1
|
Liu S, Yu H, Zhu S, Zhao XE. Copper-based fluorescent nanozyme used to construct a ratiometric sensor for visual detection of thiophanate methyl. Talanta 2025; 285:127417. [PMID: 39708571 DOI: 10.1016/j.talanta.2024.127417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Although nanozyme has shown great potential in designing fluorescent assays for pesticide residue, most of them are based on single emission, thus affecting the detection accuracy. Herein, a copper-based fluorescent nanozyme (Cu-BH) synthesized with dual-ligand, integrating fluorescence and oxidase-mimic into one spherical nanomaterial, was used firstly to establish a ratiometric approach for visual detection of thiophanate methyl (TM). Cu-BH possesses excellent oxidase-like activities, triggering the oxidation of colorless o-phenylenediamine (OPD) into yellow luminescent products (oxOPD, λem = 564 nm). Besides, the ligand of 2-amino-1,4-benzene-dicarboxylic acid imparts Cu-BH blue fluorescence (λem = 425 nm), which is quenched by oxOPD via inner filtration effect (IFE). The introduction of TM can prevent not only the oxidase-like activity remarkably but also the intrinsic luminescence of Cu-BH slightly because of the complexation of TM with Cu2+. As a result, the fluorescence intensity at 564 nm and 425 nm presents a significant decrease and a slight increase, respectively, producing a ratiometric fluorescent signal (F425/F564). Therefore, a novel ratiometric fluorescent strategy has been proposed to detect TM ranging from 0.1 to 100 μM with detection limit of 0.03 μM (S/N = 3). Besides, visual detection of TM can be achieved by RGB reading with the assistance of smartphone owing to the color variation from yellow to blue. This fluorescent nanozyme-based ratiometric strategy provides a specific method for the detection of TM in food samples.
Collapse
Affiliation(s)
- Shuyi Liu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China
| | - Hong Yu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China
| | - Shuyun Zhu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Xian-En Zhao
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| |
Collapse
|
2
|
Liu Y, Yang J, Wu J, Jiang Z, Zhang X, Meng F. The Application of Multifunctional Metal-Organic Frameworks for the Detection, Adsorption, and Degradation of Contaminants in an Aquatic Environment. Molecules 2025; 30:1336. [PMID: 40142111 PMCID: PMC11945069 DOI: 10.3390/molecules30061336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Water pollution poses a severe threat to both aquatic ecosystems and human health, highlighting the crucial importance of monitoring and regulating its levels in water bodies. In contrast to traditional single-treatment approaches, multiple-treatment methods enable the simultaneous detection and removal of water pollutants using a single material. This innovation not only offers convenience but also fosters a more holistic and effective approach to water remediation. Metal-organic frameworks (MOFs) are versatile porous materials that offer significant potential for use in wastewater treatment. This article examines the latest developments in the application of MOFs for multifaceted wastewater treatment. MOFs are used for simultaneous detection and removal, or for the detection and degradation of contaminants. Some MOFs exhibited different functions for different contaminants, and some MOFs showed one function (adsorption or detection) for more than one contaminant. All the multifunctional MOFs facilitate the multiple treatment of the real wastewater. Lastly, existing challenges and future outlooks concerning MOF materials for wastewater treatment are also addressed in this paper.
Collapse
Affiliation(s)
- Yachen Liu
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China; (Y.L.); (J.W.); (Z.J.); (X.Z.)
| | - Jinbin Yang
- Shandong High-Tech Medical Device Innovation Center Co., Ltd., Zibo 255000, China;
| | - Junlin Wu
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China; (Y.L.); (J.W.); (Z.J.); (X.Z.)
| | - Zehao Jiang
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China; (Y.L.); (J.W.); (Z.J.); (X.Z.)
| | - Xinyu Zhang
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China; (Y.L.); (J.W.); (Z.J.); (X.Z.)
| | - Fanjun Meng
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China; (Y.L.); (J.W.); (Z.J.); (X.Z.)
| |
Collapse
|
3
|
Virender V, Pandey V, Kumar A, Raghav N, Bhatia P, Pombeiro AJL, Singh G, Mohan B. Tactical metal-organic frameworks (MOFs) adsorbent advantages in removal applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6380-6404. [PMID: 40029467 DOI: 10.1007/s11356-025-36153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Water pollution caused by the increasing concentration of toxic chemicals, such as heavy metal ions, pesticides, pharmaceutical waste, and plastic contaminants, has become a global issue. The rising levels of these pollutants pose significant health risks to humans and various species. Recently, adsorption has emerged as a promising method for removing these contaminants. This review focuses on metal-organic frameworks (MOFs) as adsorbents, highlighting their large surface areas and adjustable porosity, which optimize the adsorption process. The review analyzes the active sites within MOFs, their roles in adsorption mechanisms, and the underlying chemistry involved. It also discusses the structural chemistry of MOFs and its impact on pollutant removal efficiency. Furthermore, the review addresses stability, scalability, and economic feasibility challenges. Finally, it suggests future research directions for next-generation MOF materials to enhance their effectiveness in sustainable environmental remediation, ultimately improving our ability to combat contamination issues and protect healthy ecosystems.
Collapse
Affiliation(s)
- Virender Virender
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Vandana Pandey
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Ashwani Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Pankaj Bhatia
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.
| |
Collapse
|
4
|
Song Y, Zhao Y, Wu J, Deng D, Duan Y, Li Y, Wu M, Dong G. Crystal Transformation Synthesis of a Three-Dimensional Dual-Fold Building Block Derived from Metal-Organic Framework for Tetracycline Detection. ACS OMEGA 2025; 10:3165-3175. [PMID: 39895709 PMCID: PMC11780557 DOI: 10.1021/acsomega.4c10594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
Metal-organic framework (MOF)-based sensors, which have garnered considerable focus for their potential to enhance environmental monitoring and improve water quality by accurately and consistently identifying antibiotic compounds in water, have gained considerable interest. With the help of pH value, an unusual instance of single-crystal-to-single-crystal (SCSC) transition from the three-dimensional (3D) Zn-framework {[Zn2(mbix)2(2,5-bda)2]·H2O} n (1) to the 3D 2-fold Zn-framework {[Zn4(mbix)4(2,5-bda)4]·H2O} n (2) has been observed under mild conditions. This transformation necessitates the replication of structure 1 while simultaneously modifying the angle between the planes of the imidazole and benzene rings. It is noteworthy that the detection capabilities of 2 for tetracyclines (TC) surpass those of other antibiotic analytes in water. Furthermore, the sensing results are in close consistency with the S-V model when TC concentrations fall within the range of 0-0.08 mM. Additionally, the limit of detection (LOD) of the sensor toward TC is estimated to be 0.59 nM. The stronger quenching impact seen for TC can be linked to a more significant overlap in the energy transfer process. The aforementioned proposition presents a viable strategy for the systematic fabrication of economically viable luminescent sensors, thereby enabling efficient and cost-effective modifications of properties.
Collapse
Affiliation(s)
- Yang Song
- Chemical
Pollution Control Chongqing Applied Technology Extension Center of
Higher Vocational Colleges, Chongqing Industry
Polytechnic College, Chongqing 401120, P. R. China
| | - Yangyang Zhao
- Chemical
Pollution Control Chongqing Applied Technology Extension Center of
Higher Vocational Colleges, Chongqing Industry
Polytechnic College, Chongqing 401120, P. R. China
| | - Jie Wu
- Chemical
Pollution Control Chongqing Applied Technology Extension Center of
Higher Vocational Colleges, Chongqing Industry
Polytechnic College, Chongqing 401120, P. R. China
| | - Dongli Deng
- Chemical
Pollution Control Chongqing Applied Technology Extension Center of
Higher Vocational Colleges, Chongqing Industry
Polytechnic College, Chongqing 401120, P. R. China
| | - Yiqin Duan
- Chemical
Pollution Control Chongqing Applied Technology Extension Center of
Higher Vocational Colleges, Chongqing Industry
Polytechnic College, Chongqing 401120, P. R. China
| | - Ying Li
- Chemical
Pollution Control Chongqing Applied Technology Extension Center of
Higher Vocational Colleges, Chongqing Industry
Polytechnic College, Chongqing 401120, P. R. China
| | - Mingzhu Wu
- Chemical
Pollution Control Chongqing Applied Technology Extension Center of
Higher Vocational Colleges, Chongqing Industry
Polytechnic College, Chongqing 401120, P. R. China
| | - Guohua Dong
- College
of Chemistry and Chemical Engineering, Qiqihar
University, Qiqihar 161006, P. R. China
| |
Collapse
|
5
|
Zhang Y, Yang L, Zhou M, Mou Y, Wang D, Zhang P. Insights into microscopic fabrication, macroscopic forms and biomedical applications of alginate composite gel containing metal-organic frameworks. Asian J Pharm Sci 2024; 19:100952. [PMID: 39640058 PMCID: PMC11617950 DOI: 10.1016/j.ajps.2024.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/25/2024] [Accepted: 08/18/2024] [Indexed: 12/07/2024] Open
Abstract
Overcoming the poor physicochemical properties of pure alginate gel and the inherent shortcomings of pure metal-organic framework (MOF), alginate/MOF composite gel has captured the interest of many researchers as a tunable platform with high stability, controllable pore structure, and enhanced biological activity. Interestingly, different from the traditional organic or inorganic nanofillers physically trapped or chemically linked within neTtworks, MOFs crystals can not only be dispersed by crosslinking polymerization, but also support self-assembly in-situ under the help of chelating cations with alginate. The latter is influenced by multiple factors and may involve some complex mechanisms of action, which is also a topic discussed deeply in this article while summarizing different preparation routes. Furthermore, various physical and chemical levels of improvement strategies and available macroforms are summarized oriented towards obtaining composite gel with ideal performance. Finally, the application status of this composite system in drug delivery, wound healing and other biomedical fields is further discussed. And the current limitations and future development directions are shed light simultaneously, which may provide guidance for the vigorous development of these composite systems.
Collapse
Affiliation(s)
- Yuanke Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lvyao Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Min Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yanhua Mou
- College of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Dongmei Wang
- College of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| |
Collapse
|
6
|
Wang J, Huang Y, Kuai Z, Zhang Y, Shen Q, Tian P, Nong W, Jiang W, He Y, Ran N, Yin Y, Li T, Luo Q. Ultrasensitive and rapid detection of organophosphates using a dual-signal naked-eye hydrogel sensor based on acetylcholinesterase inhibition. Int J Biol Macromol 2024; 283:137778. [PMID: 39571860 DOI: 10.1016/j.ijbiomac.2024.137778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Accurate determination of pesticide residues is crucial for food safety. A self-calibration method was developed for dual-signal "naked-eye" detection of organophosphorus pesticides (OPs) using bifunctional gold nanozymes (AuNEs). OPs inhibit the cascade reaction of acetylcholinesterase/choline oxidase (AChE/CHO) to reduce hydrogen peroxide (H2O2) production, which affects the AuNE-catalyzed color reaction and quenches the fluorescence of AuNEs with the assistance of Fe2+. The multi-enzyme cascade system can be integrated into hydrogel sheets for smartphone-assisted digital, quantitative, and onsite detection of OPs in real food samples by analyzing the linear changes in colorimetric and fluorometric signals, which closely match liquid chromatography-mass spectrometry (LC-MS) results. This method displays a lowest 'naked-eye' detection concentration of 7 ppb, a wide linear range (0-2000 ng/mL), and particularly the advantage of anti-interference via self-calibration when one of the signals is abnormal.
Collapse
Affiliation(s)
- Jiachun Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ziyu Kuai
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yanping Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qi Shen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Pujing Tian
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weihai Nong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wantong Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuting He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Nana Ran
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yinuo Yin
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Quan Luo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Sun YX, Ji BT, Chen JH, Gao LL, Sun Y, Deng ZP, Zhao B, Li JG. Ratiometric emission of Tb(III)-functionalized Cd-based layered MOFs for portable visual detection of trace amounts of diquat in apples, potatoes and corn. Food Chem 2024; 449:139259. [PMID: 38626667 DOI: 10.1016/j.foodchem.2024.139259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/18/2024]
Abstract
Diquat (DQ) is a typical bipyridine herbicide widely used to control weeds in fields and orchards. The severe toxicity of diquat poses a serious threat to the environment and human health. Metal-organic frameworks (MOFs) have received widespread attention due to their unique physical and chemical properties and applications in the detection of toxic and harmful substances. In this work, a two-dimensional (2D) Tb(III) functionalized MOF Tb(III)@1 (1 = [Cd(HTATB)(bimb)]n·H2O (Cd-MOF), H3TATB = 4,4',4″-triazine-2,4,6-tribenzoicacid, bimb = 1,4-bis((1H-imidazol-1-yl)methyl)benzene) has been prepared and characterized. Tb(III)@1 has excellent optical properties and high water and chemical stability. After the Tb(III) is fixed by the uncoordinated -COO- in the 1 framework, Tb(III)@1 emits the typical green fluorescence of the lanthanide ion Tb(III) through the "antenna effect". It is worth noting that Tb(III)@1 can be used as a dual emission fluorescence chemical sensor for the ratio fluorescence detection of pesticide DQ, exhibiting a relatively low detection limit of 0.06 nM and a wide detection range of 0-50 nM. After the addition of DQ, a rapid color change of Tb(III)@1 fluorescence from green to blue was observed due to the combined effects of IFE, FRET and dynamic quenching. Therefore, a simple test paper box has been designed for direct on-site determination of pesticide DQ. In addition, the developed sensor has been successfully applied to the detection of DQ in real samples (fruits a Yin-Xia Sun and Bo-Tao Ji contributed equally to this work and should be considered co-first authors.nd vegetables) with satisfactory results. The results indicate that the probe developed in this study has broad application prospects in both real sample detection and actual on-site testing.
Collapse
Affiliation(s)
- Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China.
| | - Bo-Tao Ji
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Jiang-Hai Chen
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Lu-Lu Gao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Yu Sun
- Experimental Teaching Department of Northwest Minzu University, Lanzhou 730030, China
| | - Zhe-Peng Deng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China.
| | - Biao Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Jin-Guo Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| |
Collapse
|
8
|
Yin Y, Zhang J, Ji C, Tao H, Yang Y. Rare [Cu 4I 2] 2+ cationic cluster-based metal-organic framework and hierarchical porous composites design for effective detection and removal of roxarsone and antibiotics. J Colloid Interface Sci 2024; 664:551-560. [PMID: 38484524 DOI: 10.1016/j.jcis.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Fluorescence quenching induced by photoinduced electron transfer (PET) stands as an effective strategy for identifying water pollutants. Herein, a novel (4, 8)-connected three-dimensional framework Cu(I)-MOF ([Cu2I(tpt)]n) with unique 8-connected [Cu4I2]2+ cationic clusters is designed by employing the nitrogen-rich ligand (Htpt = 5-[4(1H-1,2,4-triazol-1-yl)]phenyl-2H-tetrazole). Water-stabilized Cu(I)-MOF exhibits outstanding fluorescence properties, facilitating its application in detecting organic pollutants in water. Benefiting from the fact that the Cu(I)-MOF possesses a higher lowest unoccupied molecular orbitals (LUMO) energy level than that of the analyte, the rapid d-PET can occur, entitling Cu(I)-MOF to a sensitive fluorescence quenching response to roxarsone (ROX), nitrofurazone (NFZ) and nitrofurantoin (NFT) (with detection limits as low as 0.13 µM, 0.15 µM, and 0.13 µM, respectively). The nitrogen-containing sites of melamine foam (MF) are utilized to facilitate the anchoring and growth of Cu-MOF crystals, which enables the preparation of hierarchical microporous - macroporous Cu(I)-MOF/MF composites. The ordered porous structure of Cu(I)-MOF/MF provides cavities and open sites for the efficient removal of ROX (qmax = 210.6 mg∙g-1), NFZ (qmax = 111.5 mg∙g-1) and NFT (qmax = 238.9 mg∙g-1) from water. This characteristic endows the Cu(I)-MOF/MF with rapid and recyclable adsorption capacity. Therefore, this work provides valuable insights to address the problem of detection and removal of pollutants in the aquatic environment.
Collapse
Affiliation(s)
- Yuanyuan Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Chengshan Ji
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - He Tao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
9
|
Chaudhary MY, Kanzariya DB, Das A, Pal TK. A fluorescent MOF and its synthesized MOF@cotton composite: Ratiometric sensing of vitamin B 2 and antibiotic drug molecule. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124194. [PMID: 38569387 DOI: 10.1016/j.saa.2024.124194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Here, we demonstrated the synthesis of a zinc based luminescent MOF, 1 (NDC = 2,6- naphthalenedicarboxylate) for the ratiometric detection of biomarker riboflavin (RBF; vitamin B2) in water dispersed medium. Further, this MOF detected two other antibiotic drug molecules, nitrofurantoin (NFT) and nitrofurazone (NZF). The detection of these analytes is very quick (∼seconds), and the limit of detection (LOD) for RBF, NZF and NFT are calculated as 16.58 ppm, 47.63 ppb and 56.96 ppb, respectively. The detection of these analytes was also comprehended by solid, solution, cost-effective paper strip method i.e., triphasic identification capabilities. The sensor is reusable without losing its detection efficacy. The sensor further showed the recognition abilities of these antibiotics in real field samples (river water, urine and tablet) and RBF in vitamin B2 pills and food samples (milk and cold drinks). The sensing merit of 1 urged us to fabricate of 1@cotton fabric composite, which exhibited the colorimetric detection of these analytes. In-depth experimental analysis suggested that the occurrence of photo-induced electron transfer (PET), fluorescence resonance energy transfer (FRET), and the inner filter effect (IFE) are the possible sensing mechanisms for the recognition of the antibiotics drug. The FRET mechanism is responsible for the recognition of RBF. The sensing mechanism is further supported by the theoretical analysis and the excited lifetime measurement.
Collapse
Affiliation(s)
- Meetkumar Y Chaudhary
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| | | | - Anirban Das
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India.
| | - Tapan K Pal
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India; Department of Chemistry, Bajkul Milani Mahavidalaya, Bajkul 721655, West Bengal, India.
| |
Collapse
|
10
|
Lin X, Yan H, Zhao L, Duan N, Wang Z, Wu S. Hydrogel-integrated sensors for food safety and quality monitoring: Fabrication strategies and emerging applications. Crit Rev Food Sci Nutr 2024; 64:6395-6414. [PMID: 36660935 DOI: 10.1080/10408398.2023.2168619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Food safety is a global issue in public hygiene. The accurate, sensitive, and on-site detection of various food contaminants performs significant implications. However, traditional methods suffer from the time-consuming and professional operation, restricting their on-site application. Hydrogels with the merits of highly porous structure, high biocompatibility, good shape-adaptability, and stimuli-responsiveness offer a promising biomaterial to design sensors for ensuring food safety. This review describes the emerging applications of hydrogel-based sensors in food safety inspection in recent years. In particular, this study elaborates on their fabrication strategies and unique sensing mechanisms depending on whether the hydrogel is stimuli-responsive or not. Stimuli-responsive hydrogels can be integrated with various functional ligands for sensitive and convenient detection via signal amplification and transduction; while non-stimuli-responsive hydrogels are mainly used as solid-state encapsulating carriers for signal probe, nanomaterial, or cell and as conductive media. In addition, their existing challenges, future perspectives, and application prospects are discussed. These practices greatly enrich the application scenarios and improve the detection performance of hydrogel-based sensors in food safety detection.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Han Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lehan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Cui Z, Li Y, Tsyusko OV, Wang J, Unrine JM, Wei G, Chen C. Metal-Organic Framework-Enabled Sustainable Agrotechnologies: An Overview of Fundamentals and Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38600745 DOI: 10.1021/acs.jafc.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
With aggravated abiotic and biotic stresses from increasing climate change, metal-organic frameworks (MOFs) have emerged as versatile toolboxes for developing environmentally friendly agrotechnologies aligned with agricultural practices and safety. Herein, we have explored MOF-based agrotechnologies, focusing on their intrinsic properties, such as structural and catalytic characteristics. Briefly, MOFs possess a sponge-like porous structure that can be easily stimulated by the external environment, facilitating the controlled release of agrochemicals, thus enabling precise delivery of agrochemicals. Additionally, MOFs offer the ability to remove or degrade certain pollutants by capturing them within their pores, facilitating the development of MOF-based remediation technologies for agricultural environments. Furthermore, the metal-organic hybrid nature of MOFs grants them abundant catalytic activities, encompassing photocatalysis, enzyme-mimicking catalysis, and electrocatalysis, allowing for the integration of MOFs into degradation and sensing agrotechnologies. Finally, the future challenges that MOFs face in agrotechnologies were proposed to promote the development of sustainable agriculture practices.
Collapse
Affiliation(s)
- Zhaowen Cui
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
- Kentucky Water Resources Research Institute, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
12
|
Xia YF, Yuan HQ, Qiao C, Li W, Wang R, Chen P, Li YX, Bao GM. Multifunctional Eu 3+-MOF for simultaneous quantification of malachite green and leuco-malachite green and efficient adsorption of malachite green. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133386. [PMID: 38160559 DOI: 10.1016/j.jhazmat.2023.133386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Multi-target detection combined with in-situ removal of contaminants is a challenging issue difficult to overcome. Herein, a dual-emissive Eu3+-metal organic framework (Eu3+-MOF) was constructed by pre-functionalization with a blue-emissive ligand and post-functionalization with red-emissive Eu3+ ions using a UiO-66 precursor. The fluorescence of the synthesized Eu3+-MOF is highly selective and sensitive toward malachite green (MG) and its metabolite leuco-malachite green (LMG), which are environmentally persistent and highly toxic to humans. The limit of detection of MG and LMG are 34.20 and 1.98 nM, respectively. Interestingly, the fluorescence of this Eu3+-MOF showed ratiometric but different responsive modes toward MG and LMG, which enabled the simultaneous quantification of MG and LMG. Furthermore, a paper-based sensor combined with the smartphone was fabricated, which facilitated not only the dual-channel detection of MG, but also its portable, visual, rapid, and intelligent determination. Furthermore, the high surface area of MOFs, together with the coordinate bonding interaction, π-π stacking, and electrostatic interaction sites, endows Eu3+-MOF with the efficient ability toward MG removal. This multifunctional Eu3+-MOF can be successfully used for trace detection, simultaneous determination of MG and LMG, as well as efficient removal of MG. Thus, it exhibits bright prospects for widespread applications in the field of food and environmental analysis.
Collapse
Affiliation(s)
- Yi-Fan Xia
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hou-Qun Yuan
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Chen Qiao
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Wei Li
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ran Wang
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Peiyao Chen
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yan-Xia Li
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guang-Ming Bao
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
13
|
Mao X, Shi M, Chen C, Guo J, Liu S, Gou H, Zhu X, Li W, Mao D. Metal-organic framework integrated hydrogel bioreactor for smart detection of metal ions. Biosens Bioelectron 2024; 247:115919. [PMID: 38113693 DOI: 10.1016/j.bios.2023.115919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Bioreactors with environment responsiveness for smart detection has attracted widespread interest. Bioreactors that operate in liquid have excellent reaction speed and sensitivity, and those that operate at a solid interface have unique portability and stability. However, bioreactors that can simultaneously take advantage of both properties are still limited. Here, we developed a metal-organic framework (MOF) integrated hydrogel bioreactor that can accommodate both solid and liquid properties by using a hydrogel as a quasi-liquid medium. To enhance the stability and intelligence of the hydrogel bioreactor, we have opted for the utilization of europium metal-organic framework (Eu-MOF) as the optical output to withstand long-term storage challenges, and DNA as the highly programmable substance for intelligent target response. On this basis, smart detection of metal ions and biological micro-molecules have been achieved. Notably, this quasi-liquid hydrogel bioreactor has effectively tackled the intrinsic issues of inadequate dispersion stability of Eu-MOF in liquid systems and poor stability of DNA against environmental interference. Moreover, this MOF integrated hydrogel bioreactor has been applied to the construction of a portable hydrogel bioreactor, which enables platform-free and arrayed target detection via a smartphone, providing a new perspective for further promoting the application of quasi-liquid hydrogel bioreactors and intelligent nanobiological sensors.
Collapse
Affiliation(s)
- Xiaoxia Mao
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing, 246011, PR China
| | - Mengqin Shi
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing, 246011, PR China
| | - Chen Chen
- Key Laboratory of Intelligent Perception and Computing of Anhui Province, Anqing Normal University, Anqing, 246011, PR China
| | - Jingkang Guo
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Shaowei Liu
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing, 246011, PR China
| | - Hongquan Gou
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, PR China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, PR China; Shaoxing Institute of Shanghai University, 78 Sanjiang Road, Shaoxing, PR China.
| | - Wenxing Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, PR China
| | - Dongsheng Mao
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, PR China
| |
Collapse
|
14
|
Patel KU, Kanzariya DB, Chaudhary MY, Jana A, Pati RK, Das S, Pal TK. Fluorescent MOF and Its Gel Composite for the Fluorescence Recovery "Turn-On" Detection of Al 3+ Ions and "Turn-Off" Detection of Oxo-Anions. Inorg Chem 2024; 63:2352-2362. [PMID: 38267375 DOI: 10.1021/acs.inorgchem.3c03121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The exploration of smart sensors is of great significance for the selectivity, sensitivity, and ability to show the low detection limit for the target analyte. Here, we have used the linker H2L (5-((anthracen-9-ylmethyl)amino)isophthalic acid) for the construction of {[Cd(L)(DMF)(H2O)2]·H2O}n (1) which is in order with the chromophore anthracene moiety and the free -NH functionality as a guest interaction site. This framework showed the luminescence recovery "turn-on" detection of the Al3+ ion in an aqueous solution. An exhaustive mechanism study disclosed that the Lewis acid-base-type interaction between the Al3+ ion and the -NH functionality of the linker in the framework revealed that the absorbance caused an enhancement for the "turn-on" sensing event. Besides the "turn-on" sensing event, the "turn-off" sensing phenomenon of 1 is also noticed when it detects the hazardous oxo-anions (MnO4- and CrO42-) with limit of detection values of 17.08 and 19.91 ppb, respectively. The detection of these diverse analytes are very fast (10 s) and they can also be recognized through a colorimetric response. The sensing mechanisms for these analytes are established by photoinduced electron transfer, Forster resonance energy transfer, and inert filter effect along with theoretical investigation. Furthermore, to show the sensing application of 1 in a versatile podium, a MOF gel composite, 1@AA (AA = Agar-Agar), was developed from 1 with AA. Interestingly, 1@AA showed the colorimetric detection of these analytes under UV light. Therefore, sensor 1 behaves as a smart sensory material for the recognition of the above analytes through a simultaneous "turn-on" and "turn-off" effect.
Collapse
Affiliation(s)
- Krupa U Patel
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar 382426, Gujarat, India
| | | | - Meetkumar Y Chaudhary
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar 382426, Gujarat, India
| | - Achintya Jana
- Central Instrumentation Facility, Indian Institute of Technology Gandhinagar, Gandhinagar 382055, Gujarat, India
| | - Ranjan Kumar Pati
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar 382426, Gujarat, India
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, Gujarat, India
| | - Tapan K Pal
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar 382426, Gujarat, India
- Department of Chemistry, Bajkul Milani Mahavidalaya, Bajkul 721655, West Bengal, India
| |
Collapse
|
15
|
Shen G, Zhong L, Liu G, Yang L, Wen X, Chen G, Zhao J, Hou C, Wang X. Synthesis of rare-earth metal-organic frameworks to construct high-resolution sensing array for multiplex anions detection, cell imaging and blood phosphorus monitoring. J Colloid Interface Sci 2023; 652:1925-1936. [PMID: 37690300 DOI: 10.1016/j.jcis.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Accurate detection and differentiation of multiple anions is still a difficult problem due to their wide variety, structural similarity, and mutual interference. Hence, four rare-earth metal-organic frameworks (RE-MOFs) including Dy-MOFs, Er-MOFs, Tb-MOFs and Y-MOFs are successfully prepared by using TCPP as the ligand and rare-earth ions as the metal center via coordination chelation. It is found that 7 anions can light up their fluorescence. Thus, a high-resolution sensing array based on RE-MOFs nanoprobes is employed to differentiate these anions from intricate analytes in real-time scenarios. The distinctive host-guest response promotes the RE-MOFs nanoprobes to selectively extract the target anions from the complex samples. By taking advantage of the cross-response between RE-MOFs nanoprobes and anions, it allows to create an array for detecting target analytes using pattern recognition. Additionally, RE-MOFs nanoprobes also facilitate the quantitative analysis of these anions (PO43-, H2PO4-, HPO42-, F-, S2-, CO32- and C2O42-). More importantly, the exceptional effectiveness of this method has been demonstrated through various successful applications, including quality monitoring of 8 toothpaste brands, intracellular phosphate imaging, and blood phosphorus detection in mice with vascular calcification. These findings provide robust evidence for the efficacy and reliability of the RE-MOFs nanoprobes array for anion recognition.
Collapse
Affiliation(s)
- Gongle Shen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Linling Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Guizhu Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Liu Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Xin Wen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Guanxi Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Jiangqi Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Xianfeng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
16
|
He Q, Bai J, Wang H, Liu S, Jun SC, Yamauchi Y, Chen L. Emerging Pristine MOF-Based Heterostructured Nanoarchitectures: Advances in Structure Evolution, Controlled Synthesis, and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2303884. [PMID: 37625077 DOI: 10.1002/smll.202303884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Metal-organic frameworks (MOFs) can be customized through modular assembly to achieve a wide range of potential applications, based on their desired functionality. However, most of the initially reported MOFs are limited to microporous systems and are not sufficiently stable, which restricts their popularization. Heterogeneity is introduced into a simple MOF framework to create MOF-based heterostructures with fascinating properties and interesting functions. Heterogeneity can be introduced into the MOFs via postsynthetic/ligand exchange. Although the ligand exchange has shown potential, it is difficult to precisely control the degree of exchange or position. Among the various synthesis strategies, hierarchical assembly is particularly attractive for constructing MOF-based heterostructures, as it can achieve precise regulation of MOF-based heterostructured nanostructures. The hierarchical assembly significantly expands the compositional diversity of MOF-based heterostructures, which has high elasticity for lattice matching during the epitaxial growth of MOFs. This review focuses on the synthetic evolution mechanism of hierarchical assemblies of MOF-based nanoarchitectures. Subsequently, the precise control of pore structure, pore size, and morphology of MOF-based nanoarchitectures by hierarchical assembly is emphasized. Finally, possible solutions to address the challenges associated with heterogeneous interfaces are presented, and potential opportunities for innovative applications are proposed.
Collapse
Affiliation(s)
- Qingqing He
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Jie Bai
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai, 201620, P. R. China
- School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
17
|
Zhang Y, Zhang D, He Y, Wang Z, Song P, Wang R. Construction of hexagonal spindle-shaped Fe-MOFs induced by cationic copolymer and its application for effective wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80279-80292. [PMID: 37296248 DOI: 10.1007/s11356-023-28121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The environment and human health are in danger due to the long-term enrichment and buildup of organic pesticides, dyes, and harmful microbes in wastewater. The development of functional materials that are efficient for treating wastewater remains a significant problem. Eco-friendly hexagonal spindle-shaped Fe-MOFs (Hs-FeMOFs) were created in this study under the influence of cationic copolymer (PMSt). The mechanism of crystal growth and development of its unique morphology were described after looking into impact factors for the ideal circumstances and being characterized by XRD, TEM, XPS, and other techniques. It revealed that Hs-FeMOFs possess an enormous supply of adsorption active sites, a strong electropositivity, and the nanometer tip. Then, typical organic pollutants, such as herbicides and mixed dyes, as well as biological pollutants bacteria, were chosen to assess its efficacy in wastewater treatment. It was discovered that the pendimethalin could be quickly removed in wastewater and the removal rate reached 100% within 10 min. In separation of mixed dyes, the retention rate of malachite green (MG) reached 92.3% in 5 min and with a minimum inhibitory concentration of 0.8 mg/mL and demonstrated strong activity due to the presence of cationic copolymers. In actual water matrix, Hs-FeMOF could also play excellent adsorption and antibacterial activity. In summary, a novel, environmentally friendly MOF material with good activity was successfully created by cationic copolymer induction. It offers a fresh approach to develop functional materials in wastewater treatment.
Collapse
Affiliation(s)
- Yaping Zhang
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Duoxin Zhang
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Yufeng He
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Zeyuan Wang
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Pengfei Song
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Rongmin Wang
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
18
|
Li J, Liu M, Li J, Liu X. A MOF-on-MOF composite encapsulating sensitized Tb(III) as a built-in self-calibrating fluorescent platform for selective sensing of F ions. Talanta 2023; 259:124521. [PMID: 37058939 DOI: 10.1016/j.talanta.2023.124521] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
The establishment of simple and sensitive detection methods for fluoride ion (F-) is of great importance for its effective prevention and control, and metal-organic framework (MOF) has attracted much attention for sensing applications due to its high surface areas and tunable structures. Herein, we successfully synthesized a fluorescent probe for ratiometric sensing of F- by encapsulating sensitized Tb3+ in a MOF-on-MOF material (UIO66/MOF801, with the formula of C48H28O32Zr6 and C24H2O32Zr6, respectively). We found that Tb3+@UIO66/MOF801 can be used as a built-in fluorescent probe for fluorescence-enhanced sensing of F-. Interestingly, the two fluorescence emission peaks of Tb3+@UIO66/MOF801 at 375 nm and 544 nm exhibit different fluorescence responses to F- under excitation at 300 nm. The 544 nm peak is sensitive to F-, while the 375 nm peak is insensitive to it. Photophysical analysis indicated that the photosensitive substance was formed, which promotes the absorption of 300 nm excitation light by the system. Self-calibrating fluorescent detection of F- was achieved due to the unequal energy transfer toward the two different emission centers. The detection limit of Tb3+@UIO66/MOF801 for F- was 4.029 μM, which is far lower than the WHO guideline for drinking water. Moreover, the ratiometric fluorescence strategy showed a high concentration tolerance of interference, because of its inner-reference effect. This work highlights the high potential of lanthanide ion encapsulated MOF-on-MOF as environmental sensors, and offers a scalable way for construction of the ratiometric fluorescence sensing systems.
Collapse
Affiliation(s)
- Jingyu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China
| | - Miao Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China
| | - Jiaxuan Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China.
| |
Collapse
|
19
|
Kaur H, Devi N, Siwal SS, Alsanie WF, Thakur MK, Thakur VK. Metal-Organic Framework-Based Materials for Wastewater Treatment: Superior Adsorbent Materials for the Removal of Hazardous Pollutants. ACS OMEGA 2023; 8:9004-9030. [PMID: 36936323 PMCID: PMC10018528 DOI: 10.1021/acsomega.2c07719] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In previous years, different pollutants, for example, organic dyes, antibiotics, heavy metals, pharmaceuticals, and agricultural pollutants, have been of note to the water enterprise due to their insufficient reduction during standard water and wastewater processing methods. MOFs have been found to have potential toward wastewater management. This Review focused on the synthesis process (such as traditional, electrochemical, microwave, sonochemical, mechanochemical, and continuous-flow spray-drying method) of MOF materials. Moreover, the properties of the MOF materials have been discussed in detail. Further, MOF materials' applications for wastewater treatment (such as the removal of antibiotics, organic dyes, heavy metal ions, and agricultural waste) have been discussed. Additionally, we have compared the performances of some typical MOFs-based materials with those of other commonly used materials. Finally, the study's current challenges, future prospects, and outlook have been highlighted.
Collapse
Affiliation(s)
- Harjot Kaur
- Department
of Chemistry, M.M. Engineering College,
Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nishu Devi
- Mechanics
and Energy Laboratory, Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samarjeet Singh Siwal
- Department
of Chemistry, M.M. Engineering College,
Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Walaa F. Alsanie
- Department
of Clinical Laboratories Sciences, The Faculty of Applied Medical
Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Manju Kumari Thakur
- Department
of Chemistry, Government Degree College Sarkaghat, Himachal Pradesh University, Shimla 171005, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
- School of
Engineering, University of Petroleum &
Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
- Centre
for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| |
Collapse
|
20
|
Jia C, He T, Wang GM. Zirconium-based metal-organic frameworks for fluorescent sensing. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Zhang Y, Liu Y, Karmaker PG, Zhang L, Yang K, Chen L, Yang X. Fabrication of Two Luminescent Imidazolyl Cadmium-Organic Frameworks and Their Sensing Mechanism for 2,6-Dichloro-4-nitroaniline. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6177-6186. [PMID: 36669168 DOI: 10.1021/acsami.2c19766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
2,6-Dichloro-4-nitroaniline, alias dicloran (DCN), is a broad-spectrum pesticide that can cause irreversible damage to the human body. Therefore, it is of great significance to develop a technology for the rapid and convenient detection of DCN. Luminescent metal organic frameworks have attracted extensive attention in the field of sensing and detection due to their excellent optical properties. In this study, two kinds of 2D Cd-MOFs (CdMOF-1 and CdMOF-2) were developed for the detection of residual DCN in the environment. Both CdMOFs exhibit excellent solvent and acid-base stability and can respond to DCN quickly and sensitively in a short time (30 s). CdMOFs not only have good selectivity and anti-interference toward DCN but also have good reusability. Under the conditions of DCN concentrations of 1-15 and 0.3-30 μM, the change in fluorescence intensity of CdMOF-1 and CdMOF-2 showed a good linear relationship with DCN concentration (R2 = 0.999/0.991), and the detection limits were 0.36 and 0.12 μM, respectively. Through ultraviolet-visible absorption spectroscopy (UV-Vis), X-ray photoelectron spectroscopy, fluorescence lifetime, and density functional theory calculations, it is revealed that the fluorescence quenching mechanisms of DCN for two kinds of Cd-MOFs are competitive absorption and photoinduced electron transfer, and there may be a weak π-π interaction. Finally, it is demonstrated that by using two types of fluorescent CdMOFs to make the fluorescent test paper and detect actual soil, these can be applied to the actual scene and achieve onsite real-time detection.
Collapse
Affiliation(s)
- Yi Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, P. R. China
| | - Yuhang Liu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, P. R. China
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro/Nano Intelligent Sensing, Neijiang Normal University, Neijiang 641100, P. R. China
| | - Pran Gopal Karmaker
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, P. R. China
| | - Lilei Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Kaijing Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, P. R. China
| | - Lianfang Chen
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, P. R. China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, P. R. China
| |
Collapse
|
22
|
Mohan B, Kamboj A, Virender, Singh K, Priyanka, Singh G, JL Pombeiro A, Ren P. Metal-organic frameworks (MOFs) materials for pesticides, heavy metals, and drugs removal: Environmental Safetyaj. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Liu Y, Dan W, Yan B. A light-operated dual-mode method for neuroblastoma diagnosis based on a Tb-MOF: from biometabolite detection to logic devices. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02701a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Tb-DBA can not only serve as a light-operated dual-mechanism driven platform to detect VMA (an early pathological feature of neuroblastoma), but can also produce a different fluorescence response to epinephrine (EP, the metabolic precursor of VMA).
Collapse
Affiliation(s)
- Yanhong Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Wenyan Dan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
24
|
Kanzariya DB, Goswami R, Muthukumar D, Pillai RS, Pal TK. Highly Luminescent MOF and Its In Situ Fabricated Sustainable Corn Starch Gel Composite as a Fluoro-Switchable Reversible Sensor Triggered by Antibiotics and Oxo-Anions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48658-48674. [PMID: 36274222 DOI: 10.1021/acsami.2c13571] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Frequent use of antibiotics and the growth of industry lead to the pollution of several natural resources which is one of the major consequences for fatality to human health. Exploration of smart sensing materials is highly anticipated for ultrasensitive detection of those hazardous organics. The robust porous hydrogen bonded network encompassing a free-NH2 moiety, Zn(II)-based metal-organic framework (MOF) (1), is used for the selective detection of antibiotics and toxic oxo-anions at the ppb level. The framework is able to detect the electronically dissimilar antibiotic sulfadiazine and nitrofurazone via fluorescence "turn-on" and "turn-off" processes, respectively. The antibiotic-triggered reversible fluoro-switching phenomena (fluorescence "on-off-on") are also observed by using the fluorimetric method. An extensive theoretical investigation was performed to establish the fluoro-switching response of 1, triggered by a class of antibiotics and also the sensing of oxo-anions. This investigation reveals that the interchange of the HOMO-LUMO energy levels of fluorophore and analytes is responsible for such a fluoro-switchable sensing activity. Sensor 1 showed the versatile detection ability which is reflected by the detection of a carcinogenic nitro-group-containing drug "roxarsone". In view of the sustainable environment along with quick-responsive merit of 1, an in situ MOF gel composite (1@CS; CS = corn starch) is prepared using 1 and CS due to its useful potential features such as biocompatibility, toxicologically innocuous, good flexibility, and low commercial price. The MOF composite exhibited visual detection of the above analytes as well as antibiotic-triggered reversible fluoro-switchable colorimetric "on-off-on" response. Therefore, 1@CS represents a promising smart sensing material for monitoring of the antibiotics and oxo-anions, particularly appropriate for the real-field analysis of carcinogenic drug molecule "roxarsone" in food specimens.
Collapse
Affiliation(s)
| | - Ranadip Goswami
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Devaraj Muthukumar
- Department of Chemistry, Christ University, Bangalore, Karnataka 560029, India
| | - Renjith S Pillai
- Department of Chemistry, Christ University, Bangalore, Karnataka 560029, India
| | - Tapan K Pal
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| |
Collapse
|
25
|
Shah JA, Vendl T, Aulicky R, Frankova M, Stejskal V. Gel Carriers for Plant Extracts and Synthetic Pesticides in Rodent and Arthropod Pest Control: An Overview. Gels 2022; 8:gels8080522. [PMID: 36005123 PMCID: PMC9407565 DOI: 10.3390/gels8080522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
Insecticides and rodenticides form the basis of integrated pest management systems worldwide. As pest resistance continues to increase and entire groups of chemical active ingredients are restricted or banned, manufacturers are looking for new options for more effective formulations and safer application methods for the remaining pesticide ingredients. In addition to new technological adaptations of mainstream formulations in the form of sprays, fumigants, and dusts, the use of gel formulations is becoming increasingly explored and employed. This article summarizes information on the current and potential use of gel (including hydrogel) and paste formulations against harmful arthropods or rodents in specific branches of pest management in the agricultural, food, stored product, structural wood, urban, medical, and public health areas. Due to the worldwide high interest in natural substances, part of the review was devoted to the use of gels for the formulation of pesticide substances of botanical origin, such as essential or edible oils. Gels as emerging formulation of so called “smart insecticides” based on molecular iRNA disruptors are discussed.
Collapse
Affiliation(s)
- Jawad Ali Shah
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Tomas Vendl
- Crop Research Institute, Drnovska 507/73, 16106 Prague, Czech Republic
- Correspondence: (T.V.); (V.S.); Tel.: +420-2-3302-2360 (T.V.); +420-2-3302-2217 (V.S.)
| | - Radek Aulicky
- Crop Research Institute, Drnovska 507/73, 16106 Prague, Czech Republic
| | - Marcela Frankova
- Crop Research Institute, Drnovska 507/73, 16106 Prague, Czech Republic
| | - Vaclav Stejskal
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
- Crop Research Institute, Drnovska 507/73, 16106 Prague, Czech Republic
- Correspondence: (T.V.); (V.S.); Tel.: +420-2-3302-2360 (T.V.); +420-2-3302-2217 (V.S.)
| |
Collapse
|