xuanyu Shan
- Centre for Advanced Optoelectronic Functional Materials Research, Northeast Normal University, Changchun, 130000, China
| | - Shumu Li
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
| | - Jinxin Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Zhongqiang Wang
- Centre for Advanced Optoelectronic Functional Materials Research, Northeast Normal University, Changchun, 130000, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuguang Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
12
|
Kumar R, Seth C, Venkatramani R, Kaliginedi V. Do quantum interference effects manifest in acyclic aliphatic molecules with anchoring groups? NANOSCALE 2023; 15:15050-15058. [PMID: 37671581 DOI: 10.1039/d3nr02140h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The ability to control single molecule electronic conductance is imperative for achieving functional molecular electronics applications such as insulation, switching, and energy conversion. Quantum interference (QI) effects are generally used to control electronic transmission through single molecular junctions by tuning the molecular structure or the position of the anchoring group(s) in the molecule. While previous studies focussed on the QI between σ and/or π channels of the molecular backbone, here, we show that single molecule electronic devices can be designed based on QI effects originating from the interactions of anchoring groups. Furthermore, while previous studies have concentrated on the QI mostly in conjugated/cyclic systems, our study showcases that QI effects can be harnessed even in the simplest acyclic aliphatic systems-alkanedithiols, alkanediamines, and alkanediselenols. We identify band gap state resonances in the transmission spectrum of these molecules whose positions and intensities depend on the chain length, and anchoring group sensitive QI between the nearly degenerate molecular orbitals localized on the anchoring groups. We predict that these QI features can be harnessed through an external mechanical stimulus to tune the charge transport properties of single molecules in the break-junction experiments.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India.
| | - Charu Seth
- Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), Bangalore 560012, India.
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India.
| | - Veerabhadrarao Kaliginedi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), Bangalore 560012, India.
| |
Collapse
|
13
|
Abstract
ConspectusUnderstanding the thermoelectric effects that convert energy between heat and electricity on a molecular scale is of great interest to the nanoscience community. As electronic devices continue to be miniaturized to nanometer scales, thermoregulation on such devices becomes increasingly critical. In addition, the study of molecular thermoelectricity provides information that cannot be accessed through conventional electrical conductance measurements. The field of molecular thermoelectrics aims to explore thermoelectric effects in electrode-molecule-electrode tunnel junctions and draw inferences on how the (supra)molecular structure of active molecules is associated with their thermopower. In this Account, we introduce a convenient and useful junction technique that enables thermovoltage measurements of one molecule thick films, self-assembled monolayers (SAMs), with reliability, and discuss the atomic-detailed structure-thermopower relations established by the technique. The technique relies on a microelectrode composed of non-Newtonian liquid metal, eutectic gallium-indium (EGaIn) covered with a native gallium oxide layer. The EGaIn electrode makes it possible to form thermoelectric contacts with the delicate structure of SAMs in a noninvasive fashion. A defined interface between SAM and the EGaIn electrode allows time-effective collection of large amounts of thermovoltage data, with great reproducibility, efficiency, and reliable interpretation and statistical analysis of the data. We also highlight recent efforts to utilize the EGaIn technique for probing molecular thermoelectricity and structure-thermopower relations. Using the technique, it was possible to unravel quantum-chemical mechanisms of thermoelectric functions, based on the Mott formula, in SAM-based large-area junctions, which in turn led us to set various hypotheses to boost the Seebeck coefficient. By validating the hypotheses again with the EGaIn technique, we revealed that the thermopower of junction increases through the reduction of the energy offset between accessible molecular orbital energy level and Fermi level or the tuning of broadening of the orbital energy level. Such alterations in the shape of energy topography of junction could be achieved through structural modifications in anchoring group and molecular backbone of SAM, and the bottom electrode. Molecular thermoelectrics offers a unique opportunity to build a well-defined nanoscale system and isolate an effect of interest from others, advancing fundamental understanding of charge transport across individual molecules and molecule-electrode interfaces. In the Account, we showed our recent work involving carefully designed molecular system that are relevant to answering the question of how thermopower differs between the tunneling and thermal-hopping regimes. The field of molecular thermoelectrics needs to address practical application-related issues, particularly molecular degradation in thermal environments. In this regard, we summarized the results highlighting the thermal instability of SAM-based junctions based on a traditional thiol anchor group and how to circumvent this problem. We also discussed the power factor (PF)─a practical parameter representing the efficiency for converting heat into electricity─of SAMs, evaluated using the EGaIn technique. In the Conclusion section of this Account, we present future challenges and perspectives.
Collapse
Affiliation(s)
- Jiung Jang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Peng He
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
14
|
Bajaj A, Ali ME. Anti-ohmic nanoconductors: myth, reality and promise. Phys Chem Chem Phys 2023; 25:9607-9616. [PMID: 36942699 DOI: 10.1039/d3cp00366c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The recent accomplishment in the design of molecular nanowires characterized by increasing conductance with length has led to the origin of an extraordinary new family of molecular junctions referred to as "anti-ohmic" wires. Herein, this highly desirable, non-classical behavior, has been examined for molecules long-enough to exhibit pronounced diradical character in their ground state within the unrestricted DFT formalism with spin symmetry breaking. We demonstrate that highly conjugated acenes signal higher resistance in an open-shell singlet (OSS) configuration as compared to their closed-shell counterparts. This anomaly has been further proven for experimentally certified cumulene wires, which reveals phenomenal modulation in the transport characteristics such that an increasing conductance is observed in the closed-shell limit, while higher cumulenes in the OSS ground state yield regular decay of conductance.
Collapse
Affiliation(s)
- Ashima Bajaj
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India.
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India.
| |
Collapse
|
15
|
Tang A, Li Y, Wang R, Yang J, Ma C, Li Z, Zou Q, Li H. Charge transport of F4TCNQ with different electronic states in single-molecule junctions. Chem Commun (Camb) 2023; 59:1305-1308. [PMID: 36633258 DOI: 10.1039/d2cc06341g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The molecular conductance of 2,3,5,6-tetrafluoro-7,7,8,8,-tetracyano-quinodimethane (F4TCNQ) with different electronic states (neutral, radical anion, and dianion) was investigated by the scanning tunneling microscope break junction (STM-BJ) technique. These electronic states have distinct conductance, and the conductance decreases in the order of neutral > radical anion > dianion. Surprisingly, the molecular conductance of the neutral F4TCNQ junction reaches 10-1.17G0, attributed to its LUMO energy level being close to the Fermi level of the gold electrode. Moreover, we found that neutral F4TCNQ can be gradually reduced to radical anions under a relatively low bias voltage of 100 mV. These results will advance the development of organic optoelectronic devices and molecule electronics.
Collapse
Affiliation(s)
- Ajun Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yunpeng Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Rui Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Jiawei Yang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Chaoqi Ma
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Zhi Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Qi Zou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
16
|
Large emergent optoelectronic enhancement in molecularly cross-linked gold nanoparticle nanosheets. Commun Chem 2022; 5:103. [PMID: 36698024 PMCID: PMC9814044 DOI: 10.1038/s42004-022-00723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/17/2022] [Indexed: 01/28/2023] Open
Abstract
A central goal in molecular electronics and optoelectronics is to translate tailorable molecular properties to larger materials and to the device level. Here, we present a method to fabricate molecularly cross-linked, self-assembled 2D nanoparticle sheets (X-NS). Our method extends a Langmuir approach of self-assembling gold nanoparticle (NP) arrays at an air-water interface by replacing the liquid sub-phase to an organic solvent to enable cross-linking with organic molecules, and then draining the sub-phase to deposit films. Remarkably, X-NS comprising conjugated oligophenylene dithiol cross-linkers (HS-(C6H4)n-SH, 1 ≤ n ≤ 3) exhibit increasing conductance with molecule length, ~6 orders of magnitude enhancement in UV-Vis extinction coefficients, and photoconductivity with molecule vs. NP contributions varying depending on the excitation wavelength. Finite difference time domain (FDTD) analyses and control measurements indicate that these effects can be modeled provided the local complex dielectric constant is strongly modified upon cross-linking. This suggests quantum hybridization at a molecule-band (q-MB) level. Given the vast number of molecules and nano-building blocks available, X-NS have potential to significantly increase the range of available 2D nanosheets and associated quantum properties.
Collapse
|
17
|
Fedorov AS, Visotin M, Eremkin E, Krasnov PO, Ågren H, Polyutov S. Charge-transfer plasmons of complex nanoparticle arrays connected by conductive molecular bridges. Phys Chem Chem Phys 2022; 24:19531-19540. [DOI: 10.1039/d2cp01811j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge-transfer plasmons (CTP) in complexes of metal nanoparticles bridged by conductive molecular linkers are theoretically analysed using a statistic approach. The applied model takes into account the kinetic energy of...
Collapse
|
18
|
Bedel Pereira E, Bassaler J, Laval H, Holec J, Monflier R, Mesnilgrente F, Salvagnac L, Daran E, Duployer B, Tenailleau C, Gourdon A, Jancarik A, Séguy I. Benzohexacene guide in accurate determination of field effect carrier mobilities in long acenes. RSC Adv 2021; 12:671-680. [PMID: 35425115 PMCID: PMC8697683 DOI: 10.1039/d1ra07808a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
Oligoacenes are promising materials in the field of electronic devices since they exhibit high charge carrier mobility and more particularly as a semiconductor in thin film transistors. Herein, we investigate the field effect charge carrier mobility of benzohexacene, recently obtained by cheletropic decarbonylation at moderate temperature. Initially, high performance bottom contact organic thin-film transistors (OTFTs) were fabricated using tetracene to validate the fabrication process. For easier comparison, the geometries and channel sizes of the fabricated devices are the same for the two acenes. The charge transport in OTFTs being closely related to the organic thin film at the dielectric/organic semiconductor interface, the structural and morphological features of the thin films of both materials are therefore studied according to deposition conditions. Finally, by extracting relevant device parameters the benzohexacene based OTFT shows a four-probe contact-corrected hole mobility value of up to 0.2 cm2 V-1 s-1.
Collapse
Affiliation(s)
- E Bedel Pereira
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| | - J Bassaler
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| | - H Laval
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| | - J Holec
- CEMES-CNRS 29 Rue J. Marvig 31055 Toulouse France
| | - R Monflier
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| | - F Mesnilgrente
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| | - L Salvagnac
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| | - E Daran
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| | - B Duployer
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - C Tenailleau
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - A Gourdon
- CEMES-CNRS 29 Rue J. Marvig 31055 Toulouse France
| | - A Jancarik
- CEMES-CNRS 29 Rue J. Marvig 31055 Toulouse France
- CRPP, UMR CNRS 5031, Université de Bordeaux 33600 Pessac France
| | - I Séguy
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| |
Collapse
|